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ABSTRACT
Two recent investigations found serum lipid and energy metabolites related to 

aggressive prostate cancer up to 20 years prior to diagnosis. To elucidate whether those 
metabolomic profiles represent etiologic or tumor biomarker signals, we prospectively 
examined serum metabolites of prostate cancer cases by size and extent of primary 
tumors in a nested case-control analysis in the ATBC Study cohort that compared cases 
diagnosed with T2 (n = 71), T3 (n = 51), or T4 (n = 15) disease to controls (n = 200). 
Time from fasting serum collection to diagnosis averaged 10 years (range 1–20). LC/
MS-GC/MS identified 625 known compounds, and logistic regression estimated odds 
ratios (ORs) associated with one-standard deviation differences in log-metabolites. 
N-acetyl-3-methylhistidine, 3-methylhistidine and 2'-deoxyuridine were elevated in 
men with T2 cancers compared to controls (ORs = 1.38–1.79; 0.0002 ≤ p ≤ 0.01). 
By contrast, four lipid metabolites were inversely associated with T3 tumors:  oleoyl-
linoleoyl-glycerophosphoinositol (GPI), palmitoyl-linoleoyl-GPI, cholate, and inositol 
1-phosphate (ORs = 0.49–0.60; 0.000017 ≤ p ≤ 0.003). Secondary bile acid lipids, sex 
steroids and caffeine-related xanthine metabolites were elevated, while two Krebs 
cycle metabolites were decreased, in men diagnosed with T4 cancers. Men with T2, 
T3, and T4 prostate cancer primaries exhibit qualitatively different metabolite profiles 
years in advance of diagnosis that may represent etiologic factors, molecular patterns 
reflective of distinct primary tumors, or a combination of both.

INTRODUCTION

As the second most common malignancy in men 
worldwide [1], the primary prevention of prostate cancer 
is important yet hampered by the lack of well-established 
modifiable risk factors for the disease. Untargeted 
metabolomic approaches have been increasingly employed 
to identify a broad array of low molecular weight 
compounds potentially related to cancer etiology, early 
detection and progression, and that may help elucidate 
underlying biologic mechanisms [2, 3]. 

Two studies in the Alpha-Tocopherol, Beta-
Carotene Cancer Prevention (ATBC) Study cohort 
prospectively examined serum metabolomic profiles 

of prostate cancer up to two decades prior to diagnosis 
[4, 5]. Case-control differences in circulating lipid 
and energy metabolites, including alpha-ketoglutarate, 
citrate, inositol-1-phosphate, glycerophospholipids, 
and fatty acids were identified [4, 5].  Just as distinct 
metabolite signals were observed for aggressive versus 
non-aggressive prostate malignancies in these studies, 
metabolomic patterns may exist that reflect underlying 
tumor biology related to other clinical characteristics.  
The present analysis was undertaken in order to 
test whether the serum metabolite profiles of men 
diagnosed with T2, T3 and T4 prostate cancers within 
20 years of blood sampling qualitatively differ from 
each other. 
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RESULTS

Baseline characteristics of the cases and controls are 
presented in Table 1.  Most characteristics were similar 
across the groups with the exception of serum total PSA, 
with substantially higher concentrations in each primary 
tumor category of cases, compared with controls. All of 
the characteristics were similar among T2, T3 and T4 
cases, with only one exception being physical activity, 
which might be due to chance based on the small number 
of T4 cases.  Median age at diagnosis was 68 years. 

Using a p value threshold of < 0.05 for either T2, 
T3 or T4 prostate cancers, we show that metabolites 
associated with T2, T3 and T4 prostate cancers (Tables 2 
and 3, sorted by chemical class and subclass, with lipids 
shown in Table 3).  As compared to the control group, 
men with T2 prostate cancers had elevated serum amino 
acids in histidine metabolism including N-acetyl-3-
methylhistidine (OR= 1.79, p = 0.0002; FDR of < 20%), 
3-methylhistidine (p=0.01), imidazole lactate (p = 0.03), 
and nucleotide 2'-deoxyuridine (p = 0.005), and they 
had lower glycerophospholipids stearoyl-arachidonoyl-
glycerophosphoethanolamine (GPE) (p = 0.02), and 
stearoyl-linoleoyl-GPE (p = 0.03) lipid compounds, 
and two benzoate metabolites (3-ethylphenylsulfate and 
2-ethylphenylsulfate) (Tables 2 and 3).

By contrast, T3 prostate cancers had increased 
sphingolipids stearoyl-, euricoyl- and myristoyl- 
sphingomyelin (p = 0.01, 0.02, and 0.04, respectively), 
as compared with controls.  They also displayed lower 
glycerophospholipid signals for oleoyl-linoleoyl-
glycerophosphoinositol (GPI) (OR = 0.49, p = 
0.000017, which was below the Bonferroni threshold 
of 0.000027), palmitoyl-linoleoyl-GPI (p = 0.001), 
stearoyl-linoleoyl-GPE (p = 0.02), stearoyl-arachidonoyl-
GPE (p = 0.02), 1-linoleoyl-GPI (p = 0.02), and 
1-stearoylglycerophosphoglycerol (p = 0.03), as well 
as primary bile acid signals cholate (p = 0.002) and 
chenodeoxycholate (p = 0.03), and inositol metabolite 
inositol 1-phosphate (I1P) (p = 0.003) (Table 3). 

