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Abstract: Background: Over the past few years, a better understanding of the biology of G-protein
coupled receptors (GPRs) has led to the identification of several receptors as novel targets for free fatty
acids (FFAs). FFAR4 has received special attention in the context of chronic inflammatory diseases,
including atherosclerosis, obesity and NAFLD, through to its anti-inflammatory effect. Methods: The
present study investigates the influence of prolonged treatment with TUG-891-FFAR4 agonist on the
development of atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular
methods. Results: TUG-891 administration has led to the reduction of atherosclerotic plaque size
and necrotic cores in an apoE-knockout mice model. TUG-891-treated mice were administered
subcutaneously at a dose of 20 mg/kg three times a week for 4 months. The FFAR4 agonist reduced
the content of pro-inflammatory M1-like macrophages content in atherosclerotic plaques, as evi-
denced by immunohistochemical phenotyping and molecular methods. In atherosclerotic plaque, the
population of smooth muscle cells increased as evidenced by α-SMA staining. We observed changes
in G-CSF and eotaxin markers in the plasma of mice; changes in the levels of these markers in the
blood may be related to macrophage differentiation. Importantly, we observed a significant increase
in M2-like macrophage cells in atherosclerotic plaque and peritoneum. Conclusions: Prolonged
administration of TUG-891 resulted in significant amelioration of atherogenesis, providing evidence
that the strategy based on macrophage phenotype switching toward an M2-like activation state via
stimulation of FFAR4 receptor holds promise for a new approach in the prevention or treatment
of atherosclerosis.

Keywords: free fatty acid receptors; FFAR4; inflammation; atherosclerosis; apoE-knockout mice;
macrophages

1. Introduction

According to current paradigm, atherosclerosis is a systemic low-grade inflammatory
disease characterized by progressive changes in arterial walls that involve many types of
cells [1,2]. Dysfunction of endothelial cells, phenotypic changes of vascular smooth muscle
cells (VSMC), as well as inflammatory stimulation and infiltration of lymphocytes and
monocytes into the vessel wall were all reported to contribute to atherogenesis and forma-
tion of atherosclerotic plaques [1,3]. Studies in atherosclerosis underline a complex role
of macrophages in local modulation of inflammation, development of plaques, and their
rupture [4]. Macrophages can take many functional phenotypes; however, it is generally
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accepted that they are grouped closer to two extreme types, pro-inflammatory M1 and
anti-inflammatory M2, both of which were identified to reside within the atherosclerotic
plaque [5]. Growing evidence indicates that in-plaque M1 macrophages contribute to
the atherosclerotic lesion progression towards a rupture-prone morphology, while M2
macrophages are linked to the resolution of local inflammation, reduction of plaque size,
and its stabilization [5]. Thus, pharmacological methods of skewing macrophage polar-
ization towards the M2 phenotype could represent an interesting new strategy for the
treatment and /or prophylaxis of atherosclerosis and its complications [6].

Several G-protein coupled receptors (GPRs) for free fatty acids (FFARs) have been
identified and partially characterized over recent years [6,7]. Among them the group of
rhodopsin-like receptors including GPR40 (FFAR1), GPR41 (FFAR3), GPR43 (FFAR2),
and GPR120 (FFAR4) have attracted the most attention [7]. By participating in anti-
inflammatory effects, the FFAR4 became an interesting receptor in the studies of metabolic
disorders and cardiovascular diseases [8]. It has been shown that next to adipocytes,
hepatocytes, skeletal muscles, and epithelial cells, the FFAR4 is highly expressed in
macrophages [9]. Oh et al. showed that activation of FFAR4 interfered with inflam-
matory LPS and TNF-α signaling in macrophages [9]. Interestingly, it has also been shown
that FFAR4 stimulation may result in a beneficial phenotypical switch between M1/M2
macrophages infiltrating adipose tissue in obesity [9,10].

