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Abstract

The DevRS two-component system plays a pivotal role in signal transmission and down-

stream gene regulation in Mycobacterium tuberculosis. Under the hypoxic condition, phos-

phorylated DevR interacts with multiple binding sites at the promoter region of the target

genes. In the present work, we carried out a detailed computational analysis to figure out the

sensitivity of the kinetic parameters. The set of kinetic parameters takes care of the interac-

tion among phosphorylated DevR and the binding sites, transcription and translation pro-

cesses. We employ the method of stochastic optimization to quantitate the relevant kinetic

parameter set necessary for DevR regulated gene expression. Measures of different corre-

lation coefficients provide the relative ordering of kinetic parameters involved in gene regula-

tion. Results obtained from correlation coefficients are further corroborated by sensitivity

amplification.

Introduction

Tuberculosis is the second most infectious disease in today’s world and is caused by the

human pathogen Mycobacterium tuberculosis [1]. This highly studied pathogen kills around

two million people each year. It is believed that approximately one-third of the world popula-

tion carries M. tuberculosis bacteria within the human body in the inactive state, viz. dormant

state. Different kinds of environmental and chemical factors trigger its activation. In the devel-

opment of mycobacterial dormancy and latent tuberculosis, the two-component systems

(TCS) plays a pivotal role. Here, it is relevant to note that the TCS is the most important signal

transduction pathway in bacteria [2–4]. It is reported that in M. tuberculosis there are 11 well

defined TCS [5]. The most studied among these TCSs is DevRS and is responsible for the dor-

mancy of M. tuberculosis in the host. Analogous to the other TCS, DevRS contains a mem-

brane-bound sensor kinase DevS and a cytoplasmic response regulator DevR. The sensor

protein DevS utilizes adenosine triphosphate (ATP) to autophosphorylate a conserved histi-

dine residue under hypoxic, nitric oxide, carbon monoxide, ascorbic acid environment or

nutrient starvation conditions. The high energy phosphoryl group is then transferred to the

conserved aspartate residue in DevR, the response regulator. Phosphorylated DevR (RP)
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regulates expression of *48 genes along with its operon. Several of these genes contain 20 bp

palindromic sequence in the upstream region, known as Dev box, to which RP binds [6].

In the present work, we undertake a computational approach to study interactions between

RP and four of its target genes, e.g., Rv3134c, hspX, narK2 and Rv1738. A recent report by Chau-

han et al [6] provides detailed information about the biochemical interactions between RP and

the four target genes. Based on the affinity of the binding strength of RP to the binding sites

present in the promoter region, the binding sites are broadly classified into two different clas-

ses, primary and secondary (see Fig 1). The main objectives of the present communication are

two-fold. First, using simulated annealing, a stochastic optimization technique, we optimize the

kinetic rate parameters. The optimized parameter set is then used to generate novel experimen-

tal profiles [7]. Second, we carried out a sensitivity analysis to figure out the sensitivity of the

kinetic parameters related to the binding/unbinding constants, the rate of mRNA production

from the promoter-GFP construct and rate of GFP production. Based on the correlation coeffi-

cient between the kinetic parameters and the output (GFP), we provide a detailed ordering of

the parameters related to the expression of four target genes shown in Fig 1. The analysis based

on correlation data sheds light on the complex interaction between DevR and the binding sites

and shows how the binding sites are responsible for the gene expression. The sensitivity of the

kinetic parameters is then further verified using the measure of sensitivity amplification.

Before proceeding further, we discuss here some of the theoretical developments related to

the role of kinetic parameters in gene expression. Recently a computational method, sRACIPE,

has been developed to implement stochastic analysis in random circuit perturbation method

Fig 1. DevR-promoter interaction. Schematic diagram for interaction of phosphorylated DevR (black oval) with different binding sites

of the target promoters. Promoters of Rv3134c and hspx contain two and three binding sites, respectively. A single promoter with four

binding sites is shared by narK2 and Rv1738. S (S1 and S2) and P (P1 and P2) stand for secondary and primary binding site, respectively

[6].

https://doi.org/10.1371/journal.pone.0228967.g001
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(RACIPE) [8]. sRACIPE takes care of noisy gene expression along with the parametric varia-

tion of a gene regulatory circuit while considering only its topology. The method developed is

useful for studying multi-stable biological processes that exhibit fluctuations induced cell-to-

cell variation in a cellular population. Implementation of global sensitivity analysis has been

addressed earlier to engineer artificial genetic circuits [9] where the authors made an estima-

tion of circuit properties in terms of model parameters, without prior knowledge of precise

parameter values. Role of parameter robustness has also been investigated in neurogenic net-

work [10]. A Monte Carlo based computation tool has been developed to identify regions of

parameter space that can generate multi-stable states while taking into account fluctuations in

parameter space and initial conditions [11].

Model and methods

Kinetic model

Based on the available experimental information [6] on interactions of DevR with the promot-

ers of Rv3134c, hspX, narK2 and Rv1738 we employ the kinetic model [12]. The generalized

kinetic scheme for phosphorylated DevR (RP) regulated gene expression can be written as

Pi þ Rp Ð
kbi

kui
P�i ;

P�i � !
ksmi P�i þmGFP;

P�i . . . P�N � !
ksmc P�i . . . P�N þmGFP;

mGFP � !
kd;m

�;

mGFP � !
ksg

mGFPþ GFP

GFP � !
kdg

�:

The above kinetic scheme is valid for a promoter site with N numbers of binding sites

(i = 1. . .N). Pi and P�i stands for the inactive and active state of the promoter, respectively. It is

relevant to note that, in our model, each of the Pi-s represent the primary and/or secondary

binding sites. mGFP and GFP are for mRNA and GFP, respectively. The kinetic scheme men-

tioned above needs to be translated into sets of coupled ordinary differential equations (ODEs)

to investigate the steady state and temporal dynamics. For detailed kinetic rate equations with

associated parameters, we refer to S1 Text and S1 Table.