Also compared to the control group, men with 
T4 primary tumors showed elevated signals for 
secondary bile acid lipids taurodeoxycholate (p = 0.007), 
glycodeoxycholate (p = 0.007), deoxycholate (p = 0.02), 
tauroursodeoxycholate (p = 0.02) and glycolithocholate 
sulfate (p = 0.04), and four sex steroid metabolites [estrone 
3-sulfate, 5alpha-pregnan-3beta,20alpha-diol disulfate, 
7alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca), and 
4-androsten-3alpha,17alpha-diol monosulfate] (Table 3), 
as well as several caffeine-related xanthine metabolites 
(caffeine, 1,3,7-trimethylurate, paraxanthine, theobromine 
and theophylline) (Table 2). They also had decreased 
signals for two Krebs cycle metabolites, fumarate and 
citrate (Table 2). 

Of note, we found that a histidine metabolite 
4-imidazoleacetate presented an accumulated serum levels 

from T2 to T4 prostate cancers (OR = 1.28, 1.59, and 
2.52, respectively; p = 0.11, 0.01, and 0.01, respectively), 
as well as one secondary bile acid glycolithocholate 
sulfate (OR = 1.37, 1.35, and 1.83, respectively; p = 0.03, 
0.07, and 0.04, respectively) (Tables 2 and 3). We found 
consistent lower levels of glycerophospholipids stearoyl-
arachidonoyl-GPE and stearoyl-linoleoyl-GPE in T2 and 
T3 cases, and a positive signal for euricoyl sphingomyelin 
in T2 and T3 cases, however, the associations were not 
seen in T4 cancers (Tables 2 and 3).  

We further performed analyses that divided cases 
by median time to diagnosis for the top signals in T2, 
T3 and T4 prostate cancers (median time of diagnosis: 
8 years, 11 years and 8 years, respectively), and the 
findings were essentially similar (Supplemental Figures 
1–3). We also tested whether the metabolite levels 
significantly differed across extent of disease category 
(i.e., heterogeneity) through case-only analyses. We found 
that metabolites N-Acetyl-3-methylhistidine, 5alpha-
androstan-3alpha,17alpha-diol disulfate, deoxycholate 
and tauroursodeoxycholate showed the lowest p heterogeneity 
(0.00009 ≤ p heterogeneity ≤ 0.0029) (Tables 2 and 3).

The findings for T2 and T3 disease do not materially 
change after adjusting for each of the following factors:  
trial intervention group, family history of prostate cancer, 
benign prostatic hyperplasia (BPH), body mass index 
(BMI), physical activity, cigarettes per day, and serum 
total PSA, total and high-density lipoprotein (HDL)  
cholesterol, retinol, and α-tocopherol (data not shown). 
Because of the small number of T4 cases, the adjusted OR 
estimates were highly unstable.  

DISCUSSION

The present analysis examining prostate cancer cases 
with T2, T3 and T4 tumors at diagnosis shows qualitative 
differences in serum metabolomic profiles up to 20 years 
prior to clinical diagnosis. The patterns reflective of T2 
disease indicate alterations in amino acids, with greater 
changes in circulating lipid metabolites in men diagnosed 
with T3 and T4 disease, compared to controls. We found 
the strongest signals that achieved statistical significance 
after correction for multiple comparisons were N-acetyl-3-
methylhistidine in T2 disease, and the glycerophospholipid 
oleoyl-linoleoyl-GPI in relation to T3 disease. Thirty 
metabolites were associated with T4 diagnoses at p<0.05, 
primarily represented by secondary bile acid lipid, sterol/
steroid lipid, caffeine-related xanthine metabolites, and 
Krebs cycle metabolites. 

Tumors confined to one or both lobes of the 
prostate (i.e., T2) were related to serum amino acids in 
the histidine pathway and those exhibiting N-acetylation.  
N-acetyl-3-methylhistidine is a post-translational, 
acetylated derivative of 3-methylhistidine, an important 
component amino acid residue for both the actin and 
myosin polypeptides [6].  Histidine and methylhistidine 
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Table 1: Baseline characteristics of cases and controls1

Controls T2 cases T3 cases T4 cases P2

P P P

N 200 71 -- 51 -- 15 --

Age (years) 59.3 59.8 0.6 58 0.09 60.9 0.3 0.09

Median time from serum collection to 
diagnosis (years, interdecile range)

