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Variations in human genome (e.g., single nucleotide polymorphisms, SNPs) may be associated with hereditary diseases, their
complications, comorbidities, and drug responses. Using Web service SNP TATA Comparator presented in our previous paper,
here we analyzed immediate surroundings of known SNP markers of diseases and identified several candidate SNP markers that
can significantly change the affinity of TATA-binding protein for human gene promoters, with circadian consequences. For example,
rs572527200 may be related to asthma, where symptoms are circadian (worse at night), and rs367732974 may be associated with
heart attacks that are characterized by a circadian preference (early morning). By the samemethod, we analyzed the 90 bp proximal
promoter region of each protein-coding transcript of each human gene of the circadian clock core.This analysis yielded 53 candidate
SNP markers, such as rs181985043 (susceptibility to acute Q fever in male patients), rs192518038 (higher risk of a heart attack in
patients with diabetes), and rs374778785 (emphysema and lung cancer in smokers). If they are properly validated according to
clinical standards, these candidate SNP markers may turn out to be useful for physicians (to select optimal treatment for each
patient) and for the general population (to choose a lifestyle preventing possible circadian complications of diseases).

1. Introduction

Diurnal (circadian) oscillations of the expression level have
been reliably identified in ∼10000 genes of placental mam-
mals [1]. The circadian clock of mammals is a system of self-
sustained oscillators that function under the control of a cen-
tral circadian pacemaker located in suprachiasmatic nuclei
of the hypothalamus [2]. They synchronize all processes
in living organisms, from gene transcription to behavior,
thus ensuring their temporal adaptation to 24-hour days on
Earth [1]. The minimal set of 12 genes—CLOCK, ARNTL,
ARNTL2, PER1, PER2, CRY1, CRY2, CSNK1E, CSNK1D,

RORΑ, RORb, and NR1D1—forms the core of the molecular
genetic mechanism of the circadian clock, whose functioning
is based on feedback relations among its components [3, 4]
and on the relations of these genes with the entry points for
external signals, which modulate parameters of the circadian
clock in response to such external stimuli as light and
food [5]. Via the retinohypothalamic tract, the central circa-
dian oscillator imposes a rhythm on peripheral oscillators,
which share their molecular genetic structure but work in
each cell in accordance with their own specific rhythms of
organs, tissues, and systems of tissues [1]. All these oscillators
set the rhythm for a multitude of genes via expression of

Hindawi Publishing Corporation
BioMed Research International
Volume 2016, Article ID 8642703, 21 pages
http://dx.doi.org/10.1155/2016/8642703

http://dx.doi.org/10.1155/2016/8642703


2 BioMed Research International

tissue-specific transcription factors (short-term regulation)
or chromatin remodeling (long-term regulation) [6, 7].
Indeed, transcriptomic studies have shown that genes that are
subject to circadian control are characterized by overrepre-
sentation of short GC-rich and TA-rich motifs for binding
of transcription factors (e.g., TBP-binding motifs) [8, 9]
in comparison with genome-wide average values of these
parameters. In addition, an empirical study [10] revealed that
CLOCK-ARNTL is a pioneer-like transcription factor that
interacts with nucleosomes for rhythmic chromatin opening.
Adjustment of the peripheral oscillation to the general circa-
dian rhythm synchronizes the functioning of various systems
of organs, whereas their desynchronosis can worsen or
cause pathological changes in systems that are not interacting
directly (e.g., autoimmune disordersmay be caused by desyn-
chronosis of the immune defense of the body from exotoxins
and excretory/metabolizing systems dealing with analogous
endotoxins [11]). Chronopharmacology is concerned with
identification of circadian optima for diagnosis [12] and
treatment [13, 14].

Experiments on genetic animal models have shown that,
in addition to changes in parameters of the circadian clock
(amplitude, a phasic response to external signals, or the
period of free-flowing rhythm), the mutant animals develop
such disorders as metabolic syndrome; disturbances in the
system of gluconeogenesis or lipogenesis, in renal function,
or in thermogenesis; and development of tumors [15, 16].
Furthermore, research in the field of genetic epidemiology
uncovered associations of single nucleotide polymorphisms
(SNPs) of circadian clock genes with a wide range of patho-
logical states [17, 18]. A large number of such SNPs are located
in noncoding regions of genes (these regions are responsible
for regulation of expression). Functional annotation of regu-
latory SNPs and analysis of their manifestations at the level of
gene expression are worthwhile tasks because many of such
SNPs may be markers of clinical disorders.