Studies exploring the anti-atherosclerotic potential of FFAR4 stimulation in vivo are
very limited. There are few studies linking FFAR4 to several processes known to play
a role in atherogenesis. Li et al. showed ω3 PUFAs mitigated vascular inflammation,
arterial thrombus formation, and neointimal hyperplasia by interaction with FFAR4 in
mice [11]. Kamata et al. in showed that EPA via FFAR4 activation reduced the expression
of matrix metalloproteinase-9 (MMP-9) in the media of the aorta in a mouse model of aortic
aneurysm [12]. Only recently, we have directly shown that activation of FFARs led to the
inhibition of atherosclerosis in apoE−/−mice [13]. In this study, anti-atherosclerotic action
of GW9508, a synthetic agonist of FFAR1 and FFAR4, was associated with a decrease of M1
macrophage content within the plaque [14]. It was the first study with the administration
of a synthetic agonist of the FFARs in a mouse model of atherosclerosis, however its results
are limited due to the non-selective action of GW9508 and its marked toxicity during
prolonged administration [14]. The potency of GW9508 towards FFAR4 is 100 times lower
compared to FFAR1 [13], while TUG-891 shows approximately 100 times greater potency
and 10 times higher selectivity towards murine FFAR4 over FFAR1. Recently, TUG-891
has been found to up-regulate M2 and down-regulate M1 markers in rat macrophages
in vitro [15].

In this study, we investigated whether the activation of FFAR4 by TUG-891 may inhibit
formation of atherosclerotic lesions in apoE-knockout mice and elicit beneficial changes in
plaque macrophage polarization.

2. Results
2.1. Body Weight and Plasma Levels of Lipids

TUG-891 was well tolerated by the animals and no toxic effects were observed during
the experiment. The mean body weight of TUG-891-treated and the control animals did
not differ (23.18 ± 1.15 g vs. 22.91 ± 1.33 g, p = 0.58). TUG-891 did not change the plasma
levels of total cholesterol (TC), low-density lipoproteins (LDL), high-density lipoproteins
(HDL) and triglycerides (TG) in apoE−/−mice (Table 1).
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Table 1. Plasma levels of total cholesterol (TC), high-density lipoproteins (HDL), low-density
lipoproteins (LDL), triglycerides (TG) in a control and TUG-891-treated group. Data presented
as a mean ± SEM; n = 14 per group.

Group Total Cholesterol
[mmol/L] HDL [mmol/L] LDL [mmol/L] TG [mmol/L]

apoE−/− 16.06 ± 2.55 1.28 ± 0.19 13.96 ± 2.03 1.02 ± 0.08

apoE−/− +
TUG-891 16.29 ± 2.87 1.29 ± 0.18 14. 37 ± 2.56 1.005 ± 0.14

2.2. Effects of TUG-891 on Atherosclerosis

In the cross-section method, treatment with TUG-891 significantly reduced the area of
atherosclerotic lesions in apoE−/−mice (262,108 µm2 ± 18,682 vs. 206,641 µm2 ± 11,532,
p < 0.05; Figure 1A). Moreover, TUG-891 treatment decreased total macrophage content in
atherosclerotic lesions, as evidenced by CD68 staining (42.36% ± 3.176 vs. 33.44% ± 2.576,
p < 0.05; Figure 1B) and increased the population of smooth muscle cells, as evidenced by
α-SMA staining in the fibromuscular cap (0.8942% ± 0.1322 vs. 1.816% ± 0.2598, p < 0.05;
Figure 1C). Hematoxylin-eosin (HE) staining revealed that the TUG-891 administration
markedly decreased necrotic cores in the plaques (2.631% ± 0.6299 vs. 0.5727% ± 0.03136
p < 0.05; Figure 1D).

2.3. Effects of TUG-891 on In-Plaque and Peritoneal Macrophage Phenotype

The treatment with TUG-891 modified the phenotype of macrophages in the atheroscle-
rotic plaques. TUG-891 administration significantly changed the aortic mRNA expression of
genes associated with a pro-inflammatory M1-like phenotype (IL-6, TNF-α, iNOS). Among
the genes associated with the M2-like phenotype TUG-891 increased the expression of Mrc1
(Figure 2A). Immunohistochemistry evaluation evidenced that the percentage of in-plaque
iNOS-positive cells was lower (30.49% ± 2.552 vs. 42.80% ± 4.157, p < 0.05, Figure 2B),
while percentage of arginase 1-positive cells increased (5.170%± 1.182 vs. 2.037% ± 0.7960,
p < 0.05; Figure 2B). The flow cytometric analysis of peritoneal macrophages revealed
an increased percentage of M2 cells in TUG-891-treated animals (7.154% ± 0.8726 vs.
4.808% ± 0.4468, p < 0.05; Figure 3C). The population of peritoneal M1 macrophages de-
creased, however the change did not reach statistical significance (9.969% ± 1.156 vs.
14.23% ± 2.051, p = 0.0780; Figure 3B).

