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Abstract: An enantioselective catalytic synthesis of a-ace-
toxylated ketones through I(I)/I(III) catalysis using a resorci-
nol/lactamide-based chiral iodoarene is reported. Catalyst
turnover by in situ generation of the active iodine(III) de-

rivative is achieved by oxidation with mCPBA in the pres-
ence of acetic acid. The prior transformation of ketones to

easily accessible acetyl enol ethers is beneficial and yields
up to 97 % with enantioselectivities up to 88 % ee are ob-

tained using only low catalyst loadings of only 5 mol %

under mild reaction conditions.

Hypervalent iodine compounds have attracted great attention
in the area of modern synthetic chemistry as they are environ-

mentally and economically benign alternatives to transition-
metal reagents.[1] The highly electrophilic character of the

iodine centre in combination with the excellent leaving group

ability of the aryliodonio group is the key feature for their
unique reactivity.[2] Their synthetic applications include alkene

functionalisations,[3] oxidations of sulfides,[4] phenolic oxida-
tions[5] and rearrangement reactions.[6] Especially the synthesis

of enantioenriched a-oxygenated carbonyl compounds repre-
sents a highly relevant transformation mediated by hyperva-

lent iodine chemistry as the resulting molecules are versatile

building blocks for natural products and pharmaceuticals.[7]

Numerous chiral iodoarenes 1 have been developed to realise

catalytic enantioselective a-oxygenations (Figure 1). The first
example was reported by Wirth et al. , who utilised iodoarene
1 a in the a-oxytosylation of propiophenone (up to 28 % ee).[8]

Later on, Zhang and co-workers designed spirobiindane-based

iodoarene 1 b to increase the enantioselectivity of a-oxytosy-
lated ketones up to 58 % ee,[9] while Legault et al. developed
iodoarene 1 c to obtain similar results (up to 54 % ee).[10] More

recently, Masson and co-workers achieved enantiomeric ex-

cesses of up to 68 % ee by applying non-C2-symmetrical iodoar-

ene 1 d,[11] while Nachtsheim et al. developed triazole-substitut-
ed iodoarene 1 e, which delivered 88 % ee in the direct a-oxy-

tosylation of propiophenone.[12] Nevertheless, enantioselectivi-
ties remain mostly moderate. Hence, a practical method has

been developed by Legault et al. , who converted enol acetates

into a-oxytosyl ketones with high enantioselectivities (up to
90 % ee).[13] However, this protocol requires an excess of chiral

iodoarene 1 f, which is a drawback from a practical and eco-
nomic point of view. While enantioselective a-oxytosylations of

carbonyl compounds are extensively described, enantioselec-
tive a-oxygenations including other nucleophiles remain

scarce in the literature.[7b] Surprisingly, the a-acetoxylation of

ketones is one of the least described a-oxygenation reactions
although it is the oldest of all hypervalent iodine(III)-mediated
a-oxygenation reactions.[14, 15]

Herein, we report the design of the first highly enantioselec-

tive a-acetoxylation of ketones mediated by iodine(I/III) cataly-
sis. Generation of the active hypervalent iodine catalyst is

mediated by m-chloroperbenzoic acid (mCPBA) as terminal oxi-
dant in combination with acetic acid.

Although the focus of this work is on the development of a
catalytic use of iodoarenes, initial investigations were carried
out with stoichiometric amounts of iodine(III) reagents 6 to ex-

amine the suppression of possible side reactions with different
terminal oxidants. Firstly, propiophenone 2, silyl enol ether 3
and acetyl enol ether 4 a were oxidised in presence of lactate/
resorcinol-based chiral hypervalent iodine(III) reagent 6 a and
BF3·OEt2 to product (R)-5 a (Table 1, entries 1–3) under opti-

mised reaction conditions (see Supporting Information). It
showed that the easily accessible acetyl enol ether 4 a led to

the best result (99 % yield, 66 % ee). Reacting 4 a with lacta-
mide containing iodine(III) compound 6 b furnished the identi-

Figure 1. Exemplary chiral organocatalysts for the a-oxygenation of ketones.
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cal stereoselectivity (66 % ee) accompanied by a lower yield of
41 % (Table 1, entry 4).