Stochastic optimization: Simulated annealing

In this work, we adopted simulated annealing (SA) [13, 14], one of the prime stochastic opti-

mization techniques to decipher the correct kinetic parameter set associated with the model.

The algorithm of SA was developed using the notion adopted in metallurgy. In the metallurgi-

cal annealing process, a molten mixture of metals by quickly lowering the temperature leads to

a defective crystal structure of the target alloy, far from the minimum Gibbs free energy state.

Starting from a high temperature, cooling must be slow when approaching the recrystallization

temperature to obtain a nearly-perfect defect-free crystal, which is a crystal close to the mini-

mum energy state.

In analogy with the metallurgical annealing, here we make use of an algorithmic tempera-

ture called annealing temperature Tat. The extent of search space which is being sampled is

determined by the magnitude of annealing temperature. Considering Boltzmann distribution

DevR regulated gene expression
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to simulate the behavior of the ensemble, the probability of the energy state of the system at

temperature T is given by p(E0) = exp(−E0/kBT)/Z(T), where E0 is the energy of the state, kB is

Boltzmann constant and Z(T) is the normalization factor. We define a cost function or objec-

tive function Δ to follow the progress of the search towards the solution. While carrying out

the optimization, in each iteration, a small random move is applied to a random kinetic

parameter, and the subsequent difference in Δ is estimated. If Δ� 0 the new state is always

accepted. On the other hand, if Δ> 0 the state can be accepted with some probability to escape

from the local minima, using the principle of Metropolis test [15]. The transition probability

of accepting the later type of solution (Δ> 0) is F(Tat) = exp(−Δ/Tat). In every iteration F(Tat)

is compared with a random number between 0 and 1. If the value of F(Tat) is greater than the

random number, the solution is accepted, otherwise rejected. The physical reasoning behind

this criterion is that if F(Tat) is greater than the invoked random number between 0 and 1, the

move is more probable than a random event which in the present case is the generation of a

random number. If a solution is rejected, then another neighbouring solution is generated and

evaluated. The persistence of each temperature level regulates the number of iterations at a

particular temperature. The temperature reduction takes place during the search process

according to a cooling schedule, and the process terminates after reaching a specified (target)

lowest temperature.

Sensitivity analysis: Correlation coeffcient

Presence of variability in the experimental data often brings in the complication in the proper

estimation of kinetic parameters associated with model biological systems. To identify and

subsequent quantification of the relevant model parameters we adopt the method of sensitivity

analysis [16–20]. In the present report, we quantify the sensitivity of each parameter of the

model using the measure of a different correlation coefficient.

Here, we calculate three types of correlation coefficients, namely Pearson correlation coef-

ficient (CC), Spearman rank correlation coefficient (RCC) and, partial rank correlation coeffi-

cient (PRCC). Usage of CC is appropriate in case of linear dependence, but in the case of

nonlinear monotonic dependence, RCC gives more accurate results. In RCC, the correlation

coefficient is calculated after a rank transformation of the data set. Correlation of a particular

input parameter (from a set of parameters) with the output while excluding the effect of rest

of the parameters is known as PRCC. PRCC between a particular input and the output thus

excludes any effect of other model inputs. In other words, it is cleaned of any correlation

between multiple inputs [16, 18]. Calculation of PRCC also takes care of sensitivity measure

for the nonlinear but monotonic relationship between rank transformed data, hence making

it the most efficient and reliable metric. It is important to mention that the strength of depen-

dency between the input and the output is measured by the magnitude of the correlation coef-

ficient, and it varies from -1 to +1. A low value signifies weak dependency, whereas a high

value represents strong dependence. The negative values indicate anti-correlation between

the input and the output. In the present report, the absolute magnitude of the correlation

coefficient is a measure for the evaluation of the sensitivity of the input with respect to the

output.

To quantify the correlation coefficients, all the optimized parameters reported in Table 1

have been perturbed randomly in order to solve the kinetic equations (see Eqs. (S41-S58) in

S1 Text). The random perturbation is drawn from a Gaussian distribution. The mean and the

variance of the Gaussian distribution is the base value of the parameter and is ±5% (and ±10%,

see S2–S6 Tables) of the base value, respectively. The kinetic equations with a perturbed set of

parameters are solved numerically using numerical ODE solver NDSolve of Mathematica

DevR regulated gene expression
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(version 11.3, Wolfram Inc.) till the system reaches steady state. After each simulation, the

steady state value of GFP is collected to figure out its dependency on a particular parameter

value. To calculate the correlation coefficients between the parameter-GFP pair, we carried out

106 independent simulation.

Table 1. List of optimized parameters associated with DevR regulated gene expression. Here, x ± y stands for the value of optimized parameter x with standard devia-

tion y. The standard deviation is evaluated using the data of 103 independent SA simulations. Parameter values tabulated in Set 1 and Set 2 are due to different sets of ran-

dom initial conditions. Parameters shown under Mean is the average values of Set 1 and Set 2.