-- 8.1 (1.9–16.9) -- 10.9 (3.3–18.3) -- 8.2 (2.1–16.2) -- 0.18

Height (cm) 173.1 172.8 0.89 174.1 0.23 173.9 0.54 0.52

Weight (kg) 78.1 80.9 0.17 78.3 0.93 82.8 0.21 0.37

BMI (kg/m2) 26 27 0.1 25.8 0.52 27.4 0.22 0.15

Family history of prostate cancer (%) 3.5 5.3 0.61 15.2 0.009 0 -- 0.22

Cigarettes per day 19.4 18.4 0.31 19.8 0.82 18.2 0.56 0.63

Years of cigarette smoking 37.5 38.3 0.42 36.2 0.44 41.7 0.08 0.11

Physically active (%) 19 5.6 0.008 21.6 0.68 0 -- 0.007

Serum total PSA (ng/mL) 1.4 8.9 0.003 8.1 0.001 10.7 0.038 0.79

Serum retinol (µg/L) 587 597 0.96 611 0.53 588 0.79 0.73

Serum total cholesterol (mmol/L) 6.2 6.2 0.91 6.1 0.72 6 0.51 0.83

Serum α-tocopherol (mg/L) 11.8 12 0.49 11.2 0.24 11.9 0.85 0.27

Serum β-carotene (µg/L) 200 197 0.99 220 0.22 217 0.67 0.64

Dietary intake per day

Total energy (kcal) 2667 2689 0.95 2553 0.22 2391 0.14 0.36

Fruit (g) 216 202 0.42 201 0.53 127 0.004 0.24

Vegetables (g) 293 297 0.92 264 0.07 271 0.43 0.23

Red meat (g) 70.5 72 0.98 62.1 0.052 69.3 0.76 0.18

Alcohol (ethanol, g) 17.4 18.7 0.63 13.8 0.17 17.7 0.56 0.37

Supplement use

Vitamin A (%) 10.6 11.4 0.85 9.8 0.87 13.3 0.74 0.92

Vitamin D (%) 7.1 5.7 0.7 5.9 0.76 6.7 0.95 0.99

Calcium (%) 13.6 12.9 0.87 11.8 0.73 6.7 0.44 0.8

1Values are means unless otherwise indicated. All characteristics were obtained at baseline, except family history of prostate cancer, which 
was collected during follow-up and is available for 223 men in the analysis.
2P value for difference among T2, T3 and T4 cases, using ANOVA test (the analysis of variance) for continuous, and chi-squared tests for 
categorical variables, respectively.

metabolites have been related to tissue remodeling and 
repair, myofibrillar protein degradation, and changes in 
the inflammatory response and oxidative stress [7–11]. 
Increased amino acid acetylation can result from disrupted 
acetylation activity from aminoacetylase dysregulation, 
both of which could impact histone-chromatin interactions 
and gene regulation [12–14]. How such functions relate 
to the biological/biochemical microenvironment of T2 
tumors is unknown, but may indicate active anabolic 
protein synthesis. 

2ʹ-Deoxyuridine was also elevated in T2 cases and 
has been characterized as a marker for DNA oxidative 
damage [15], with experimental data showing higher 
expression in rats exposed to ionizing radiation [16], 
5-fluorouracil [17], and high-fat diets [18]. Increased 
2ʹ-deoxyuridine could also indicate increased DNA 
turnover and loss of pyrimidine homeostasis in small, 

early adenocarcinomas. What role benzoate metabolites 
might play in these malignancies is unclear.

The serum metabolomic profile of men with 
tumors extending through the prostatic capsule (i.e., 
T3) was characterized by reduced signal for several 
glycerophospholipids, primary bile acid lipids and 
greater signal for sphingomyelins. The inositol, choline 
and ethanolamine glycerophospholipids are key cell 
membrane structural and signaling compounds that 
provide biosynthetic support during rapid cell proliferation 
[19, 20]. Sphingomyelins are a primary component in 
membrane vesicles shed from actively growing prostate 
and other malignant cells that may facilitate tumor cell 
invasion and escape from immune surveillance [21–24], 
and they have been found to be significantly higher 
in cancer patients than in non-cases [22]. Our finding 
of elevated serum stearoyl-, euricoyl- and myristoyl- 
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Table 2: Serum metabolites associated with T2, T3 and T4 prostate cancers 1,2,3

T2 T3 T4
P het4

Variable CS5 OR 95% CI P OR 95% CI P OR 95% CI P
Amino acids

N-Acetylmethionine A-1 0.94 0.72 1.23 0.632 1.22 0.86 1.71 0.264 0.65 0.43 0.99 0.047 0.041
N-Acetylglutamine A-2 1.06 0.82 1.38 0.642 0.97 0.70 1.34 0.867 0.52 0.28 0.96 0.038 0.062
Cysteine-glutathione  disulfide A-2 0.98 0.75 1.29 0.904 1.29 0.92 1.81 0.141 0.59 0.39 0.89 0.012 0.008
4-Imidazoleacetate A-3 1.28 0.95 1.74 0.107 1.59 1.11 2.3 0.013 2.52 1.25 5.12 0.010 0.335
Imidazole lactate A-3 1.33 1.02 1.74 0.033 0.99 0.73 1.35 0.957 0.98 0.58 1.65 0.939 0.146
3-Methylhistidine A-3 1.38 1.07 1.79 0.012 0.80 0.57 1.13 0.208 1.00 0.61 1.64 0.999 0.0058
N-Acetyl-3-methylhistidine3 A-3 1.79 1.31 2.44 0.00024 0.78 0.57 1.08 0.134 0.95 0.57 1.59 0.855 0.00009
O-Cresol sulfate A-4 0.76 0.59 0.99 0.039 1.09 0.79 1.5 0.601 0.90 0.54 1.50 0.676 0.184
Indoleacetate A-5 1.05 0.78 1.41 0.756 1.10 0.79 1.54 0.564 1.89 1.11 3.20 0.019 0.300
5-Hydroxyindoleacetate A-5 1.26 0.91 1.73 0.159 1.49 1.01 2.19 0.042 0.95 0.51 1.78 0.879 0.457
N-Acetylarginine A-6 1.25 0.96 1.63 0.092 0.96 0.71 1.31 0.814 0.54 0.31 0.93 0.028 0.015
N-Acetylcitrulline A-6 1.37 1.03 1.82 0.028 1.16 0.84 1.6 0.368 0.97 0.60 1.59 0.911 0.334
β-hydroxyisovalerate A-7 1.48 1.07 2.05 0.019 1.07 0.80 1.44 0.632 1.68 0.85 3.29 0.133 0.382
2-Hydroxyisobutyrate A-7 0.93 0.71 1.22 0.598 0.86 0.62 1.20 0.378 0.44 0.23 0.84 0.013 0.136
Cofactors and vitamins