2.4. Effects of TUG-891 on Plasma Levels of Inflammatory Markers

The plasma level of G-CSF was higher (93.82 pg/mL ± 20.17 vs. 45.74 pg/mL ± 3.685,
p < 0.05), while concentration of CCL11 was lower in TUG-891-treated mice (628.4 pg/mL
± 74.06 vs. 946.1 pg/mL ± 112.1, p < 0.05 Figure 4A,D). The plasma levels of sICAM-1 and
CXCL1 did not differ significantly between groups (sICAM-1: 51,792 pg/mL ± 7371 vs.
51,145 pg/mL ± 12,791, p = 0.4483; CXCL1: 169.1 pg/mL ± 26.77 vs. 142.3 pg/mL ± 13.59,
p = 0.3940; Figure 4B,C).
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Figure 1. (A) Representative micrographs showing Oil Red O–stained lesions in control group and 

TUG-891-treated group. Atherosclerotic lesions area is measured by the cross-section method in 

control group and TUG-891-treated group (p < 0.05; n= 13 per group). (B,C) Macrophage infiltrated 

in the atherosclerotic lesion of TUG-891-treated apoE−/− mice. Immunohistochemical staining of 

aortic roots showing CD68-positive macrophages (red), α-SMA-positive (green). (mean ± SEM; * p 

Figure 1. (A) Representative micrographs showing Oil Red O–stained lesions in control group and
TUG-891-treated group. Atherosclerotic lesions area is measured by the cross-section method in
control group and TUG-891-treated group (p < 0.05; n= 13 per group). (B,C) Macrophage infiltrated
in the atherosclerotic lesion of TUG-891-treated apoE−/− mice. Immunohistochemical staining
of aortic roots showing CD68-positive macrophages (red), α-SMA-positive (green). (mean ± SEM;
* p < 0.05 as compared to apoE−/− mice; n = 6–7 per group). (D) Content of necrotic core in the
atherosclerotic lesion of TUG-891-treated apoE−/−mice. Immunohistochemical staining showing
necrotic core in atherosclerotic lesions of apoE−/− mice and TUG-891-treated apoE−/− mice
(mean ± SEM; ** p < 0.005; n = 6–7 per group).
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Figure 2. Macrophage phenotyping in atherosclerotic plaque. Validation of macrophages morphometry by RT-PCR anal-

ysis confirmed a trend toward reduction of M1 markers and no significant increase in M2 genes in the aorta of GW9508-

treated apoE−/− mice, (A) (* p < 0.05; ** p < 0.005; n = 6–8 per group). Representative micrographs showing immunohisto-

Figure 2. Macrophage phenotyping in atherosclerotic plaque. Validation of macrophages morphom-
etry by RT-PCR analysis confirmed a trend toward reduction of M1 markers and no significant
increase in M2 genes in the aorta of GW9508-treated apoE−/− mice, (A) (* p < 0.05; ** p < 0.005;
n = 6–8 per group). Representative micrographs showing immunohistochemical staining of aortic
roots from control and TUG-891-treated apoE-knockout mice. F4/80 (green), nitric oxide synthase
2 (iNOS)/arginase 1 (red) and 4′,6-diamidino-2-phenylindole (DAPI) (blue), confirming the re-
spective macrophage phenotype (white arrows). Adjacent graphs represent mean ± SEM values,
(B) (* p < 0.05; n = 5–7 per group).
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Figure 3. Macrophage phenotyping in peritoneal tissue. Representative flow cytometry histograms in peritoneal tissue
from control and TUG-891-treated apoE-knockout mice. F4/80 and CD11b+ (A), F4/80, iNOS; CD11b+; F4/80 (B), CD206+;
CD11b+; F4/80 (C). Adjacent graphs represent mean ± SEM values, (* p < 0.05; n = 10–14 per group).
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Figure 4. Plasma concentrations of G-CSF (A), CXCL1 (B), ICAM-1 (C), CCL11 (D) in control and
TUG-891-treated apoE-knockout mice. Results are expressed as mean ± S.E.M; for n = 6–14 samples
per group; * p < 0.05.
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3. Discussion