An increase of the steric of the lactate-based iodine(III) re-
agent (6 c) did not have an effect on the stereoselectivity

(64 % ee, entry 5), while a bulkier secondary amide (6 d and 6 e)

gave significantly higher enantiomeric excesses (85 % ee) with
good yields (69 % and 70 %, entries 6 and 7). Importantly, a re-
action with 6 e for 24 hours provided identical enantioselectivi-
ty, thus a racemisation of the product under the reaction con-

ditions can be excluded. Changing the methyl to a benzyl sub-
stituent (6 f) and the use of hypervalent iodine(III) com-

pound 6 g containing a tertiary amide led to a decrease of the
enantiomeric purity (77 % and 70 % ee), while the yields were
found to be low to moderate (26 % and 61 %, entries 8 and 9).

Additionally, no major effect of substituents on the central aryl
group was observed (75–79 % yield, 85–89 % ee, entries 10–12).

With these results in hand, the suitability of the reaction
under catalytic conditions was investigated. Using mCPBA as a

widely applied stoichiometric oxidant in iodine(I/III) cataly-

sis,[7d, 16] iodobenzene was employed as catalyst (20 mol %) in
the presence of acetic acid to furnish rac-5 a in 96 % yield after

1 h.
However, a control experiment in the absence of iodoben-

zene formed also the product rac-5 a within 5 h in 75 % yield,
presumably via the initial generation of an epoxide by direct

oxidation of 4 a with mCPBA.[17] Fortunately, kinetic studies
through 19F NMR spectroscopic analysis using 4 b in the pres-

ence (Method A) or absence of iodobenzene (Method B) dem-
onstrated that the reaction without iodobenzene is compara-

bly slow (Scheme 1). The starting material was consumed
within 75 minutes in the presence of iodobenzene, while a re-

action without iodobenzene did not reach full conversion
within 15 hours. Hence, the transformation of 4 to 5 is facilitat-

ed by an in situ generated hypervalent iodine(III) reagent,

which makes a stereoselective catalytic iodine(III)-mediated re-
action feasible.

This was confirmed by the catalytic transformation of 4 a
into (R)-5 a using iodoarene catalysts 7 (Table 2) as precursors
of the most promising hypervalent iodine(III) reagents 6 e and

6 h–6 j. Employing catalyst 7 a (20 mol %) provided (R)-5 a in ex-

cellent 94 % yield with 86 % ee (Table 2, entry 1), which is simi-
lar to the result obtained by applying methyl-substituted io-

doarene 7 b (96 % yield, 86 % ee, Table 2, entry 2). It was noted
that bromo- and acetyl-substituted iodoarenes 7 c and 7 d also

gave high yields (93 %), while the enantioselectivities de-
creased (83 % and 76 % ee, Table 2, entries 3 and 4). The elec-

tron-withdrawing bromo and acetyl substituents presumably

raised the oxidation potential of the iodoarenes. Hence, the re-
action rate of the undesired direct symmetric oxidation with

mCPBA increased relative to the desired hypervalent iodine(III)-
mediated stereoselective oxidation, which resulted in lower

enantioselectivities. Continuing further studies with iodoarene
7 b, it was found that the catalyst loading could be reduced to

5 mol % without a loss in yield and enantiomeric purity

(Table 2, entries 5–8). Alternative oxidants such as SelectfluorS

and sodium perborate did not promote the reaction (Table 2,

entries 9–12), while OxoneS provided rac-5 a in low yield
(<5 %, Table 2, entry 13) and peracetic acid furnished 38 %

yield and 49 % ee of (R)-5 a.

Table 1. Screening of ketone derivatives and I(III) reagents for the enan-
tioselective a-acetoxylation of ketones.[a]

Entry Ketone I(III) reagent Yield [%] ee [%][b]

1 2 6 a 6 3
2[c] 3 6 a 91 44
3[c] 4 a 6 a 99 66
4 4 a 6 b 41 66
5 4 a 6 c 78 64
6 4 a 6 d 69 85
7 4 a 6 e 70 85[d]

8 4 a 6 f 61 77
9 4 a 6 g 26 70
10 4 a 6 h 79 85
11 4 a 6 i 76 89
12 4 a 6 j 75 87