L-Urobilin C-1 1.35 1.03 1.76 0.031 0.99 0.71 1.37 0.930 0.96 0.55 1.65 0.874 0.129
Energy

Citrate E-1 0.98 0.75 1.30 0.906 0.89 0.65 1.21 0.444 0.56 0.32 0.99 0.045 0.086
Fumarate E-1 1.01 0.78 1.31 0.942 1.07 0.79 1.44 0.681 0.55 0.33 0.93 0.024 0.0069
Nucleotides
Orotate N-1 0.98 0.75 1.29 0.895 1.23 0.89 1.69 0.207 0.40 0.21 0.74 0.0039 0.0046
5,6-Dihydrothymine N-1 0.99 0.74 1.34 0.964 0.90 0.67 1.21 0.496 0.58 0.34 0.99 0.047 0.313
2'-Deoxyuridine N-1 1.71 1.18 2.47 0.0046 1.38 0.93 2.04 0.115 1.49 0.76 2.93 0.250 0.630
Peptides
γ-glutamyltryptophan P-1 1.43 1.04 1.97 0.027 1.18 0.83 1.68 0.353 0.95 0.57 1.59 0.845 0.280
Xenobiotics
3-Ethylphenylsulfate X-1 0.70 0.55 0.90 0.0047 1.09 0.78 1.51 0.613 1.15 0.62 2.12 0.665 0.023
2-Ethylphenylsulfate X-1 0.77 0.60 0.98 0.034 1.16 0.81 1.67 0.413 0.85 0.52 1.38 0.510 0.071
2-Aminophenol sulfate X-2 0.93 0.71 1.21 0.577 0.71 0.52 0.96 0.025 1.08 0.64 1.82 0.771 0.154
Salicyluric glucuronide X-3 0.90 0.69 1.19 0.465 0.66 0.45 0.96 0.031 0.92 0.56 1.52 0.749 0.502
2-Acetamidophenol sulfate X-3 0.94 0.72 1.24 0.670 0.72 0.54 0.97 0.032 1.00 0.60 1.67 0.999 0.115
S-Allylcysteine X-4 0.87 0.64 1.18 0.378 1.00 0.74 1.36 0.990 1.60 1.06 2.41 0.025 0.046
Isoeugenol sulfate X-4 0.93 0.71 1.21 0.585 1.55 1.06 2.25 0.023 1.08 0.61 1.91 0.797 0.117
Paraxanthine X-5 0.96 0.70 1.30 0.772 0.86 0.64 1.16 0.318 2.53 1.15 5.53 0.020 0.089
Caffeine X-5 0.98 0.74 1.31 0.912 0.87 0.63 1.2 0.399 2.40 1.24 4.66 0.010 0.037
Theobromine X-5 0.98 0.72 1.34 0.916 0.86 0.65 1.15 0.312 2.46 1.08 5.59 0.031 0.151
Theophylline X-5 0.98 0.72 1.32 0.881 0.93 0.67 1.28 0.647 1.71 1.02 2.85 0.040 0.138
1,3,7-Trimethylurate X-5 1.03 0.78 1.36 0.830 0.93 0.68 1.28 0.665 2.31 1.17 4.56 0.016 0.084
Abbreviations: OR = odds ratio; CI = confidence interval.
1The odds ratio per standard deviation increase in metabolite, and estimated by unconditional logistic regression model adjusted for age. Based on T2  
(N = 71), T3 (N = 51), T4 (N = 15), and 200 controls. The table is sorted by chemical class and subclass. We highlighted metabolites (ORs and 95% CIs) 
that achieved the nominal significance of p < 0.05 within each class.
2All metabolites had a detectable value in > 90% of the study population with the exception of 3-ethylphenylsulfate, 1,3,7-trimethylurate, N-acetyl-3-
methylhistidine, L-urobilin, salicyluric glucuronide, S-allylcysteine (12%, 13%, 19%, 49%, 57%, 75%, respectively).
3N-Acetyl-3-methylhistidine in T2 cases achieved statistical significant with a false discovery rate (FDR) of < 20%. 
4P heterogeneity: We tested whether the metabolite levels differed across extent of disease (i.e. heterogeneity) by case-only analyses. Modeling extent of 
disease (T2/T3/T4) by polychotomous logistic regression, the p-value (p heterogeneity) was calculated from a likelihood ratio test comparing models with 
and without the metabolite level.
5CS = Chemical subclass: (A- amino acids) A-1 = Cysteine, methionine, SAM, taurine metabolism; A-2 = Glutamate metabolism; A-3 = Histidine 
metabolism; A-4 = Phenylalanine and tyrosine metabolism; A-5 = Tryptophan metabolism; A-6 = Urea cycle; arginine and proline metabolism; A-7 = 
Valine, leucine and isoleucine metabolism; (C- cofactors and vitamins) C-1 = Hemoglobin and porphyrin metabolism; (E- energy) E-1 = Krebs cycle/ TCA 
cycle; (N- nucleotides) N-1 = Pyrimidine metabolism, orotate containing; ( P- peptides) P-1 = Gamma-glutamyl amino acid; (X-xenobiotics) X-1 = Benzoate 
metabolism; X-2 = Chemical; X-3 = Drug; X-4 = Food component/plant; X-5 = Xanthine metabolism.
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Table 3: Serum lipid metabolites associated with T2, T3 and T4 prostate cancers 1,2,3