Parameter Set 1 Set 2 Mean Unit

ksrp (2.89 ± 0.54) × 10−3 (3.41 ± 0.68) × 10−3 (3.15 ± 0.61) × 10−3 nM s−1

kdrp (5.16 ± 1.13) × 10−5 (4.75 ± 0.88) × 10−5 (4.96 ± 1.01) × 10−5 s−1

kb1 (3.81 ± 0.54) × 10−7 (3.13 ± 0.69) × 10−7 (3.47 ± 0.62) × 10−7 nM−1s−1

ku1 (4.12 ± 0.91) × 10−8 (4.72 ± 0.88) × 10−8 (4.42 ± 0.90) × 10−8 s−1

kb2 (3.48 ± 0.45) × 10−7 (3.40 ± 0.75) × 10−7 (3.44 ± 0.60) × 10−7 nM−1s−1

ku2 (4.50 ± 0.99) × 10−8 (5.59 ± 1.05) × 10−8 (5.05 ± 1.02) × 10−8 s−1

kb3 (3.43 ± 0.66) × 10−7 (2.81 ± 0.55) × 10−7 (3.12 ± 0.61) × 10−7 nM−1s−1

ku3 (5.58 ± 1.17) × 10−7 (4.44 ± 0.67) × 10−7 (5.01 ± 0.92) × 10−7 s−1

kb4 (4.76 ± 0.84) × 10−7 (3.72 ± 0.67) × 10−7 (4.24 ± 0.76) × 10−7 nM−1s−1

ku4 (4.49 ± 0.72) × 10−7 (5.84 ± 0.89) × 10−7 (5.17 ± 0.81) × 10−7 s−1

kb5 (3.80 ± 0.80) × 10−7 (3.00 ± 0.56) × 10−7 (3.40 ± 0.68) × 10−7 nM−1s−1

ku5 (4.28 ± 0.76) × 10−7 (4.13 ± 0.71) × 10−7 (4.21 ± 0.74) × 10−7 s−1

kb6 (4.25 ± 0.72) × 10−7 (4.77 ± 0.80) × 10−7 (4.51 ± 0.76) × 10−7 nM−1s−1

ku6 (4.59 ± 0.78) × 10−7 (5.85 ± 0.89) × 10−7 (5.22 ± 0.84) × 10−7 s−1

kb7 (3.52 ± 0.73) × 10−7 (2.85 ± 0.49) × 10−7 (3.19 ± 0.61) × 10−7 nM−1s−1

ku7 (5.30 ± 0.90) × 10−7 (6.33 ± 0.97) × 10−7 (5.82 ± 0.94) × 10−7 s−1

kb8 (4.12 ± 0.71) × 10−7 (3.66 ± 0.55) × 10−7 (3.89 ± 0.63) × 10−7 nM−1s−1

ku8 (5.66 ± 1.05) × 10−7 (3.98 ± 0.58) × 10−7 (4.82 ± 0.82) × 10−7 s−1

kb9 (3.53 ± 0.64) × 10−7 (6.45 ± 1.11) × 10−7 (4.99 ± 0.88) × 10−7 nM−1s−1

ku9 (4.19 ± 0.74) × 10−7 (4.47 ± 0.69) × 10−7 (4.33 ± 0.72) × 10−7 s−1

ksm1 (0.60 ± 0.21) × 10−3 (1.20 ± 0.13) × 10−3 (0.9 ± 0.17) × 10−3 nM s−1

ksm2 (7.12 ± 1.54) × 10−4 (4.10 ± 0.86) × 10−4 (5.61 ± 1.20) × 10−4 nM s−1

ksm3 (6.19 ± 0.28) × 10−3 (5.57 ± 1.56) × 10−3 (5.88 ± 0.92) × 10−3 nM s−1

ksm4 (4.39 ± 0.85) × 10−3 (4.83 ± 0.71) × 10−3 (4.61 ± 0.78) × 10−3 nM s−1

ksm5 (0.46 ± 0.09) × 10−3 (1.21 ± 0.36) × 10−3 (0.84 ± 0.23) × 10−3 nM s−1

ksm6 (1.14 ± 0.39) × 10−3 (0.92 ± 0.34) × 10−3 (1.03 ± 0.37) × 10−3 nM s−1

ksm7 (7.14 ± 1.00) × 10−3 (5.13 ± 0.68) × 10−3 (6.14 ± 0.84) × 10−3 nM s−1

ksm8 (6.13 ± 1.08) × 10−4 (3.97 ± 0.60) × 10−4 (5.05 ± 0.84) × 10−4 nM s−1

ksm9 (4.44 ± 0.73) × 10−4 (4.42 ± 0.71) × 10−4 (4.43 ± 0.72) × 10−4 nM s−1

ksm10 (4.82 ± 0.96) × 10−5 (3.88 ± 0.53) × 10−5 (4.35 ± 0.75) × 10−5 nM s−1

ksm11 (3.79 ± 0.76) × 10−3 (3.13 ± 0.54) × 10−3 (3.46 ± 0.65) × 10−3 nM s−1

ksm12 (6.00 ± 1.08) × 10−5 (5.87 ± 0.93) × 10−5 (5.94 ± 1.01) × 10−5 nM s−1

ksm13 (4.82 ± 0.86) × 10−5 (6.06 ± 0.90) × 10−5 (5.44 ± 0.88) × 10−5 nM s−1

ksm14 (5.97 ± 1.17) × 10−5 (6.00 ± 0.90) × 10−5 (5.99 ± 1.04) × 10−5 nM s−1

ksm15 (4.95 ± 0.83) × 10−4 (4.72 ± 0.73) × 10−4 (4.84 ± 0.78) × 10−4 nM s−1

ksm16 (5.79 ± 1.05) × 10−4 (4.12 ± 0.73) × 10−4 (4.96 ± 0.89) × 10−4 nM s−1

ksm17 (6.26 ± 1.17) × 10−3 (5.94 ± 0.96) × 10−3 (6.10 ± 0.97) × 10−3 nM s−1

ksm18 (5.24 ± 0.91) × 10−4 (7.26 ± 1.11) × 10−4 (6.25 ± 1.01) × 10−4 nM s−1

ksm19 (4.38 ± 0.83) × 10−3 (4.93 ± 0.83) × 10−3 (4.66 ± 0.83) × 10−3 nM s−1

kdm (4.34 ± 0.86) × 10−4 (3.74 ± 0.60) × 10−4 (4.04 ± 0.73) × 10−4 s−1

ksg (5.03 ± 0.92) × 10−4 (3.79 ± 0.55) × 10−4 (4.41 ± 0.74) × 10−4 nM s−1

kdg (2.75 ± 0.57) × 10−5 (2.62 ± 0.51) × 10−5 (2.69 ± 0.54) × 10−5 s−1

https://doi.org/10.1371/journal.pone.0228967.t001
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Sensitivity amplification