During the “pregenomic era,” association of an SNP with
a disease used to be a lucky finding [19–22], whereas, now, in
the “postgenomic era,” identification of such associations is
one of the goals of the 1000 Genomes Project [23]. Database
dbSNP collects and ranks variants of each SNP by their
prevalence [24].Themost frequent variant is entered into the
reference human genome GRCh38 (NCBI) or hg38 (UCSC)
(the terms used by the UCSC Genome Browser [25]) as an
ancestral variant in the Ensembl database [26]. Minor alleles
of SNPs in genes involved in a given pathological process can
be found bymeans of theWeb serviceUCSCGenome Browser
[25], which visualizes a whole-genome map. Subsequent
routine genotyping of these alleles in representative cohorts of
patients and among healthy volunteers reveals (amongminor
alleles of SNPs) biomedical markers that are statistically
significantly associated with the pathology in question [27];
this procedure takes up a lot of time andwork. Computational
(bioinformatic) analysis of many millions of unannotated
SNPs from the 1000 Genomes Project may accelerate and
cheapen the search for biomedical SNP markers.

Thus, the greatest successwas achieved in the case of SNPs
located in protein-coding regions of genes [28] because of

the invariant (predictable) disruptions in the structure-
function relations of the proteins encoded by these genes [29].
Moreover, advanced computer-based simulations of molecu-
lar dynamics and structures allowed researchers to predict in
detail which SNPs would change the proteins. For example,
molecular dynamics simulations provide deep analysis of
the SNP-caused alterations in the amino acid arrangement
that can affect the native three-dimensional atomic confor-
mation of protein structure in order to estimate the most
probable conformational modifications [30]. As an alterna-
tive/addition to molecular dynamics simulations for confor-
mational sampling of proteins, so-called normal mode-based
simulations guaranteemultiscalemodeling of protein confor-
mational changes [31]. Besides, global minima of molecular
docking for native and mutant structures can account for
various substrate conformations and help identify an indi-
vidual conformation with the most favorable binding energy
[32]. In the case of drug resistance, computations of shape
complementarity—between either widely used or promising
new drugs and a binding pocket of a protein altered by
an SNP—bring together the advantages of protein structure
(or dynamics) simulations and the ability to dock one
structure with another [33]. Finally, the alignment ofmultiple
protein structures and/or sequences holds a key to the above
calculations for comprehensive SNP analysis of protein-
coding gene regions [34]. Meanwhile, the smallest progress
was observed with regulatory SNPs because their manifesta-
tions may vary from cell to cell, from tissue to tissue, from
patient to patient, and from subpopulation to subpopulation
[26]. That is why computer-based prediction of candidate
regulatory SNP markers of human diseases is a challenging
problem for current functional genomics, genetics, and bioin-
formatics.

In our previous study [35], we described a freely available
Web service, SNP TATA Comparator (created by us), and
demonstrated its practical use on more than 40 biomedical
SNP markers in the binding sites for TATA-binding protein
(TBP) between positions −70 and −20 relative to the tran-
scription start (the region where all such empirically proven
sites are located [36, 37]). Recently, we showed suitability of
this Web service for prediction of candidate SNP markers of
complications of Mendelian diseases in obesity [38] and of
autoimmune complications of these diseases [39] as well as
SNP markers that can either enhance or weaken biological
activity of oncogene inhibitors during cancer chemotherapy
[40] (hereinafter, we use the term “Mendelian disease”
according to the notation in database Online Mendelian
Inheritance in Man, OMIM� [28]).

In the present work, we applied our Web service SNP
TATA Comparator [35] to unannotated SNPs in binding
sites of fj` which are located near known SNP markers
of Mendelian human diseases and, for this reason, can also
cause the same pathologies if these SNPs change the affinity
of fj` for the same promoters of the same human genes.
Furthermore, we found some data on biochemical markers
of chronopathologies (where these markers have the effects
on gene expression which are identical to the effects of
the above SNPs) and clinical studies on the prevalence of
these chronopathologies as complications of the Mendelian
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Figure 1: Examples of the predictions by SNP TATA Comparator [35] for statistically significant alterations in the affinity of TATA-binding
protein for human gene promoters. (a) The known biomedical SNP marker rs35036378 located within a promoter of the human ESR2 gene
associated with a Mendelian disease. This SNP is now predicted (in this study) to be a candidate SNP marker of circadian comorbidities and
complications of diseases that one can see in Table 1. (b) The candidate SNP marker rs4313857 identified in this study within the human
CSNK1D gene (belongs to the circadian clock core), as shown in Table 2.

diseases caused by these SNPs. Finally, using SNP TATA
Comparator [35], we analyzed all SNPswithin 90 bp proximal
promoter regions for all protein-coding transcripts of the
genes of the circadian clock core. As a result, we identified 53
candidate SNPmarkers of human chronopathologies; valida-
tion of these markers in accordance with clinical standards
may make these SNPs useful for predictive-preventive per-
sonalized medicine [41].