T2 T3 T4
P het4

Variable CS5 OR 95% CI P OR 95% CI P OR 95% CI P
Hexanoylglycine L-1 1.01 0.74 1.38 0.948 0.95 0.68 1.32 0.758 0.58 0.38 0.91 0.018 0.153
N-Linoleoylglycine L-1 1.13 0.88 1.44 0.336 0.51 0.27 0.97 0.042 1.29 0.85 1.95 0.225 0.0038
17-Methylstearate L-2 0.91 0.68 1.20 0.493 0.82 0.59 1.13 0.229 0.50 0.29 0.88 0.016 0.197
Maleate L-3 0.92 0.68 1.24 0.576 1.00 0.74 1.36 0.988 1.66 1.05 2.62 0.030 0.178
9,10-DiHOME L-4 0.80 0.62 1.05 0.108 1.13 0.81 1.59 0.469 0.59 0.38 0.92 0.019 0.0162
Inositol-1-phosphate L-5 0.93 0.71 1.22 0.587 0.60 0.43 0.84 0.003 0.68 0.40 1.15 0.148 0.078
Stearoyl-arachidonoyl-GPE L-6 0.73 0.55 0.95 0.019 0.68 0.49 0.94 0.020 1.07 0.61 1.90 0.807 0.319
Stearoyl-linoleoyl-GPE L-6 0.73 0.55 0.96 0.025 0.64 0.45 0.93 0.018 1.29 0.70 2.36 0.412 0.202
Oleoyl-linoleoyl-GPI3 L-6 0.88 0.67 1.15 0.349 0.49 0.35 0.68 0.000017 1.19 0.66 2.17 0.562 0.0041
1-Stearoyl-GPG L-6 0.94 0.72 1.23 0.649 0.69 0.50 0.96 0.029 1.48 0.89 2.47 0.135 0.011
Palmitoyl-linoleoyl-GPI L-6 0.98 0.75 1.29 0.908 0.56 0.39 0.80 0.0012 1.30 0.74 2.30 0.363 0.031
1-Linoleoyl-GPI L-6 0.99 0.76 1.30 0.966 0.70 0.51 0.95 0.024 1.31 0.76 2.26 0.336 0.154
2-Linoleoylglycerol L-7 0.92 0.69 1.22 0.547 0.73 0.53 1.00 0.047 1.30 0.73 2.33 0.373 0.221
Cholate L-8 1.01 0.76 1.34 0.952 0.57 0.40 0.81 0.0019 0.83 0.48 1.43 0.499 0.012
Chenodeoxycholate L-8 1.09 0.82 1.46 0.549 0.71 0.52 0.97 0.031 0.77 0.48 1.25 0.291 0.042
Tauroursodeoxycholate L-9 0.98 0.74 1.29 0.881 0.65 0.42 1.00 0.051 1.61 1.08 2.39 0.019 0.0029
Taurodeoxycholate L-9 1.08 0.81 1.44 0.598 0.98 0.71 1.34 0.900 2.62 1.30 5.27 0.0068 0.016
Deoxycholate L-9 1.09 0.82 1.44 0.557 0.97 0.71 1.32 0.858 3.31 1.24 8.81 0.016 0.0026
Glycodeoxycholate L-9 1.17 0.88 1.56 0.269 0.92 0.68 1.24 0.575 3.19 1.38 7.38 0.0068 0.0068
Glycolithocholate sulfate L-9 1.37 1.03 1.81 0.029 1.35 0.98 1.86 0.066 1.83 1.02 3.28 0.043 0.361
Myristoyl sphingomyelin L-10 1.03 0.79 1.34 0.825 1.43 1.02 1.99 0.036 0.76 0.46 1.26 0.289 0.114
Stearoyl sphingomyelin L-10 1.13 0.86 1.50 0.381 1.54 1.10 2.14 0.012 1.00 0.58 1.71 0.988 0.166
Euricoyl sphingomyelin L-10 1.48 1.06 2.08 0.022 1.66 1.08 2.55 0.020 1.37 0.71 2.64 0.347 0.817
Estrone 3-sulfate L-11 1.15 0.88 1.50 0.293 0.78 0.55 1.10 0.150 1.93 1.16 3.21 0.012 0.016
4-Androsten-
3alpha,17alpha-diol 
monosulfate