To further check the role of kinetic parameters in gene expression, we employ the measure of

sensitivity amplification [21–23]. Sensitivity amplification is the relative percentage change in

response with respect to the percentage change in stimulus. In the present study, a change in

the GFP level is considered as a response while a change in the kinetic rate parameters is con-

sidered as a variation of the stimulus. Considering this we define sensitivity amplification

AS ¼
DGFP=GFPi

Dk=ki
;

with ΔGFP = GFPf − GFPi and Δk = kf − ki where i and f stand for the initial and final value,

respectively.

Results and discussions

Optimization of the kinetic parameters

One of the main goals of the current work is to obtain the right set of kinetic parameters rele-

vant to DevR controlled gene expression. In this context, it is essential to mention that parame-

ters related to the current project are unavailable in the literature. To the best of our

knowledge, only experimental information we have at our disposal is gene expression of wild

type and some mutants [7, 24]. Keeping this in mind, we carried out stochastic optimization of

the full kinetic parameter set. During simulation optimization of each parameter k (say) is

done using the relation

k0 ¼ kþ k� ð� 1Þ
n
� d� rn;

with k0 being the updated value of k. Here, n is a random integer, δ is the amplitude of allowed

change of a selected parameter which in our case lies between 0.01 to 0.05, and rn is a random

integer between 0 and 1. As mentioned in Sec 2.2 we calculated a cost function or objective

function for the new set of updated variables in each iteration. For Rv3134c and hspX we use

the cost function

D ¼
XN

i¼1

ðGexp
i � GTat

i Þ
2
:

Here Gexp
i is the experimental (target) GFP value and GTat

i is the simulated GFP value at the

annealing temperature Tat evaluated at the i-th step of the simulation. Due to common sharing

of the promoter we use the following cost function for narK2-Rv1738 system

D ¼ a
XN

i¼1

ðGexp
i � GTat

i Þ
2
þ b

XN

i¼1

ðGexp
i � GTat

i Þ
2
;

where α and β are scalar weights. In the present problem, we set α = β = 1.

Following the above structures of the cost function, we carried out the simulation. Initially,

we ascribed random initial values to the model parameters to execute the simulation. To check

whether different sets of initial conditions lead to a unique parameter set, we performed simu-

lation using two different random sets of initial conditions (please see the end of S1 Text). The

two resultant optimized parameter sets are given in Table 1. In addition, Table 1 also shows

the mean of the two parameter sets. The optimized parameters were then used to generate the

experimental GFP expression profiles of all the target genes (see Fig 2) reported by Chauhan

and Tyagi [7]. The corresponding steady state levels of GFP are shown in Fig 3A. We note that

DevR regulated gene expression
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the parameter values reported in these two sets although look different, they, however, gener-

ate similar kind of temporal profiles as shown in Fig 2. The profiles of cost function and evolu-

tion of kinetic rate parameters are shown in Fig 4 and S1–S3 Figs, respectively. We note that

the experimental values plotted in Fig 2 show reduced expression at later time points (* 90

−120 hrs). Multiple reasons may cause such reduction, e.g., cell death due to limited resources,

dilution effect, etc. [25].

To generate the desired optimized set of parameters, we carried out 103 independent SA

runs. In each independent simulation, the initial annealing temperature Tat was set at 300

along with 1% rate of cooling (annealing schedule). The number of SA steps in each simulation

was 104. Multiple SA runs are essential because the upgradation of parameter values in the

model is done by using random numbers and in a given run, there is a finite possibility that

the updated parameters are not able to cause a reduction in the cost function value by a sub-

stantial amount. However, if a large number of SA runs are executed as has been done in the

present study, precise upgradation will happen in certain trajectories with the associated

decrease in cost function quickly and towards the desired solution.

Sensitivity of the kinetic parameters

After optimization of the full kinetic parameter set, we focus on finding out the sensitivity of

the same in connection to gene expression. To this end, we first quantify the correlation

between the GFP level of the four target genes with the synthesis (ksrp) and degradation (kdrp)

Fig 2. Temporal gene expression. Temporal GFP expression of Rv3134c, hspx, narK2 and Rv1738. The symbols are taken from

Chauhan and Tyagi [7] and the lines are generated using optimized set of parameters shown in Table 1. Red and blue lines are drawn

using Set 1 and Set 2, respectively. The black lines are due to Mean values reported in Table 1.

https://doi.org/10.1371/journal.pone.0228967.g002
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rate of the transcription factor RP. We also calculate the correlation of the GFP level with the

synthesis (ksg) and degradation (kdg) rate of the GFP itself. As discussed in Sec 2.3, all the

parameters have been perturbed randomly to solve the kinetic equations (using the perturbed

set of parameters). A Representative of 103 simulation data are shown as scatter plots in S4 Fig.

The nature of scatter plots suggests that the synthesis and the degradation rate of the transcrip-

tion factor have a weak effect on the GFP level. However, the synthesis and degradation rate of

GFP shows a prominent positive and negative correlation, respectively. To quantify the corre-

lation, we calculate CC, RCC and PRCC for all the four genes and are tabulated in Table 2.

Here the correlation values have been calculated using 106 independent trajectories. While

Fig 3. Relative gene expression at steady state. A.Rv3134c, hspX, narK2 and Rv1738. B. Rv3134c and mutants. C. hspX and mutants. D.