2. Methods

2.1. Web Service. Web service SNP TATA Comparator [35]
is a bioinformatics application freely available on the Web
(Figure 1; URL: http://beehive.bionet.nsc.ru/cgi-bin/mgs/
tatascan/start.pl), which allows a user (i) to find an ancestral
variant of the promoter for a transcript under study (the
“Base sequence” text box) from the reference human genome
(solid, dashed, dotted, and boldfaced arrows; BioPerl [115] is
used), (ii) to introduce a mutation of interest (the “Editable
sequence” text box), and (iii) to assess (the “Calculate” but-
ton) the values of fj`’s affinity for these two promoter vari-
ants, the relative mutation-related change in transcript levels,
and statistical significance according to𝑍-score (the “Result”
text box) as described in detail in our previous study [35].

2.2.The BioinformaticsModel. For each proximal 90 bpDNA
sequence {𝑠

−90
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−1

} of a given gene promoter (where 𝑠
𝑖
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0

is the transcription start site), our Web service
SNP TATA Comparator [35] calculates the maximal value of
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constant of the TBP-DNA complex, expressed in moles per
liter; M), as follows:
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where 10.9 (natural logarithm units) is empirical nonspecific
TBP-DNA affinity, 10−5M[118]; 0.2 is the stoichiometric coef-
ficient;𝐾

1

is an empirical estimate of the equilibriumconstant
of TBP sliding alongDNA; the average values of TBP’s affinity
for double-stranded DNA were estimated using the minor
groove width (𝜇) and the TA dinucleotide content, [TA] [119].
𝐾

2

is an empirical estimate of the equilibrium constant of
the primary corecognition between TBP and an appropriate
TBP-biding site on DNA [− ln(𝐾

2

) is the maximal score of
Bucher’s position-weighted matrix: PWMBucher] [120]. 𝐾3 is
an empirical estimate of the equilibrium constant of stabi-
lization of the TBP-DNA complex due to the bend of the
axis of the DNA helix by an angle of 19∘ to 90∘ [121, 122]
which depends on abundance of two TA-rich dinucleotides,
WR ∈ {AA,AG,TA,TG} and TV ∈ {TA,TG,TC} [123]; 𝛿
is the standard deviation of 𝐾

𝐷

estimates for all the possible
mononucleotide substitutions within the 26 bp DNA sliding
window corresponding to the maximal 𝐾

𝐷

value found for
the DNA sequence under study.

For twoDNA sequences of theminor (mut) and ancestral
(wt) alleles being compared, (1) and (2) yield {− ln(𝐾(mut)

𝐷

) ±
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Is there another unparsed SNP marker ?

Initializing data: known biomedical SNP markers and unannotated SNPs in this study

Yes

Yes

Yes

No The end

Can
significantly increase or decrease the expression

of the gene containing the SNP marker
under consideration? IncreaseDecrease

The primary keyword search for circadian
diseases whose biochemical marker

corresponds to the underexpression of the
gene containing the SNP marker tested

NoRemove the SNP
marker analyzed

Known SNP markers of Mendelian diseases

Save the result: the SNP tested can be the candidate SNP marker of the circadian disease found

The cross-validating keyword search for cooccurrences of the circadian
diseases found and the Mendelian disease whose SNP marker is considered

The primary keyword search for circadian
diseases whose biochemical marker

corresponds to the overerexpression of the
gene containing the SNP marker tested

Is there anything found?

Is there anything found?No

What sort of SNP is under study?

Unannotated SNPs of circadian clock genes

Figure 2: A flow chart showing our manual keyword search for chronopathologies (whose known biochemical markers correspond to our
predictions of a significant change in the affinity of TATA-binding protein for human gene promoters).