L-11 1.18 0.90 1.55 0.233 1.06 0.77 1.44 0.735 2.00 1.04 3.84 0.038 0.081

7-HOCA L-11 1.21 0.92 1.60 0.177 1.03 0.75 1.44 0.840 1.71 1.04 2.81 0.036 0.267
5Alpha-androstan-
3alpha,17alpha-diol 
disulfate

L-11 1.24 0.94 1.64 0.133 0.68 0.49 0.93 0.017 1.58 0.90 2.77 0.114 0.001

5Alpha-pregnan-
3beta,20alpha-diol disulfate L-11 1.27 0.96 1.68 0.099 1.07 0.78 1.47 0.691 1.90 1.11 3.27 0.020 0.098

Abbreviations: OR = odds ratio; CI = confidence interval; GPE = glycerophosphocholine; GPI = glycerophosphoinositol; 
GPG=glycerophosphoglycerol.
1The odds ratio per standard deviation increase in metabolite, and estimated by unconditional logistic regression model adjusted for age. 
Based on T2 (N = 71), T3 (N = 51), T4 (N = 15), and 200 controls. The table is sorted by chemical subclass. We highlighted metabolites 
(ORs and 95% CIs) that achieved the nominal significance of p < 0.05 within each subclass. 
2All metabolites had a detectable value in > 90% of the study population with the exception of taurodeoxycholate, glycodeoxycholate, 5alpha-
androstan-3alpha,17alpha-diol disulfate, 1-stearoylglycerophosphoglycerol, estrone 3-sulfate, tauroursodeoxycholate, N-linoleoylglycine 
(16%, 21%, 29%, 46%, 62%, 69%, 84%, respectively).
3Oleoyl-linoleoyl-GPI in T3 cases achieved the statistical significance after Bonferroni correction for multiple comparison.
4P heterogeneity: We tested whether the metabolite levels differed across extent of disease (i.e. heterogeneity) by case-only analyses. 
Modeling extent of disease (T2/T3/T4) by polychotomous logistic regression, the p-value (p heterogeneity) was calculated from a likelihood 
ratio test comparing models with and without the metabolite level.
5CS = Chemical subclass (L- lipid): L-1 = Fatty acid metabolism (acyl glycine); L-2 = Fatty acid, branched; L-3 = Fatty acid, dicarboxylate; 
L-4 = Fatty acid, dihydroxy; L-5 = Inositol metabolism; L-6 = Glycerophospholipid; L-7  = Monoacylglycerol; L-8 = Primary bile acid 
metabolism; L-9 = Secondary bile acid metabolism; L-10 = Sphingolipid metabolism; L-11 = Sterol/steroid.
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sphingomyelin in T3 cases compared to non-cancer 
controls (and a smaller elevated risk for the euricoyl-
sphingomyelin in T2 cases) is consistent with these 
prior data. Some of our other findings are of interest as 
well.  Lower serum chenodeoxycholic acid (CDCA), a 
primary bile acid metabolite, in T3 cases is consistent 
with lines of evidence indicating that bile acid metabolites 
including CDCA and its derivatives inhibit malignant 
cell growth and proliferation through apoptosis induction 
[25–27], including in prostate cancer cell lines [28–30]. 
One primary bile acid, cholic acid, also had lower serum 
concentration in T3 cases.

In the more advanced, T4 cases, lipids remained 
the most prominent metabolite signals versus controls, 
but with important qualitative subclass differences 
compared to men with T3 diagnoses. We found several 
serum secondary bile acid metabolites were positively 
associated with T4 cases, including taurodeoxycholate, 
glycodeoxycholate, deoxycholate, tauroursodeoxycholate 
and glycolithocholate sulfate (a slightly increased risk for 
glycolithocholate sulfate in T2 or T3), although none of 
these associations pass the stringent Bonferroni correction 
threshold. Earlier studies indicated that bile acids may 
have a role in carcinogenesis, especially for colorectal 
cancer, through various mechanisms including tumor 
promotion and oxidative stress [31, 32]. Deoxycholic 
acid is metabolized from cholic acid by bacteria in the 
intestine, and previous study indicated deoxycholic acid 
can facilitate the growth and progression in colon cancer 
[33]. Consistent with our findings, an earlier study with 
18 prostate cancer cases and 18 controls demonstrated 
that deoxycholic acid serum levels are significantly 
elevated in the prostate cancer group when compare to 
the healthy controls [34]. The underlying mechanisms 
for bile acids in prostate carcinogenesis will require 
additional studies. Four sex steroid metabolites were also 
positively associated with T4 prostate cancer, including 
estrone 3-sulfate (E3S), 5alpha-pregnan-3beta,20alpha-
diol disulfate, 7alpha-hydroxy-3-oxo-4-cholestenoate 
(7-HOCA) and Δ4- and 3α-adiol metabolites. Androgenic 
activity of, for example Δ4-adiol, could be important to 
maintain growth and possibly androgen independence 
of the larger and more extensive, T4 tumors [35–37].  
Although earlier meta-analysis indicated that coffee 
consumption may reduce the risk of prostate cancer [38], 
our metabolomic analysis found higher serum levels of 
several caffeine-related xanthine metabolites (caffeine, 
1,3,7-trimethylurate, paraxanthine, theobromine and 
theophylline) in T4 prostate cancers, when compared 
to controls. It is still unclear whether the increased 
levels of these xanthine metabolites are due to direct 
biologic roles in T4 tumorigenesis, or result from reverse 
causality, e.g. increased coffee intake in response to 
cancer-associated fatigue. This will require further study. 
We found lower risk of T4 prostate cancer in men with 
higher serum citrate and fumarate concentration, both of 