The major finding in this work is that inhibition of atherosclerosis by a selective FFAR4
agonist TUG-891 is associated with a significant shift in the polarization of macrophages
in atherosclerotic plaques towards the M2 phenotype. It has been demonstrated that
macrophages in plaques are highly pleiotropic and retain the capacity to shift their po-
larization [16]. Our data point to the role of FFAR4 in the modulation of macrophage
phenotype and, in a more general context, also highlight the importance of in-plaque
balance between different macrophage phenotype species as an important modulator of
atherogenesis. It is recognized that alongside endothelial cells and vascular smooth muscle
cells macrophages play a key role in atherogenesis, and overall macrophage functionality
is critical to the balance between plaque progression and regression. It has been shown that
the M2 phenotype macrophages can secrete anti-inflammatory factors and eferocyte dying
cells, thus contribute to the repairment of damaged tissues [12]. Therefore, promoting the
M2 polarization of macrophages at the expense of M1 may represent a promising new
anti-atherosclerotic strategy, while pharmacological stimulation of FFAR4 appears to be an
effective method to achieve this goal.

GW9508 was the first synthetic agonist for FFAR4 and FFAR1 [17] and remains a
valuable tool in studies of the biological roles of FFA receptors in vitro, but its use in vivo
may be may be compromised due to its poor tolerance in animals [14]. On the other
hand, TUG-891 exhibits at least 1000-fold selectivity to FFAR4 over FFAR1 in assays on
human cells (slightly less FFAR4 selectivity was noted in mouse models) and seems to
be safe for animals [6]. An important advantage of TUG-891, in contrast to fatty acids, is
that it does not undergo rapid metabolism in cells to secondary (often biologically active)
metabolites, which actions may hinder the interpretation of the results [18,19]. Compared
to GW9508, which reduced the amount of M1 macrophages in plaques, TUG-891 not only
decreased the content of M1, but also increased significantly the content of M2 cells, which
might be attributed to the increased selectivity towards FFAR4. Importantly, in our hands,
TUG-891 in a dose selected based on the literature did not influence weight of animals or
cause any toxic effects to apoE−/− mice. In our setting, the anti-atherosclerotic action
of TUG-891 was not related to the changes in plasma lipids or typical for apoE−/−mice
plasma inflammatory markers, such as sICAM-1 or CXCL1. On the other hand, in the
context of the known role of G-CSF in macrophage differentiation, and recent reports about
the possible role of eotaxin in differentiation of macrophages to the M2 phenotype [20],
changes in blood levels of these two markers in TUG-891-treated apoE−/− seem to be an
interesting lead for further research.

Our results suggest that FFAR4 activation can improve plaque stability, as the total
number of macrophages in the plaques decreased in animals treated with TUG-891. This
can be mainly attributed to the decrease in the content of M1 macrophages, which are
typically dominant in plaques. However, we simultaneously evidenced smaller in absolute
numbers but significant increase in the plaque population of M2 cells. Such changes were
associated with the increase of the smooth muscle cells content in lesions, as evidenced by
α-actin (SMA) staining. Along with the significant reduction of necrotic cores, this might
indicate that TUG-891 not only ameliorates atherogenesis but also improves the plaque
stability. It should be emphasized, however, that atherosclerotic lesions in the apoE−/−
mice model are very stable and this model is not suitable for studying the effect of drugs
on complications related to plaque rupture. Thus, the attractive hypothesis of anti-rupture
effect of TUG-891 requires further investigation.