𝛿

(mut)} and {− ln(𝐾(wt)
𝐷

)±𝛿

(wt)}, respectively. OurWeb service
SNP TATA Comparator [35] compares them using Fisher’s
𝑍-score [124]:

𝑍 =

󵄨

󵄨

󵄨

󵄨

󵄨

ln (𝐾(mut)
𝐷

/𝐾

(wt)
𝐷

)

󵄨

󵄨

󵄨

󵄨

󵄨

√𝛿

2

(mut) + 𝛿

2

(wt)

. (3)

Using the standard statistical package R [124], we trans-
form 𝑍-score into 𝑝 value of the probability of acceptance
of H
0

hypothesis “𝐾(mut)
𝐷

̸= 𝐾

(wt)
𝐷

” (where 𝛼 = 1 − 𝑝 is
the statistical significance). Two cases, “𝐾(mut)

𝐷

< 𝐾

(wt)
𝐷

” and
“𝐾(mut)
𝐷

> 𝐾

(wt)
𝐷

,” correspond, respectively, to overexpression
and underexpression of the gene under study [125]. For more
details, see our previous article [35].

2.3. Keyword Search. Figure 2 shows this keyword search for
data on known biochemical markers of chronopathologies;
these markers correspond to predictions of SNP TATA
Comparator (Figure 1) regarding a relative mutation-induced
change in gene expression. For each known or candidate
SNP marker causing either significant overexpression or
underexpression of the human gene containing the SNP, we
performed a manual keyword search using various combina-
tions of the terms “overexpression,” “deficiency,” “circadian,”
and many others corresponding to chronopathologies in
public databases, as described in detail elsewhere [126]. In
the case of genes of the circadian clock core, the obtained
data are shown in Table 2 as results of this study. For SNP
markers of Mendelian diseases, we conducted an additional

keyword search for data on the prevalence of the uncovered
chronopathologies as complications of these diseases; this
procedure is some sort of cross-validation of the rough
qualitative rates without statistical testing (Table 1).

Our heuristic interpretation of the keyword search results
is shown in italics in the second rightmost column of Tables
1 and 2 and labeled with the word “(Hypothetically)” in
front. We cite the studies (found during our manual keyword
search) within the rightmost column of these tables, shown as
[references] in italics and labeledwith the phrase “[Thiswork].”

3. Results and Discussion

3.1. The Results on Candidate SNPMarkers of Circadian Com-
plications of Mendelian Diseases. These results are presented
in Table 1. Let us review in detail these more comprehensively
studied SNP markers in order to briefly describe, in a similar
fashion, the candidate SNP markers in the genes of human
circadian clock core which were identified for the first time
(in our study).

Genes HBB and HBD encode 𝛽- and 𝛿-chains of
hemoglobin, respectively. In the binding sites for TBP in
their promoters, these two genes contain the greatest number
(seven) of known SNP markers (rs35518301, rs397509430,
rs33981098, rs34598529, rs33931746, rs33980857, and
rs34500389) of thalassemia and resistance tomalaria [24, 42],
as a result of a hemoglobin deficiency (Table 1). A primary
search by keywords uncovered a hemoglobin deficiency as
a biochemical marker of circadian (nocturnal) aggravation
of restless legs syndrome [43] and sensorineural hearing
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loss [44]. A cross-validating search by keywords revealed
that iron deficiency anemia substantially contributes to
the pathogenesis of restless legs syndrome and cooccurs
with thalassemia [45, 46], whereas sensorineural hearing
loss is a complication of thalassemia in children during
treatment with deferoxamine [47]. We found three
additional unannotated SNPs (rs63750953, rs281864525, and
rs34166473) that can also reduce expression of genes HBB
and HBD and may serve as candidate SNP markers of these
chronopathologies.

The MMP12 gene codes for matrix metalloproteinase
12 and, in its promoter, contains a known SNP marker
(rs2276109) of a lower risk of systemic sclerosis [48], psoriasis
[49], and asthma [50]. A keyword search yielded circadian
(nocturnal) aggravation of asthma symptoms [51]. Here we
found an unannotated SNP (rs572527200) with the same
effects on the fj`-promoter affinity.