[a] Reactions were carried out with 0.30 mmol of 2, 3 or 4 a, 0.38 mmol of
6 and 0.09 mmol of BF3·OEt2 in CH2Cl2 (1.5 mL) at room temperature for
14 h.[b] Enantiomeric excesses were determined by chiral-phase HPLC
analysis. [c] Reaction time: 3 h, mixture was gradually warmed from
@78 8C to room temperature. [d] A reaction run for 24 h showed identical
enantioselectivity. Scheme 1. Reaction kinetics of 4 b in the presence (Method A) and absence

of iodobenzene as catalyst (Method B).
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Moreover, the use of triflic acid (TfOH) and trimethylsilyl tri-
flate (TMSOTf) as additives gave lower yields (87 % and 55 %)
and enantioselectivities (79 % ee, Table 2, entries 15 and 16). In-

terestingly, the addition of p-toluenesulfonic acid monohydrate
(TsOH·H2O) delivered (R)-5 a in only 23 % yield and 33 % ee,

whereas the corresponding a-oxytosylate was formed in simi-
lar yield (28 %) and with high enantioselectivity (87 % ee,

entry 17). This result indicates that the protocol bears the po-
tential to extend the a-functionalisation to a broader range of

nucleophiles.
With 7 b showing the highest level of stereocontrol under

optimised reaction conditions (Table 2, entry 6), our focus was

directed towards the investigation of the substrate scope
(Scheme 2). Halogen substituents on the aromatic moiety were

tolerated and enol ether 4 b derived from 4’-fluoropropiophe-
none enabled the formation of a-acetoxylated product (R)-5 b
in good yield (75 %) and enantioselectivity (78 % ee), while a

fluorine substituent in 3-position (4 c) and a bromine substitu-
ent in 4-position (4 d) gave higher yields of (R)-5 c and (R)-5 d
(97 % and 92 %) with enantiomeric excesses of 88 % and 86 %,
respectively. Furthermore, 4 e with a trifluoromethyl group in

3-position produced comparable results with 78 % yield and
81 % ee of (R)-5 e but only after an extended reaction time of

20 hours. The yield dropped to 51 % and the enantioselectivity
to 6 % ee when a trifluoromethyl group was located in the ster-

ically more demanding 2-positon in (R)-5 f. Moreover, a nitro-
substituted reagent 4 g provided (R)-5 g after 20 h in moderate

yield (61 %) and enantiomeric purity (59 % ee). Additionally,
methyl- and tert-butyl-substituted products (R)-5 h and (R)-5 i
were obtained in 74 % yield with good enantioselectivities

(77 % and 72 % ee) starting from 4 h and 4 i, while the yield of
phenyl-substituted compound (R)-5 j increased to 94 % with a

similar enantiomeric excess (79 % ee). However, the presence of
an electron donating methoxy substituent afforded (R)-5 k in

excellent yield (92 %) but it lowered the stereoselectivity to
48 % ee, presumably due to a lower oxidation potential of 4 k,

which would facilitate the undesired direct oxidation with

mCPBA. Indeed, cyclic voltammetry studies revealed a signifi-
cantly lower oxidation potential of substrate 4 k (+ 1.57 V vs.

Ag/AgCl) than of substrate 4 c (+ 2.33 V vs. Ag/AgCl ; see Sup-
porting Information). The fact that the result could be im-

proved to 76 % ee in absence of mCPBA by use of iodine(III) re-
agent 6 h as stoichiometric oxidant further supports the hy-

Table 2. Optimisation of catalytic reaction conditions.[a]

Entry Iodoarene
(mol %)

Oxidant Additive t
[h]

Yield 5 a
[%]

ee 5 a
[%][b]

1 7 a (20) mCPBA BF3·OEt2 2 94 86
2 7 b (20) mCPBA BF3·OEt2 2 96 87
3 7 c (20) mCPBA BF3·OEt2 2 93 83
4 7 d (20) mCPBA BF3·OEt2 2 93 76
5 7 b (10) mCPBA BF3·OEt2 2 92 85
6 7 b (5.0) mCPBA BF3·OEt2 2 90 84
7 7 b (2.5) mCPBA BF3·OEt2 2 93 77
8 7 b (1.0) mCPBA BF3·OEt2 4 93 69
9 7 b (5.0) SelectfluorS BF3·OEt2 24 0 –
10[c] 7 b (5.0) SelectfluorS BF3·OEt2 24 0 –
11 7 b (5.0) NaBO3·H2O BF3·OEt2 24 0 –
12[c] 7 b (5.0) NaBO3·H2O BF3·OEt2 24 0 –
13 7 b (5.0) OxoneS BF3·OEt2 24 <5 0
14 7 b (5.0) AcOOH BF3·OEt2 24 38 49
15 7 b (5.0) mCPBA TfOH 2 87 79
16 7 b (5.0) mCPBA TMSOTf 2 55 79
17[d] 7 b (5.0) mCPBA TsOH·H2O 2 23 33

[a] Reactions were carried out with 0.3 mmol of 4 a and 0.09 mmol of
BF3·OEt2 in CH2Cl2 (1.12 mL) and AcOH (0.38 mL). [b] Enantiomeric excess-
es were determined by chiral-phase HPLC analysis. [c] 3.0 Equivalents of
the oxidant were used. [d] a-Oxytosylated product was formed (28 %
yield, 87 % ee).