The modern paradigm of atherosclerosis indicates that atherosclerotic plaques expand
as local manifestations in the course of a systemic, chronic, active, low-grade inflamma-
tory process. It is important to note that the analysis of TUG-891-dependent changes of
phenotype of peritoneal macrophages in apoE−/−mice may indicate systemic action of
this compound on monocytes/macrophages. Our results are in line with the observations
of Wang et al., who showed that FFAR4 activation in peritoneal macrophages could pro-
gram them to the anti-inflammatory M2 phenotype [15]. Importantly, the role of FFAR4
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in regulation of macrophage polarization could be also observed in vitro. Our recent
preliminary results indicate that in the in vitro differentiation model of C57B6 mice, bone
marrow-derived macrophages TUG-891 not only reduces the expression of M1 markers
(iNOS, IL-6) but also increases the expression of M2 markers (Arg-1, MRC 1); moreover,
its action is abolished by the FFAR4 antagonist AH-7614 [21]. The above data collectively
appear to support the functional importance of the FFAR4 pathway in regulating the
macrophage phenotype.

We can only speculate about the exact molecular mechanism(s) responsible for the
regulation of macrophage polarization by FFAR4. Williams-Bey et al. showed that DHA
acid may limit NLRP3 inflammasome activation via FFAR4 receptor; DHA treatment
reduced the initial inflammasome priming step by suppressing the nuclear translocation
of NF-κB and increased autophagy [10]. Other studies have shown that stimulation of
FFAR4 on macrophages resulted in inhibition of the TLR2/3/4 and the TNF-α response
pathways [3,7]. This could be related to the FFAR4-dependent inhibition of TAK-1 protein,
which is a convergent transducer of TLR4 and TNF-α receptor pathways and NF-κB and
MKK4/JNK signaling [13]. However, the exact mechanism(s) linking FFAR4 stimulation
and macrophage polarization to M2 cells in apoE−/−mice require further elucidation.

The present study provides important in vivo evidence that stimulation of FFAR4
by the use of synthetic selective agonist TUG-891 significantly influences macrophage
differentiation, favoring these cells to adopt the anti-inflammatory M2 phenotype, which
is associated with anti-inflammatory and anti-atherogenic action. The primary role of
macrophages in the progression of atherosclerosis in humans has been demonstrated. In
this context, our results have significant translational potential and suggest the need for
clinical trials using synthetic FFAR4 agonists. It may be that the stimulation of FFAR4
represents a promising strategy for the prevention and/or treatment of atherosclerosis,
however the recognition of the exact mechanisms responsible for the FFAR-mediated
modulation of the macrophage phenotype requires further studies.

Limitations and Future Directions

Our study has several limitations. The most important result from necessary caution
in transferring the results from animal models to the human situation. Moreover, in trans-
lational research, the possibility of orally administering a stable FFAR4 agonist should
also be explored. Our studies also do not allow for the determination of the molecular
mechanism linking FFAR4 stimulation and changes in the macrophage phenotype. Further
in vitro and in vivo studies with additional methods (e.g., cytometry, molecular studies
and single cell proteomics of macrophages isolated from atherosclerotic plaques, as well
as the precise determination of the cellular localization of FFAR4 in the plaques by im-
munohistochemistry) would help to identify the candidates for such molecular link(s).
Moreover, as a part of translational research, the influence of FFAR4 agonists on vulnerabil-
ity of atherosclerotic plaques should be tested on relevant animal models (e.g., model of
rupture of brachiocephalic artery in older apoE-deficient mice fed an HFD with or without
angiotensin II infusion).

4. Materials and Methods
4.1. Animal Experiments

Male apoE-knockout mice (apoE−/−) on the C57BL/6J background were obtained
from Charles River (Calco, Lecco, Italy). All animal procedures were approved by the
Jagiellonian University Ethical Committee on Animal Experiments (No. 167/2018). The
animals were kept on 12 h dark/12 h light cycles in air-conditioned rooms (22.5 ± 0.5 ◦C,
50 ± 5% humidity) with access to water ad libitum. The mice were put on a HFD (10%
fat diet) made by Ssniff (E15122-34, S8435-E014, Soest, Germany) and treatment with
compound TUG-891 at the age of 8 weeks for 16 weeks. Animals were randomly divided
into two groups: the control group (apoE-knockout mice w/o treatment, on diet as above,
n = 15) and TUG-891-treated mice (n = 15). TUG-891 (4-[(4-Fluoro-4′-methyl[1,1′-biphenyl]-
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2-yl)methoxy]-benzenepropanoic acid) (HY-100881, lot. 23051, Prospecta, Poland) was
administered s.c. at a dose of 20 mg/kg 3 times (Monday, Wednesday, Friday) a week for
4 months. The daily dose of TUG-891 was chosen based on its effects described in other
murine models [14,22,23]. At the age of 6 months the animals were injected with 1000 IU of
fraxiparine i.p (Sanofi-Synthelabo, Paris, France) and killed in a chamber filled with carbon
dioxide. Next, the blood was collected, and aortas, hearts, and livers were dissected.