Gene IL1B encodes interleukin 1𝛽 and, in its promoter,
contains one of the most widely studied SNP markers
(rs1143627) of stomach ulcer, chronic gastritis, gastric cancer,
hepatocellular carcinoma, non-small cell lung cancer, Graves’
disease, and excess body fat in older men [52–57] as well as
major depressive disorder [58] with a circadian optimum for
diagnosis and treatment [59] that can be shifted by a high-
fat or high-carbohydrate diet [60]. The primary search by
keywords uncovered association of IL1B overexpression (with
“-31T”) with a bipolar disorder [61] that also has a circadian
optimum for diagnosis and treatment depending on the diet
[60]. Near this known SNP marker, we found unannotated
rs549858786, which was found to lower IL1B expression
(Table 1).The primary keyword search produced an IL1B pro-
tein deficiency as a biochemicalmarker of rheumatoid arthri-
tis [62], for which an additional keyword search yielded a
study showing that this disease is associated with distur-
bances of the circadian rhythm of IL1B expression [63].

The F3 gene encodes tissue thromboplastin (factor
III) and, in its promoter, contains a known SNP marker
(rs563763767) of an elevated risk of venous thromboem-
bolism and myocardial infarction [64]. A keyword search
produced clinical data on circadian aggravation of their
symptoms (in the early morning) in the elderly [65]; these
data are in agreement with basic research on a murine model
of aging [66].

The F7 gene codes for serum prothrombin conversion
accelerator (factor VII); in its promoter, some researchers
[67] found a biomedical SNP marker: a substitution of the
ancestral nucleotide A for minor nucleotide C at position -33
relative to the transcription start site (hereafter -33A→ b);
this is a marker of moderate bleeding (as a result of underex-
pression of this gene). An additional database search revealed
laboratory data on possible circadian aggravation of this dis-
order’s symptoms during chronic changes of time zones and
in the winter (data from amouse model) [68]. Here we found
an unannotated SNP (rs749691733) with the same effects on
the fj`-promoter interaction. In addition, near this known
SNP marker, we found five unannotated SNPs (rs367732974,
rs549591993, rs777947114, rs770113559, and rs754814507) that
can cause F7 overexpression (Table 1). A keyword search pro-
duced an elevated F7 protein level as a biochemical marker

of heart attacks characterized by a circadian preference for
the early morning in the elderly [69] and for circadian (post-
prandial) development of thrombogenesis [70].Therefore, we
propose rs367732974, rs549591993, rs777947114, rs770113559,
and rs754814507 as candidate SNP markers of these two
chronopathologies.

Gene NOS2 encodes inducible NO synthase; in its pro-
moter, one study [71] uncovered an SNP marker (-51T→C)
of resistance to malaria [71] and of a high risk of epilepsy
[72] (as a result of overexpression of this gene). A keyword
search yielded a review article [73] about epilepsy-associated
hypothalamic damage that can impair the circadian clock sys-
tem of the body as a whole [73]. Besides, we found some data
[74] suggesting that excess NO is a biochemical marker of a
remission of panic disorder that is characterized by circadian
(late evening) aggravation of symptoms. Thus, we propose
the SNP “NOS2: -51T→C” as a candidate marker of these
chronopathologies.

Gene DHFR codes for dihydrofolate reductase; its pro-
moter contains a known SNPmarker (rs10168) of methotrex-
ate resistance [75] that is characterized by a therapeutic
optimum of its use [13]. Here we found an unannotated SNP
(rs750793297) with the same effects on the fj`-promoter
complex. Additionally, near this known SNP marker, we
found three unannotated SNPs (rs766799008, rs764508464,
and rs754122321) that can cause DHFR underexpression
(Table 1). According to our recent paper [40], these SNPs can
elevate an apparent bioactivity of methotrexate-based antitu-
mor chemotherapy [13, 75].

The StAR gene encodes steroidogenic acute regulatory
protein and contains an SNP marker (rs16887226) of hyper-
tension in diabetes (as a result of lowered expression of this
gene because of impaired binding of its promoter with an
unknown transcription factor, not TBP) [76]. A keyword
search produced associations with lowered resistance to
endotoxins for underexpression of the StAR protein, which
is a mediator of mutual synchronicity of the immune system
and circadian system [11]. Near this known SNP marker, we
found the unannotated SNP rs544850971, which can lower
StAR expression (Table 1) and therefore can be a candidate
SNP marker of the above-mentioned disorders.