Scheme 2. Reaction scope of the stereoselective a-acetoxylation protocol.
Reactions were carried out with 0.30 mmol of 4, 0.015 mmol of 7 b,
0.36 mmol of mCPBA and 0.09 mmol of BF3·OEt2 in CH2Cl2 (1.12 mL) and
AcOH (0.38 mL). [a] Reaction for 5 h. [b] Reaction for 20 h. [c] 4 f was re-
ceived as a mixture of isomers (Z/E = 2.7:1). [d] Yield and enantiomeric
excess of the reaction under stoichiometric conditions with 6 h (1.25 equiv)
in CH2Cl2 (1.5 mL). [e] 4 o was obtained with (E)-stereochemistry. [f] No reac-
tion even under stoichiometric conditions using 6 h (1.25 equiv) and
BF3·OEt2 (2.0 equiv). Product rac-5 q could be synthesised by reaction with
(diacetoxyiodo)benzene.
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pothesis. Next, the effect of substituents in the a-position
other than methyl was explored. Acetyl enol ether 4 l formed

(R)-5 l in moderate yield (52 %) and low enantioselectivity
(2 % ee) after 20 h. A racemisation due to the extended reac-

tion time can be excluded as the reaction under stoichiometric
conditions afforded the identical selectivity.

Additionally, a-isopropyl-substituted reagent 4 m yielded (R)-
5 m in low quantity (9 % yield) but with a good enantiomeric

excess of 75 %. On the other hand, a-ethyl substituted product

furnished good yields (84 %) and enantioselectivity (84 % ee).
Cyclic substrate 4 o afforded only modest selectivity (9 % ee)

and moderate yield (62 %). To our delight, thiophene-contain-
ing substrate 4 p was well tolerated and delivered (R)-5 p in

92 % yield with 69 % ee. On the contrary, a-cyano-substituted
reagent 4 q did not react under the optimised conditions.

Based on previous mechanistic proposals, a catalytic cycle

for the iodine(III)-mediated preparation of compounds was
suggested (Scheme 3).[13, 15, 18] Chiral iodoarene 7 b (Ar*I) is oxi-

dised with mCPBA to the active catalyst 6 h, which is activated
by boron trifluoride etherate.[19] The activation enables a reac-

tion with enol ether 4 to generate a-C-bound intermediate 8,
followed by an SN2 reaction to form the final product (R)-5 and

to regenerate catalyst 7 b. The high enantioselectivities com-

pared to the corresponding ketone 2 derives from the inacces-
sibility of an enolate-type oxygen-bound iodine(III) intermedi-

ate, in which a long distance between the stereocentre of Ar*
and the a-carbon does not allow an efficient stereoinduc-

tion.[13, 20]

In summary, we have designed the first enantioselective syn-

thesis of a-acetoxylated ketones mediated by hypervalent iodi-

ne(I/III) catalysis. Using easily accessible acetyl enol ethers and
a low catalyst loading of only 5 mol % in combination with

mCPBA as terminal oxidant and boron trifluoride as Lewis acid
provided high yields and enantioselectivities. The extensive op-

timisation of the iodoarene catalyst based on a resorcinol core
revealed that best results were obtained with sterically de-

manding flexible lactamide side chains. As the reaction rate of

the direct oxidation with mCPBA is lower relative to the iodi-
ne(III)-mediated oxidation, an enantioselective catalytic trans-

formation was realised.

Experimental Section

General procedure for the catalytic asymmetric a-acetoxylation :
Iodoarene 7 b (10.7 mg, 0.0150 mmol, 5.0 mol %) and acetyl enol
ether 4 (0.30 mmol) were dissolved in CH2Cl2 (1.12 mL) and AcOH
(0.38 mL) under nitrogen atmosphere. After the addition of
BF3·OEt2 (11 mL, 0.090 mmol, 30 mol %) and mCPBA (81 mg,
0.36 mmol, 1.2 equiv, 77 % purity), the reaction mixture was stirred
for 2 h at room temperature. Subsequently, saturated aqueous
Na2S2O3 (5 mL) was added and the resulting mixture was extracted
with CH2Cl2 (3 V 10 mL) The combined organic layers were washed
with saturated aqueous NaHCO3 (30 mL), dried over anhydrous
MgSO4, concentrated under vacuum and the crude mixture was
purified by flash column chromatography.
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