Rv1738 and mutants, and E. narK2 and mutants.

https://doi.org/10.1371/journal.pone.0228967.g003

DevR regulated gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0228967 February 13, 2020 8 / 17

https://doi.org/10.1371/journal.pone.0228967.g003
https://doi.org/10.1371/journal.pone.0228967


quantifying the correlation values, we have used both the parameter sets (i.e., Set 1 and Set 2)

shown in Table 1. As a result, each measure of correlation coefficients has three entries in

Table 2. We adopted the same strategy for measuring correlation values for other model

parameters. The correlation values listed in Table 2 suggests an ordering of the target genes

output (GFP level) for each of the four parameters (ksrp, kdrp, ksg and kdg)

ksrp : Rv3134c < narK2 � Rv1738 � hspX;
kdrp : Rv3134c < narK2 � Rv1738 � hspX;
ksg : Rv3134c � narK2 � Rv1738 � hspX;
kdg : Rv3134c � narK2 � Rv1738 � hspX:

Fig 4. Evolution of cost function. The cost function of GFP counts as a function of SA steps associated with Rv3134c,
hspx, narK2 and Rv1738. The five solid lines are generated from five different SA runs and are representatives of 103

simulation. Top and bottom panels are due to Set 1 and Set 2 parameters, respectively.

https://doi.org/10.1371/journal.pone.0228967.g004

Table 2. CC, RCC, PRCC values for synthesis and degradation rate of four genes using 5% perturbation.

Rv3134c hspX narK2 Rv1738
Parameter CC RCC PRCC CC RCC PRCC CC RCC PRCC CC RCC PRCC

Set 1 ksrp 0.010 0.010 0.028 0.029 0.028 0.098 0.025 0.023 0.083 0.027 0.026 0.100

kdrp -0.006 -0.004 -0.023 -0.020 -0.021 -0.100 -0.026 -0.025 -0.082 -0.026 -0.025 -0.088

ksg 0.516 0.500 0.886 0.536 0.523 0.895 0.549 0.534 0.900 0.546 0.531 0.898

kdg -0.520 -0.504 -0.885 -0.539 -0.521 -0.895 -0.551 -0.534 -0.900 -0.547 -0.530 -0.898

Set 2 ksrp -0.001 -0.001 0.014 0.022 0.021 0.084 0.016 0.016 0.068 0.019 0.019 0.074

kdrp 0.002 0.003 -0.018 -0.021 -0.020 -0.077 -0.018 -0.017 -0.068 -0.017 -0.017 -0.078

ksg 0.523 0.508 0.888 0.543 0.529 0.897 0.551 0.536 0.900 0.547 0.532 0.899

kdg -0.525 -0.507 -0.888 -0.546 -0.527 -0.896 -0.549 -0.531 -0.899 -0.545 -0.527 -0.897

Mean ksrp 0.005 0.005 0.021 0.026 0.025 0.091 0.021 0.020 0.076 0.023 0.023 0.087

kdrp -0.002 -0.001 -0.021 -0.021 -0.021 -0.089 -0.022 -0.021 -0.075 -0.022 -0.021 -0.083

ksg 0.520 0.504 0.887 0.540 0.526 0.896 0.550 0.535 0.900 0.574 0.532 0.899

kdg -0.523 -0.506 -0.887 -0.543 -0.524 -0.896 -0.550 -0.533 -0.900 -0.546 -0.529 -0.898

https://doi.org/10.1371/journal.pone.0228967.t002
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Here we note that the synthesis rate ksg is the translation rate of GFP from its mRNA. In the

present model, ksg is the same for all the target genes, which gets reflected in the almost equal

correlation between ksg and GFP. On a similar note correlation between kdg and GFP becomes

equal. The PRCC values reported in Table 2 are higher than CC and RCC values as calculation

of PRCC excludes the effect of other parameters in the calculation.

Having figured out the sensitivity of the parameters associated with the transcription factor

RP, we focus on the parameters associated with the four target genes. The degradation rate of

GFP (kdg) shows the maximum level of correlation (negative) with GFP itself compared to the

other parameters. We thus exclude kdg while looking at the sensitivity of other parameters

related to gene expression.

Two binding sites act co-oepratively in RV3134c expression. First, we analyse the sensi-

tivity of the parameters related to Rv3134c. Using the previous strategy, we quantified the cor-

relation between the parameters and the GFP level (Table 3). Here, the relative ordering of the

parameters in terms of correlation values (absolute) are

ksm3 � ksm1 � ksm2 > kb1 � kb2 � ku1 � ku2:

The above ordering suggests that both the primary (P) and secondary (S) binding sites are nec-

essary for full activation of the Rv3134c gene. Such necessity gets reflected in the high correla-

tion value associated with the parameter ksm3 taking care of co-operativity driven mRNA

production. This is in agreement with the maximum level of GFP expression in the wild type

strain reported by Chauhan and Tyagi [26]. Furthermore, the ordering ksm3� ksm1 * ksm2

suggests that mutation of one of the binding sites (P or S) reduces the correlation of ksm1 and

ksm2 with the output (GFP). During the experiment when either of the binding sites is mutated,

the mutants pmutP and pmutS show *25 fold less GFP expression compared to the wild type

strain (Fig 3B) [26]. Correlation associated with the binding parameters kb1 and kb2 comes

next and have minimal effect on the GFP level. The unbinding parameters ku1 and ku2 have the

least contribution with an order of magnitude lower value of (negative) correlation.

Binding of RP to distal site P1 acts as a bottleneck for hspX expression. Next, we check

sensitivity of the parameters associated with hspX. The ordering of the parameters related to

expression of hspX in terms of correlation values (absolute) (see Table 4) are

ksm4 > ksm7 > ksm5 > ksm6 � kb3 � ku3 > kb5 � ku4 � ku5 � kb4:

In hspX, the synthesis rate ksm4 from the activated distal primary binding site P1 shows a maxi-

mum correlation with the output (GFP) compared to the other synthesis rates associated with

hspX. On the other hand, the activation and inactivation rates (kb3 and ku3) related to the

Table 3. CC, RCC, PRCC values for all the parameter of Rv3134c. The input parameters are calculated with output GFP using 5% perturbation.