Gene CETP codes for cholesterol ester transfer protein;
in its promoter, it contains a known biomedical SNP marker:
deletion of the region G-72GGCGGACATACATATAC-54
(18 bp long) at position -54 relative to the transcription
start site (hereafter: -54[18 bp]DEL); this is a marker of
hyperalphalipoproteinemia that lowers the risk of atheroscle-
rosis [77, 78]. A keyword search uncovered clinical data
on circadian pathogenesis (postprandial flare-up) of this
disorder in diabetes [79]. Near this known SNP marker, we
found three unannotated SNPs (rs17231520, rs757176551, and
rs569033466), which can increase CETP expression (Table 1)
and thereby increase the risk of atherosclerosis [77–79] and of
hypoalphalipoproteinemia which causes hepatic chronopa-
thologies [80].

The APOA1 gene encodes apolipoprotein A1; in its pro-
moter, some researchers [81] identified an SNP marker
(-35A→b) of hematuria, hepatic steatosis, and obesity and of
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hypoalphalipoproteinemia which impairs the peripheral cir-
cadian clock in the liver [80]. A keyword search yielded some
data on a knockout mouse model (APOA1−/−) regarding the
risk of atherosclerosis [78] which develops in postprandial
flare-ups in diabetes [79]. For this reason, we propose the
SNP “APOA1: -31A→C” as a candidate marker of this
chronopathology.

Gene CYP2B6 encodes cytochrome P450 2B6 and con-
tains a known SNPmarker (rs34223104) of improved bioacti-
vation of cyclophosphamide [82] with a circadian therapeutic
optimum [14]. According to empirical and computational
data [82], this SNP disrupts a major variant of the fj`-
binding site in the CYP2B6 promoter and in its place creates
a binding site for the transcription factor (activator) C/EBP;
this change shifts thefj`-binding site and transcription start
by 30 bp in the 5󸀠 → 3

󸀠 direction and turns them into their
minor alternative variants. In close proximity to this known
SNP marker, we found the unannotated SNP rs563558831,
which, in the samemanner, lowers fj`’s affinity for this pro-
moter (Table 1) and therefore can be a candidate SNPmarker
of the same chronopathology.

The INS gene encodes insulin, and its promoter contains
a known SNP marker (rs5505) of neonatal diabetes and
hyperinsulinemia [24]. A keyword search uncovered hyper-
insulinemia as a biochemical marker of aberrations in the cir-
cadian rhythms of (i) the reproductive system [83], (ii) blood
pressure [84], and (iii) the tumor-host balance [85]. Near
this known SNP marker, we found unannotated rs563207167,
which can also cause hyperinsulinemia and therefore can
be a candidate SNP marker of the same chronopathologies
(Table 1). In addition, here we found unannotated rs11557611,
which can cause hypoinsulinemia (Table 1). A keyword search
showed that hypoinsulinemia is a biochemical marker of
hypothalamic amenorrhea [86]. Consequently, rs1155761 may
serve as a candidate SNP marker of this chronopathology
(Table 1).

Gene ESR2 codes for estrogen receptor 2 (𝛽) and, in
its promoter, contains a known SNP marker (rs35036378)
for prophylactic treatment (with tamoxifen) of an ESR2-
deficient primary tumor pT1 [87] to prevent progression
to breast cancer [88]; this treatment is characterized by a
circadian optimum for its use [89]. A keyword search yielded
basic research findings of circadian disturbances of daytime
behavioral activity in ESR2-deficient female mice [90]. Near
this known SNP marker, we found an unannotated SNP
(rs35036378) with the same effects on the fj`-promoter
affinity.

3.2. The Results on Candidate SNP Markers within the Circa-
dian Clock Core. These results are shown in Table 2. Let us
review in more detail the data in this table using the PER1
gene as an example, which encodes a protein called period 1—
a subunit of the heterodimeric PER-CRY complex—which is
themain negative component of the circadian clock core: this
complex inhibits the activity of transcription factor CLOCK/
ARNTL [92–98].

As predicted by SNP TATA Comparator [35], only five of
the 28 SNPs (that are known in the 90 bp proximal promoter
regions for various protein-coding transcripts of this gene

[24]) can affect the affinity of TBP for its promoters:
rs137890200, rs773740924, and rs2518024 can enhance the
TBP-promoter affinity, whereas rs796629786 and rs3027175
can reduce it. A keyword search showed that strong expres-
sion of the PER1 gene inhibits the proliferation of tumor cells
[17, 99, 100]; for example, in patients with strong expression
of this gene, if they have a gastric cancer, longer survival is
observed [99]. This gene is studied as a tumor suppressor;
one of its mechanisms of action is the influence on the
sensitivity of cells to DNA damage-induced apoptosis [17,
101]. Downregulation of PER1 was detected in human tissues
of malignant tumors of the stomach and prostate [100, 101].
It should also be noted that, in studies of knockout mouse
models (PER1−/−), researchers observed impairment of spa-
tial (3D) learning capacity and enhanced manifestations of
ethanol hepatotoxicity [102, 103]. Therefore, we can hypothe-
size that rs137890200, rs773740924, rs2518024, rs796629786,
and rs3027175 of the PER1 gene are candidate SNP markers,
as we propose in Table 2. One can see similar results for the
other genes of the human circadian clock core [92–114] in this
table.