them are intermediates in the Krebs cycle involved with 
energy production. Earlier studies have demonstrated 
a higher citrate concentration in the normal prostate 
peripheral zone glandular epithelium because high zinc 
ion concentration can prevent conversion of citrate to 
isocitrate by mitochondrial aconitase  [39–41]. The 
higher citrate concentration may maintain a certain micro-
environment in the prostate to provide energy for sperm 
motility or oocyte fertilization. On the other hand, the 
signature of malignant prostate cells can be characterized 
by a low level of zinc and a low level of citrate, which 
might be possibly reflecting the oxidation of citrate that 
can yield additional ATP to meet a higher tumor energy 
requirement, and therefore promote tumor cell anabolism 
and proliferation [40]. 

In contrast, we observed that the histamine 
metabolite 4-imidazoleacetate was progressively 
positively associated with T3 and T4 prostate cancers (a 
smaller elevated risk in T2 cases). Histamine metabolites 
may play a role in mast cell mediated inflammation 
in prostate carcinogenesis [42]. The metabolite 
4-imidazoleacetate usually can be detected in urine 
samples, and accumulation in serum samples across 
different T-stages might suggest potential histamine 
metabolites-prostate cancer associations, which warrants 
additional examination. Branched chain amino acid 
(BCAA) metabolism plays an important role in energy 
production and protein synthesis [43]. Alterations in 
BCAAs were found to be associated with pancreatic 
cancer [44], insulin resistance, type 2 diabetes, metabolic 
disorder, as well as habitual physical activity [45–48]. Of 
note, leisure-time physical activity has been reported to 
be positively associated with prostate cancer risk [49], 
whereas type 2 diabetes was indicated to be inversely 
associated with prostate cancer [50, 51], although the 
underlying mechanisms were not well-understood. A 
previous study suggested that the breakdown of tissue 
protein may lead to elevated plasma BCAA levels as 
an early consequence of pancreatic cancer, and BCAAs 
and/or other amino acids derived from tissue breakdown 
may contribute to disease progression [44]. By contrast, 
we did find that the gut microbiota-associated BCAA 
metabolite 2-hydroxyisobutyrate was associated with risk 
of T4 disease (T2, T3, and T4 ORs = 0.93, 0.86, and 0.44, 
respectively; p value = 0.6, 0.38, and 0.01, respectively; 
Table 2). However, the role of BCAA metabolites in the 
prostate carcinogenesis will require further clinical and 
prospective studies.

Given that the serum samples were collected up to 
20 years in advance of clinical diagnosis, the implications 
of our study to a large degree rest on whether the observed 
serologic features represent metabolite patterns reflective 
of the distinct size and extent of the primary tumors that 
the individual patients might have transitioned through 
while still clinically undiagnosed. That is, tumor metabolic 
effects and requirements for cellular proliferation, 
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membrane signaling and nuclear signal transduction, 
specific anabolic biosynthetic activities, and mitochondrial 
ATP production may change with growth of the primary 
prostate malignancy.  Even within each of our tumor 
stage categories, however, there is likely some degree of 
metabolic diversity based on the natural history of disease, 
differences in the time from blood collection to diagnosis, 
and possibly genetic factors. We have interpreted our 
findings as reflecting changes in the serum metabolome 
resulting from the presence of biologically active 
subclinical prostate tumors of varying size and disease 
extent. Additional research will be necessary to examine 
the dynamic changes of these associated metabolites at 
different time-points of disease development, as well as 
to evaluate the involving biological pathways that may 
account for the influence of the associated metabolites 
on risk of being diagnosed with T2, T3, or T4 prostate 
cancers. 

There are several significant strengths of our 
investigation. Case ascertainment was based on 
population registries having high accuracy. The assayed 
serum samples were collected after an overnight fast up 
to two decades prior to prostate cancer diagnosis.  Case 
and control samples were stored at –70°C with nearly 
identical storage durations (and therefore unlikely to 
have biased our findings), and a high-quality, untargeted 
metabolomic platform was utilized.  Limitations include 
the relatively homogenous population of Finnish smokers 
of European descent and the relatively small sample size 
(particularly with respect to the T4 cases) that may have 
either precluded identification of other metabolite signals 
at the Bonferroni or 20% FDR level, yielded false positive 
findings, or limited additional adjustment for potential 
confounders. 