CC RCC PRCC

Parameter Set1 Set2 Mean Set1 Set2 Mean Set1 Set2 Mean

kdm -0.521 -0.523 -0.522 -0.505 -0.506 -0.506 -0.887 -0.887 -0.887

ksm3 0.428 0.403 0.416 0.413 0.391 0.402 0.844 0.830 0.837

ksm1 0.044 0.090 0.067 0.043 0.087 0.065 0.150 0.304 0.227

ksm2 0.050 0.028 0.039 0.049 0.030 0.040 0.180 0.115 0.148

kb1 0.008 0.009 0.008 0.007 0.009 0.008 0.023 0.024 0.023

kb2 0.009 0.008 0.008 0.008 0.010 0.009 0.024 0.025 0.024

ku1 0.003 -0.007 -0.002 0.001 -0.008 -0.004 -0.000 -0.013 -0.007

ku2 -0.000 0.006 0.006 -0.006 -0.005 -0.005 -0.001 -0.003 -0.002

https://doi.org/10.1371/journal.pone.0228967.t003
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formation of active P1 (P1�) show a lesser correlation. These two opposing factors work

together to determine the effective contribution of distal binding site P1 in the expression of

hspX as reported by Chauhan et al. [6]. In other words, KD (= ku/kb) value associated with the

distal binding site P1 acts as a bottleneck for its proper functionality. Due to this reason, the

mutant pmutP1 (mutation at P1) showed * 30% of the wild type GFP expression, as reported

by Park et al. [24] (Fig 3C).

The next parameter that shows high correlation with GFP is ksm7 which takes care of syn-

thesis of GFP due to the cooperative effect of all the three binding sites (P1, S and P2) of hspX.

The synthesis rates ksm5 and ksm6 due to P2 and S, respectively, come next. As P2 lies close to

the transcription start point (TSP) of hspX, the GFP synthesis rate due to P2 is higher than that

of S. It is important to note that, mutation at P2 (pmutP2) shows * 53% of the wild type

expression. Thus mutation at both primary binding sites P1 and P2 (pmutP1P2) shows

only* 12% of wild type expression and agrees with Park et al. [24]. The correlation values

due to binding (kb4 & kb5) and unbinding (ku4 & ku5) rates with GFP for the activation of P2

and S show that preference of RP is almost equal for P2 and S due to their close proximity.

Promoter sharing reverses the role of binding sites in narK2-Rv1738 system. Finally,

we analyse the sensitivity of the parameters related to narK2-Rv1738 system. For these pair of

genes we quantify the correlation coefficients (Tables 5 and 6). The ordering of the parameters

related to narK2 in terms of absolute correlation values are (see Table 5)

ksm8 > ksm16 > ksm18 � ksm14 � ksm12 > ksm10 > kb6 � kb7 �

ku6 � ku7 > kb9 � ku8 � kb8 � ku9:

In narK2, the parameter with the highest correlation coefficient is ksm8, related to transcription

from the primary site P1. Thus deletion of P1 results in almost zero expression in the mutant

pAmutP1 [7]. The next sensitive parameter is ksm16 that takes care of transcription from both

P1 and S1. The parameter ksm18 is related to the transcription from the secondary binding sites

P2 and S2. The low value of ksm18 compared to ksm8 and ksm16 is due to the distal nature of P2

and S2 from the TSP of narK2. The correlation ordering of ksm8 together with ksm16 and ksm18

shows that contribution of P2 and S2 in the expression of narK2 is minimal and both are

unable to rescue the low expression profile of pAmutP1. Due to the distal nature of P2 and S2

single mutation results in almost similar kind of expression in pAmutP2 and pAmutS2, respec-

tively [7] (see Fig 3E).

Table 4. CC, RCC, PRCC values for all the parameter of hspX. The input parameters are calculated with output GFP using 5% perturbation.

CC RCC PRCC

Parameter Set1 Set2 Mean Set1 Set2 Mean Set1 Set2 Mean

kdm -0.538 -0.547 -0.543 -0.520 -0.530 -0.525 -0.895 -0.897 -0.896

ksm4 0.286 0.227 0.257 0.276 0.219 0.248 0.729 0.639 0.684

ksm7 0.182 0.218 0.200 0.175 0.211 0.193 0.562 0.630 0.596

ksm5 0.048 0.043 0.046 0.046 0.041 0.044 0.177 0.154 0.166

ksm6 0.014 0.057 0.036 0.015 0.055 0.035 0.078 0.205 0.142

kb3 0.015 0.012 0.014 0.013 0.013 0.013 0.053 0.049 0.051

ku3 -0.014 -0.007 -0.011 -0.013 -0.007 -0.010 -0.052 -0.030 -0.041

kb5 0.010 0.011 0.011 0.011 0.010 0.011 0.032 0.014 0.023

ku4 -0.001 -0.005 -0.003 -0.000 -0.004 -0.002 -0.022 -0.021 -0.022

ku5 -0.002 -0.009 -0.006 -0.003 -0.009 -0.006 -0.023 -0.021 -0.022

kb4 0.007 0.002 0.005 0.004 0.003 0.004 0.019 0.020 0.020

https://doi.org/10.1371/journal.pone.0228967.t004
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Both the parameters kb8 and ku8 are related to the activation of the secondary binding site

S1. Here, kb8 and ku8 together with ksm12 effectively controls transcription from active state of

S1. Due to the close proximity of S1 and S2, transcription rate from S2 shows similar sensitivity

as from S1, i.e., ksm12 * ksm14. The transcription rate ksm10 from the distal binding site P2

shows a low correlation with the output compared to transcription from other binding sites.