Using SNP TATA Comparator [35], we analyzed 231
SNPs within 90 bp proximal promoter regions for the
protein-coding transcripts of 12 genes of the human circadian
clock core; only 52 of these SNPs (22%)were found to be capa-
ble of statistically significant changes in the affinity of TBP for
promoters of these genes. As one can see in Table 2, we failed
to find candidate SNPmarkers of chronopathologies for only
one of the 12 genes, namely,NR1D1.This result shows that pre-
liminary computational (bioinformatic) analysis of unanno-
tated SNPs from the 1000 Genomes Project can indeed accel-
erate and cheapen the search for biomedical SNP markers
because of selection (for this expensive and labor-intensive
procedure) of only those candidate markers whosemolecular
mechanisms of pathological manifestation are easily under-
standable within the framework of existing clinical observa-
tions, genetic knowledge, scientific theories, hypotheses, and
empirical data from animal and cellular models of human
diseases.

It is also worth noting that only 13 of the 52 candidate SNP
markers identified here decrease affinity of fj` for promot-
ers of the genes of the circadian clock core, whereas the other
39 SNPs enhance it. In Table 1, however, one can see the oppo-
site distribution of the candidate SNP markers (identified
here) of circadian complications of Mendelian diseases: the
majority (26 of 41, 62%) of the candidate SNPmarkers signif-
icantly reduce affinity of fj` for the human gene promoters,
whereas the remaining 15 SNPs enhance it, as predicted by
SNP TATA Comparator [35]. This difference is statistically
significant (𝑝 < 0.0005) according to Fisher’s exact test for 2×
2 design. It is noteworthy (Table 1) that the ratio of the preva-
lence of candidate SNPmarkers of increased versus decreased
affinity fj`-promoter is in agreement with independent
studies by other investigators [127, 128]. Indeed, overall, in
the reference human genome, the proportion of SNPs which
weaken the binding sites of transcription factors is signif-
icantly greater than the share of SNPs which enhance this
binding [127]. Similarly, some researchers [128] reported that
SNPs of the binding sites for transcription factor NF-𝜅B or
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RNA polymerase II (significantly more often) weaken rather
than enhance the binding of these proteins to the mutated
DNA in comparison with the reference genome. Taken
together, these findings suggest that the reduced proportion
of candidate SNP markers weakening the affinity TBP-
promotermay be a specific characteristic of the 12 genes of the
human circadian clock core. This phenomenon may reflect
the pressure of natural selection for robustness of their func-
tioning under the conditions of incessant genetic variability
of the promoter region being analyzed.

Why is the robustness of the circadian clock core so
important for humans? As shown in Table 2, overall, dys-
regulation of these genes’ expression may be a marker of
a wide range of pathological conditions in humans, for
example, cancer, neurodegenerative disorders, lung diseases,
and cardiovascular diseases. The reason for such diversity of
chronopathologies is that the circadian clock synchronizes a
large number of molecular biological and biochemical pro-
cesses on the whole-body level and integrates various indi-
vidual signals from each cell, tissue, and organ into a united
hierarchical system of circadian rhythms of the human body.