4.2. Analysis of Atherosclerotic Plaque

The hearts with the ascending aorta were embedded in OCT compound (CellPath,
Newtown, UK), snap frozen and sectioned (10 µm thickness) for histological and immuno-
histochemical analysis, according to the standardized cross-section protocol, as previously
described [24]. The assessment was performed using Oil Red O and HE staining (O0625, lot.
093k3650, Sigma-Aldrich, St. Louis, MO) [25]. Immunohistochemistry for all macrophages
and smooth muscles as well as polarization of macrophages was performed as described
previously [14]. Immunohistochemistry for total macrophages and smooth muscles was
performed with antibodies against CD68 (dilution 1:800; MCA1957, lot. 0812, Bio-Rad)
and smooth muscle α-actin (SMA) (dilution 1:800; F3777, lot. 087M4798V, Sigma-Aldrich).
Macrophage polarization was assessed with antibodies against F4/80 (dilution 1:100), nitric
oxide synthase 2 (iNOS) (dilution 1:100, ab15323, lot. GR295447-1, Abcam), arginase 1 (dilu-
tion 1:200, ab91279, lot. GR3256056-1, Abcam), and 40,6-diamidino-2-phenylindole (DAPI;
D9542, Sigma-Aldrich). The image was analyzed using LSM Image Browser software
(Zeiss, Jena, Germany).

4.3. Real Time (RT)-PCR

Total RNA was isolated from the homogenized mouse aortas using the RNeasy Fibrous
Tissue Mini Kit (74704, lot. 163042118, Qiagen, Germantown, MD, USA), according to the
manufacturer’s instructions. The RNA concentration of each sample was measured at a
wavelength of 260 nm (A260) in a Synergy H1 microplate reader (BioTek Instruments, Inc.,
Winooski, VT, USA). The purity of extracted total RNA was determined by the A260/A280
ratio. Then, cDNA was synthesized by the reverse transcription of 900 ng of total RNA
from each sample, using a High-Capacity Reverse Transcription Kit (4374966, lot. 00895788,
Applied Biosystems, Foster City, CA, USA). The cDNA was diluted ten-fold prior to
PCR amplification. Real time quantitative PCR, using GoTaq® qPCR Master Mix (A600A,
lot. 0000463011, Promega, Madison, WI, USA), was carried out on the Bio-Rad CFX96
Touch™ Real-Time PCR System (Bio-Rad; Hercules, CA, USA). Primers for IL-6, TNF,
ARG1, CD206/Mrc1 and MGL-1 were purchased from Real-TimePrimers.com (VMPS-3096,
VMPS-6717, VMPS-407, VMPS-3915, Elkins Park, PA, USA) and primer for GAPDH and
iNOS was purchased from Bio-Rad (qMmuCED0027497, lot.308468357; qMmuCID0023087,
lot.281997755; qMmuCED0027505, lot. 357011322, Hercules, CA, USA). Analysis of the
data was performed by the 2−∆∆Ct method using CFX Maestro Software (BioRad), and
GAPDH/ β-actin expression was used as the internal control.