The parameter set kb6 and ku6 related to the activation of the primary binding site P1 shows

low correlation. However, when activated the same site (P1�) starts producing the transcripts

with maximum efficiency. Thus, activation of P1 serves as a bottleneck for narK2 transcripts.

Table 5. CC, RCC, PRCC values for all the parameter of narK2. The input parameters are calculated with output GFP using 5% perturbation.

CC RCC PRCC

Parameter Set1 Set2 Mean Set1 Set2 Mean Set1 Set2 Mean

kdm -0.552 -0.546 -0.549 -0.535 -0.530 -0.533 -0.900 -0.900 -0.900

ksm8 0.154 0.235 0.195 0.147 0.226 0.187 0.487 0.655 0.571

ksm16 0.182 0.128 0.155 0.175 0.123 0.149 0.558 0.436 0.497

ksm18 0.171 0.135 0.153 0.165 0.130 0.148 0.528 0.445 0.487

ksm14 0.016 0.021 0.019 0.015 0.020 0.018 0.067 0.075 0.071

ksm12 0.015 0.018 0.017 0.015 0.015 0.015 0.065 0.071 0.068

ksm10 0.010 0.011 0.012 0.010 0.010 0.010 0.053 0.041 0.047

kb6 0.006 0.008 0.007 0.006 0.009 0.008 0.029 0.025 0.027

kb7 0.008 0.009 0.009 0.007 0.008 0.008 0.019 0.032 0.026

ku6 -0.006 -0.005 -0.006 -0.005 -0.006 -0.006 -0.024 -0.016 -0.020

ku7 -0.002 -0.009 -0.006 -0.001 -0.009 -0.005 -0.008 -0.031 -0.020

kb9 0.007 0.000 0.004 0.006 0.002 0.004 0.022 0.013 0.018

ku8 -0.007 -0.000 -0.004 -0.006 -0.001 -0.004 -0.020 -0.009 -0.015

kb8 0.010 0.007 0.009 0.009 0.006 0.008 0.014 0.012 0.013

ku9 0.001 0.001 0.001 0.000 -0.000 0.000 -0.013 -0.005 -0.009

https://doi.org/10.1371/journal.pone.0228967.t005

Table 6. CC, RCC, PRCC values for all the parameter of Rv1738. The input parameters are calculated with output GFP using 5% perturbation.

CC RCC PRCC

Parameter Set1 Set2 Mean Set1 Set2 Mean Set1 Set2 Mean

kdm -0.548 -0.550 -0.549 -0.529 -0.531 -0.530 -0.899 -0.898 -0.899

ksm19 0.219 0.221 0.220 0.208 0.213 0.211 0.632 0.625 0.629

ksm17 0.153 0.177 0.165 0.148 0.171 0.160 0.494 0.552 0.523

ksm11 0.139 0.113 0.126 0.135 0.108 0.122 0.453 0.384 0.419

ksm15 0.016 0.017 0.017 0.015 0.017 0.016 0.070 0.065 0.068

ksm9 0.020 0.021 0.021 0.020 0.020 0.020 0.060 0.062 0.061

kb7 0.006 0.016 0.011 0.004 0.015 0.010 0.035 0.039 0.037

ku7 -0.010 -0.005 -0.008 -0.009 -0.004 -0.006 -0.026 -0.033 -0.030

ku8 -0.005 -0.003 -0.004 -0.006 -0.003 -0.005 -0.019 -0.015 -0.017

kb6 0.003 0.004 0.004 0.003 0.004 0.004 0.016 0.011 0.014

ku6 -0.000 -0.007 -0.004 -0.001 -0.006 -0.004 -0.016 -0.011 -0.014

kb9 0.004 0.001 0.003 0.003 0.001 0.002 0.018 0.009 0.014

kb8 0.003 0.003 0.003 0.003 0.002 0.003 0.017 0.008 0.013

ku9 -0.005 -0.003 -0.004 -0.006 -0.002 -0.004 -0.017 -0.005 -0.011

ksm13 0.005 0.001 0.003 0.005 0.000 0.003 0.007 0.009 0.008

https://doi.org/10.1371/journal.pone.0228967.t006
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On a similar note, the parameter sets (kb7, ku7) and (kb9, ku9) controls the activation of the sites

P2 and S2, respectively.

In Rv1738, the ordering of the parameters in terms of correlation values (absolute) are (see

Table 6)

ksm19 > ksm17 > ksm11 � ksm15 � ksm9 > kb7 � ku7

> ku8 � kb6 � ku6 � kb9 � kb8 � ku9 � ksm13:

The above ordering of correlation values associated with Rv1738 suggests that the most sensi-

tive parameter is ksm19, the transcription rate controlled by both P2 and S2, proximal to

Rv1738. The parameter ksm17 reflects the co-operative effect of P1 and S1, however, distal bind-

ing sites for the same gene. Thus mutation at P2 drastically lowers down the GFP expression as

observed in pBmutP2. Experimentally such signature is observed in the mutant pBmutP1P2

[7] (see Fig 3D). It is important to note that the said mutant also affects the GFP expression

profile of narK2, where it has been labelled as pAmutP1P2. Both the mutants pAmutP1P2 and

pBmutP1P2 are same as, as in both cases P1 and P2 site is mutated [7]. For the sake of labelling,

they have been named differently. The next sensitive parameter is ksm11 and is due to the bind-

ing site P2 alone. Role of the binding site S2 gets reflected through ksm15, which appears next in

the ordering. The sensitivity of transcription rate ksm9 from distal binding site P1 (for Rv1738)

reduces further and has a weak role in the overall production of transcripts. The weak contri-

bution of P1 is observed in the expression profile of the mutant pBmutP1 [7]. We again note

here that the mutant pBmutP1 is same as pAmutP1 (labelled for narK2). Transcription rate

ksm13 from distal secondary site S2 is least and appears at the end of ordering. In between ksm9

and ksm13, the sensitivity of different binding rates appear.