3.3. How to Use Candidate SNP Markers of Chronopatholo-
gies. In this work, we used SNP TATA Comparator [35] to
analyze 484 SNPs within 90 bp proximal promoter regions
for protein-coding transcripts of human genes. Only 53 of
these SNPs (11%) were found to be candidate SNP markers
of chronopathologies (Tables 1 and 2). This finding does not
mean that the remaining 431 of the 484 SNPs (89%) cannot
be SNP markers of some human diseases. This is because
each of these SNPs may influence a specific promoter-related
nucleosome [129], DNA methylation sites in promoters,
binding sites for histone modifications, and binding sites for
transcription factors (e.g., rs16887226 and rs34223104). At
present, there is a large number and variety of freely available
Web services [130–149]. Most of them rank unannotated
SNPs by their generalized statistical similarity with biomedi-
cal SNP markers of human diseases; these Web services eval-
uate this similarity by superimposing SNPs on genemaps and
on data from massively parallel high-throughput sequenc-
ing of chromatin immunoprecipitation material (ChIP-Seq)
from experiments with complexes of various proteins with
genomic DNA. Accuracy of such assessments is constantly
increasing due to improvements in empirical formulas for
whole-genome evaluation of similarity among pathological
manifestations of various SNPs and due to the increasing
diversity, completeness, and number of whole-genome maps
for various epigenetic states of cells from various tissues and
organs in health [150], during infection [151] (or other dis-
eases [152]), or after treatment [153], as we predicted [154] on
the basis of the Central Limit Theorem.

As an unexpected clever generalization of this main-
stream approach, the authors of Web server GenomeRunner
[155] proposed to evaluate the difference between SNPs in
addition to the widely accepted notion of assessments of the
similarity between them. In this active field of research, the
new trend is creation of Web navigation services that help
users generate their own hypotheses and ideas regarding how
the SNP of interest can affect the signs and symptoms of

diseases under study [156]. Another innovation that emerged
here is Web service PredictSNP2 for translation from the
numerical predictions to an effect of an SNP on human health
which is suitable for precise computer calculations in quali-
tative categories that are accessible to the general population
[157]. These breakthroughs mean that SNP-related predic-
tions are becoming interesting not only to narrow specialists
who treat patients with one or another disease but also to any-
one who is willing to customize their lifestyle tominimize the
risk of diseases.

Because statistical significance of our predicted candidate
SNP markers (Tables 1 and 2) varies from high (𝛼 < 10

−6)
to minimally acceptable (𝛼 < 0.05), the proposed markers
should be properly validated using clinical standards before
practical use. The results of this validation are dependent on
climate, environmental conditions, and lifestyles and on the
ethnic, social, age, and gender composition of cohorts [158].
Accordingly, we arranged the ancestral and minor alleles of
each of candidate SNP markers of chronopathologies by the
predicted 𝐾

𝐷

values of TBP-DNA affinity in vitro [91]. As
shown in Tables 1 and 2, these 𝐾

𝐷

values vary from 1 to
335 nM, whereas the extent of their variation among alleles of
a given SNP may be 1 nM, which is less than 0.3% of the 𝐾

𝐷

range.This level of allelic variations is too small for empirical
measurement without an a priori known, fairly narrow range
of 𝐾
𝐷

values to be measured. Thus, the predicted 𝐾

𝐷

values
(Tables 1 and 2) are an integral part of each candidate
SNP marker; without these data, an SNP marker cannot be
validated in practice.

Finally, pathological manifestation of SNP markers of
Mendelian diseases, as a rule, is limited to the consequences
of changes in the expression of only those genes that contain
these SNPs and can be useful only to physicians of the narrow
specialties relevant to the diseases in question. Nonetheless,
candidate SNP markers of chronopathologies are associated
with consequences of desynchronoses either among the ner-
vous, immune, digestive, respiratory, and other systems of the
human body or between the human body and its environ-
ment (Tables 1 and 2).These data can be useful both for physi-
cians and for the general population. For instance, the can-
didate SNP marker rs568650510 may be associated with an
elevated risk of asthmawhose symptoms are circadian (worse
at night [51]; Table 2). Using this information, a physician can
select the treatment timing (for asthma symptoms in a patient
with minor alleles of these SNPs) that could reduce the risk
of aggravation at night. By the same token, any person with
the minor allele -15T of this SNP can choose a lifestyle that
can reduce the systematic nocturnal influence of the envi-
ronmental factor that causes the asthma symptoms. Similarly,
rs367732974, rs549591993, rs192518038, and rs537333415 may
help reduce the risk of a heart attack [69]; rs374778785 may
be useful for lowering the risk of emphysema and lung cancer
among smokers [106], whereas rs2899302 may help decide
whether to use opioids [113].

4. Conclusions

Here, we predicted candidate SNPmarkers of chronopatholo-
gies (Tables 1 and 2); these SNPs can change affinity of
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TATA-binding protein for human gene promoters. After
proper validation of these candidate markers in accordance
with clinical standards, these SNPs may turn out to be
useful both for physicians (to select the best treatment for
each patient) and for the general population (to choose
a lifestyle preventing possible circadian comorbidities and
complications).
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