In conclusion, our investigation of men with prostate 
malignancies of clinical primary stages T2, T3, and T4 
finds evidence of striking qualitative differences in the 
serum metabolite profiles years in advance of diagnosis. 
Additional prospective clinical studies would provide 
useful, alternative tests of the present findings. 

MATERIALS AND METHODS

Study population

The ATBC Study has been described in detail 
previously [52]. In brief, the trial enrolled 29,133 Caucasian 
male smokers aged 50–69 years from southwestern Finland 
during 1985 to 1988. Men were assigned to one of four 
intervention groups based on a 2 × 2 factorial design:  
α-tocopherol (dl-α-tocopheryl-acetate, 50 mg/day), 
β-carotene (20 mg/day), both supplements, or placebo. 
Supplementation was for 5–8 years (median = 6.1) until 
withdrawal from the trial or the end of intervention (April 
30, 1993). At baseline, blood samples were obtained from 
all participants at baseline after an overnight fast and 

processed to serum, aliquoted, and stored at –70°C; height 
and weight were measured; and, behavioral and lifestyle 
information was collected, including smoking, alcohol 
consumption, medical history, and diet and supplement use. 

Size and extent of primary tumor

The present secondary analysis is based on the 
aforementioned nested case-control study of prostate 
cancer [5] that included 71 cases diagnosed with T2 
primary cancer (tumor confined within the prostate), 
51 cases with T3 (tumor extends through the prostate 
capsule), and 15 cases with T4 (tumor is fixed or invades 
adjacent structures other than seminal vesicles, such as 
external sphincter, rectum, bladder, levator muscles and/
or pelvic wall) [53]. Cases in each disease category were 
compared to a common set of 200 non-case controls. 
Based on the original case-control set, the controls were 
matched to the cases on age (± 1 year) and date of baseline 
blood collection (± 30 days), and were alive and cancer-
free at the case diagnosis date. Median time from serum 
collection to diagnosis was 10 years (range 1–20 years).

Metabolite assessment

Serum metabolites were measured by Metabolon, 
Inc. with a high resolution accurate mass (HRAM) 
platform of ultrahigh performance liquid chromatograph/
mass spectroscopy (LC-MS) and gas chromatograph/
mass spectroscopy (GC-MS) at Metabolon Inc. as 
previously described [54, 55]. Procedures included 
extraction of raw data, peak-identification, and blinded 
quality control duplicate serum samples included in 
each batch (8%). We identified 637 known compounds, 
and after excluding unknown compounds and those for 
which fewer than 5% of participants had measurable 
values (n = 12), 625 metabolites were retained for 
analysis which were classified as one of eight mutually 
exclusive chemical classes: amino acids and amino acids 
derivatives (subsequently refer to as “amino acids”), 
carbohydrates, cofactors and vitamins, energy metabolites, 
lipids, nucleotides, peptides or xenobiotics. The median 
intra- and inter-batch coefficient of variation across all 
metabolites was 9% (interquartile range = 4–20%) and 
17% (interquartile range = 10–28%), respectively.

Statistical analysis

Baseline characteristics of the controls and three case 
sets were compared using t-tests for continuous, and chi-
squared tests for categorical variables, respectively. We 
also tested the difference of baseline characteristics across 
the T2, T3 and T4 case categories using ANOVA tests for 
continuous variables and chi-squared tests for categorical 
variables, respectively. The associations between 
metabolites and case status were based on normalized 
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metabolite signals that divided each value by the batch 
median followed by log-transformation for normalization. 
Values below the limit of detection were imputed to the 
minimum of all non-missing values. Logistic regression 
models were used to estimate odds ratios (ORs) and their 
95% confidence intervals (CI) for the association between 
a one standard deviation difference in log-metabolite signal 
strength and prostate cancer risk in each tumor size and 
extent of disease category (i.e., T2, T3 and T4).  Only age 
(continuous) was retained in the final models after testing 
and excluding several potential confounders based on a > 
10% OR change: trial intervention group, family history 
of prostate cancer, history of BPH, physical activity, 
BMI, smoking (cigarettes per day), serum total and HDL 
cholesterol, serum retinol, and serum α-tocopherol. We 
further performed additional analyses to subdivide cases 
(T2, T3 or T4) by the median time to diagnosis, using 
above-mentioned logistic regression model adjusted for 
age. We formally tested whether the metabolite levels 
differed by extent of disease category (i.e., heterogeneity) 
through case-only analyses. Modeling extent of disease 
(T2/T3/T4) by polychotomous logistic regression, we 
report the p-value (p heterogeneity) from a likelihood ratio test 
comparing models with and without the metabolite level. 
Based on the Bonferroni correction for 625 metabolites and 
three tumor classes, the threshold for statistical significance 
in the main analysis was p = 0.000027 [0.05/(625*3)]. 

Analyses were conducted using SAS software 
version 9.4 (SAS Institute, Cary, NC, USA). All statistical 
tests and reported p values were two-sided. The trial was 
approved by institutional review boards of the Finnish 
National Public Health Institute and the US National 
Cancer Institute and written informed consent was 
obtained from all participants.
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