High correlation results into high sensitivity amplification

The results reported in the previous subsection suggest that for each target gene, few rate

parameters show a high correlation with the GFP level compared to the rest of the parameters.

It is thus interesting to inspect whether the same parameter plays a crucial role in sensitivity

amplification. To this end we calculate sensitivity amplification for all the parameters related

to Rv3134c, hspX and narK2-Rv1738. The parameters with a high correlation coefficient with

the output (GFP) indeed show a high level of sensitivity amplification (see Fig 5). On the other

hand, the other parameters play little role in doing so (see S5–S8 Figs).

The parameter ksm3 represents co-operativity driven mRNA production rate in Rv3134c
with highest value of PRCC (see Table 3). It shows highest level of sensitivity amplification

compared to other parameters related to Rv3134c. In hspX, ksm4 and ksm7 show maximum cor-

relation with output. ksm4 is related to gene expression regulated by P1 whereas co-operative

effect of P1, S and P2 gets reflected through ksm7. Both these parameters show high level of sen-

sitivity amplification of the output.

In narK2, the transcription rate ksm8 shows the maximum correlation with output and plays

a decisive role in gene expression. The similar feature is observed in the calculation of sensitiv-

ity amplification. Interestingly, for Rv1738 the proximal binding sites, P2 and S2 mainly con-

trol its expression and is reflected through a high level of transcription rate ksm19. A high

correlation value of ksm19 with the output also gets reflected in sensitivity amplification.

Conclusion

In the present work, we focused on the sensitivity of the kinetic parameters relevant to the

DevR regulated gene expression in M. tuberculosis. To this end, a mathematical model is pre-

sented based on kinetic interactions between DevR and four target genes. We carried out
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stochastic optimization to obtain the physiologically relevant parameter set that can reproduce

the experimental profiles. A systematic study based on sensitivity analysis is performed, which

reveals the ordering of the parameters based on their correlation values with the output, i.e.,

GFP concentration. Together with the experimental information, our analysis provides infor-

mation about the prime steps of DevR controlled gene regulation under dormancy. Sensitivity

analysis reveals that the transcription rates are the crucial step in the kinetics and is further

supported by sensitivity amplification. The ordering of parameters provides a guideline to

tackle virulence by a proper mutation that controls the process of transcription during dor-

mancy related gene expression in M. tuberculosis. The present study may work as a reference

for the experimentalist to carry out further research on DevR regulated networks that are yet

to be explored.

Supporting information

S1 Text. Supplementary information. Kinetic scheme and equations for phosphorylated

DevR regulated gene expression. The text contains detailed scheme and differential equations

for the model.

(PDF)

S1 Fig. Optimization profiles of kinetic parameters associated with Rv3134c. The perturbed

parameter is ploted as a function of SA steps. In each panel, the five colored lines originated

from different SA simulation. The horizontal dotted lines is for the base parameter value

reported in Table 1.

(PDF)

Fig 5. Sensitivity amplification of transcription rate. Sensitivity amplification as a function of parameters with high value of

correlation coefficients. ksm3 is the transcription rate of Rv3134c. ksm4 and ksm7 are the transcription rates associated with hspX. ksm8 and

ksm19 control the transcription of narK2 and Rv1738, respectively.

https://doi.org/10.1371/journal.pone.0228967.g005
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S2 Fig. Optimization profiles of kinetic parameters associated with hspX. The perturbed

parameter is ploted as a function of SA steps. In each panel, the five colored lines originated

from different SA simulation. The horizontal dotted lines is for the base parameter value

reported in Table 1.

(PDF)

S3 Fig. Optimization profiles of kinetic parameters associated with narK2-Rv1738. The

perturbed parameter is ploted as a function of SA steps. In each panel, the five colored lines

originated from different SA simulation. The horizontal dotted lines is for the base parameter

value reported in Table 1.

(PDF)

S4 Fig. Scatter plots. The output (GFP in nM) as a function of synthesis and degradation rates

of phosphorylated DevR (ksrp and kdrp) and GFP (ksg and kdg). Each panel consists of 103 inde-

pendent simulation data.

(PDF)

S5 Fig. Sensitivity amplification of parameters related to Rv3134c.
(PDF)

S6 Fig. Sensitivity amplification of parameters related to hspX.

(PDF)

S7 Fig. Sensitivity amplification of parameters related to narK2.

(PDF)

S8 Fig. Sensitivity amplification of parameters related to Rv1738.

(PDF)

S1 Table. Kinetic parameters. List of all kinetic parameters used in the model.

(PDF)

S2 Table. CC, RCC, PRCC values. Various correlation coefficient values are obtained by

using 10% perturbation and 105 indipendent run for synthesis and degradation rate parame-

ters of four genes.

(PDF)

S3 Table. CC, RCC, PRCC values. Various correlation coefficient values are obtained by

using 10% perturbation and 105 indipendent run for all the input parameter with output of

Rv3134c.
(PDF)

S4 Table. CC, RCC, PRCC values. Various correlation coefficient values are obtained by using

10% perturbation and 105 indipendent run for all the input parameter with output of hspX.

(PDF)

S5 Table. CC, RCC, PRCC values. Various correlation coefficient values are obtained by

using 10% perturbation and 105 indipendent run for all the input parameter with output of

narK2.

(PDF)

S6 Table. CC, RCC, PRCC values. Various correlation coefficient values are obtained by using

10% perturbation and 105 indipendent run for all the input parameter with output of Rv1738.

(PDF)
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