4.4. Biochemical Methods

Determination of CCL11, G-CSF, CXCL1, ICAM-1 concentrations in plasma was
performed using Luminex micro beads fluorescent assays (R&D Systems, Inc., Minneapolis
USA) and Luminex MAGPIX System (GDQN7xzB, Luminex Corp., Austin, TX, USA).
Results were calculated from calibration curves and expressed in pg/mL, according to
the manufacturer’s protocol [26]. The blood was collected from the right ventricle and
centrifuged for 10 min, 1000 g at 4 ◦C. Plasma was harvested and stored in −80 ◦C until
assayed. The plasma levels of total cholesterol, triglycerides, direct low-density lipoproteins
(LDL) and high-density lipoproteins (HDL) were measured using an enzymatic method on
a Cobas 8000 analyzer (Roche Diagnostics, Indianapolis, IN) as described previously [14].
Briefly, the Cobas system determines total cholesterol and HDL-cholesterol as well as TG
by an enzymatic method with consecutive reactions by cholesterol esterase, cholesterol
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dehydrogenase and diaphorase and by lipoprotein lipase, lipoprotein dehydrogenase and
diaphorase, respectively. LDL-C was directly measured by Roche LDL-Cholesterol plus
2nd generation reagent (homogenous enzymatic cholesterol assay by using cholesterol
esterase and cholesterol oxidase/peroxidase).

4.5. Flow Cytometry

Peritoneal exudates cells were obtained by rinsing the peritoneal cavity with 5 mL
of PBS. The cells were centrifuged, washed and counted. Equal numbers of cells were
first stained with BD Horizon Fixable Viability Stain 450 (FVS450, lot. 8194969, BD Bio-
sciences, San Diego, CA, USA) to excluded dead cells, according to the manufacturer’s
instructions. Then the cells were preincubated with anti-mouse CD16/CD32 antibody
(101302, lot. B264872, BioLegend, San Diego, CA, USA) to block FC receptors and labeled
with PerCP-conjugated anti-mouse F4/80 (123126, lot. B331795, BioLegend, San Diego, CA,
USA), FITC-conjugated anti-mouse/human CD11b (101206, lot. B260639, BioLegend, San
Diego, CA, USA) and APC-conjugated anti-mouse CD206 (141708, lot. B318301, BioLegend,
San Diego, CA, USA) antibodies. After surface staining, the cells were fixed and permeabi-
lized using BD Cytofix/Cytoperm buffer (554714, lot. 9021740, BD Biosciences, San Diego,
CA, USA) and then stained with PE-Cyanine7-coniugated anti-mouse NOS2 (25-5920-80,
lot. 2017810, eBioscience, San Diego, CA, USA). Samples were acquired on a FACSCanto II
flow cytometer (BD Biosciences, San Diego, CA, USA) and analyzed using FACSDiva soft-
ware. F4/80 and CD11b were used as pan-macrophage markers, while NOS2 and CD206
were used as markers of M1 and M2 macrophages, respectively. F4/80-positive/CD11b-
positive/NOS2-positive/CD206-negative cells were defined as M1 macrophages, whereas
F4/80-positive/CD11b-positive/NOS2-negative/CD206-positive cells were identified as
M2 macrophages.

4.6. Statistical Analysis

The results shown are mean ± SEM of multiple experiments. A comparison was
carried out using Graphpad Prism and evaluated by 2-tailed Student’s t-test. All results are
considered statistically significant with p values less than 0.05. Equality of variance and
normality of the data were checked, and then the nonparametric Mann-Whitney’s U test
(“cross-section”, biochemical methods and M1/M2 in plaque) or t-test (other methods) were
used for statistical analysis of the data; p < 0.05 was considered as statistically significant.
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Abbreviations

AH-7614 AH-7614-4-Methyl-N-9H-xanthen-9-yl-benzenesulfonamide
DAPI 4′:6-diamidino-2-phenylindole
DMSO dimethyl sulfoxide
FBS fetal bovine serum
FFAR4/GPR120 Free Fatty Acid Receptor 4
GADP glyceraldehyde 3-phosphate dehydrogenase
HDL high-density lipoproteins
HE hematoxylin/eosin
iCAM-1 intercellular adhesion molecule 1
IL-1β interleukin 1 beta
iNOS inducible nitric oxide synthase
M1 classically activated macrophages
M2 alternatively activated macrophages
RT-PCR reverse transcription polymerase chain reaction
SMA smooth muscle actin
TC total cholesterol
TG triglyceride
TNF-α tumor necrosis factor α
TUG-891 4-[(4-Fluoro-4′-methyl[1,1′-biphenyl]-2-yl)methoxy]-benzenepropanoic acid
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