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THE history of allergic disease goes back to 1819,
when Bostock described his own ’periodical
affection of the eyes and chest’, which he cared
’summer catarrh’. Since they thought it was
produced by the effluvium of new hay, this con-
dition was also cared hay fever. Later, in 1873,
Blackley established that pollen played an impor-
tant role in the causation of hay fever. Nowadays,
the def’mition of allergy is ’An untoward physio-
logic event mediated by a variety of different
immunologic reactions’. In this review, the term
allergy will be restricted to the IgE-dependent
reactions. The most important clinical manifesta-
tions of IgE-dependent reactions are allergic con-
junctivitis, allergic rhinitis, allergic asthma and
atopic dermatitis. However, this review will be
restricted to allergic rhinitis. The histopathologi-
cal features of allergic inflammation involve an
increase in blood flow and vascular permeability,
leading to plasma exudation and the formation
of oedema. In addition, a cascade of events
occurs which involves a variety of inflammatory
cells. These inflammatory cells migrate under the
influence of chemotactic agents to the site of
injury and induce the process of repair. Several
types of inflammatory cells have been implicated
in the pathogenesis of allergic rhinitis. After
specific or nonspecific stimuli, inflammatory
mediators are generated from cells normally
found in the nose, such as mast cells, antigen-pre-
senting cells and epithelial cells (primary effector
cells) and from cells recruited into the nose, such
as basophils, eosinophils, lymphocytes, platelets
and neutrophils (secondary effector cells). This
review describes the identification of each of the
inflammatory cells and their mediators which
play a role in the perennial allergic processes in
the nose of rhinitis patients.
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History of Allergy

The history of allergic diseases goes back to
1819, when Bostock described his own ’periodi-
cal affection of the eyes and chest’, which he
called ’summer catarrh’. Since they thought it was
produced by the effluvium of new hay, this con-
dition was also called hay fever. Later, in 1873,
Blackley established that pollen played an
important role in the causation of hay fever.

In 1902 Portier and Richet described the devel-
opment of anaphylaxis in dogs a few minutes
after reinjection with anemone toxine. By this
experiment they demonstrated that, in this case,
immunity was not protective but damaging to the
individual. Arthus observed in 1903 that after
repeated injections with substances which had

not caused any reaction the first time, the
injected tissues became inflamed. Von Pirquet2

noted that under some conditions, patients,
instead of developing immunity, had an increased
reactivity to repeated exposure with foreign sub-
stances. By putting together the Greek words
’allos’ meaning different or changed, and ’ergos’
meaning work or action, he introduced in 1906
the term allergy. Both immunity and hypersensi-
tivity were thought to have similar underlying
immunologic mechanisms. Later, in 1923, Coca
and Cooke proposed the term atopy for the
clinical forms of allergy, manifested by hay fever
and asthma, in which ’the individuals as a group
possess a peculiar capacity to become sensitive
to certain proteins to which their environment
and habits of life frequently expose them’. Thus,
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an inherited predisposition to become sensitized ized by one of the following symptoms: nasal
is a characteristic feature of atopy. Prausnitz and itchiness, sneezing, rhinorrhoea and nasal con-
Kstner4 demonstrated in 1921 that the serum of gestion,a Other symptoms, such as ’popping’ of
allergic individuals contained a humoral factor the ears, headache, throat clearing and coughing,
that caused specific allergen sensitiveness in a are less common. Allergic rhinitis can be sub-
non-allergic individual. The factor responsible for divided in seasonal and perennial rhinitis. In
the Prausnitz-KCstner reaction was named reagin seasonal rhinitis symptoms are triggered by
by Coca and Cooke. These reagins were charac- exposure to tree, grass, and/or weed pollen. In
terized by Ishizaka et al. 5 and independently at non-tropical parts of the world, seasonal allergic
the same time also by Johansson and Bennich6 rhinitis occurs during a defined period of the
as a new immunoglobulin class which they year, which implies that patients also have a
named immunoglobulin E (IgE). Gell and symptom free period. In contrast, patients with
Coombs7 subdivided allergy into four types: perennial rhinitis suffer from almost continuous
immediate IgE-dependent reaction (I), cytotoxic nasal symptoms throughout the year. The most
reaction (II), immune complex reaction (III), common perennial allergens are indoor allergens
delayed cellular immune reaction (IV). such as the house dust mite (Dermatophagoides
From a clinical view, Voorhorst8 defined pteronyssinus and D. farinae) and animal

allergy in 1962 as an altered sensitivity, deviating danders, and in some areas certain mould
from the norm (i.e. normergy) in a quantitative species and cockroaches, as well.
sense. However, patients with rhinitis are not only

Nowadays, the definition of allergy as an ’unto- troubled by nasal symptoms that interfere with
ward physiologic event mediated by a variety of their day-to-day fives and their quality of life.
different immunologic reactions’, described by Patients are limited in their daily activities; con-
Middleton, Reed and Ellis,9 is used. Accepting centration and sleep are impaired. Associated
this definition, one should also keep in mind the symptoms, such as headache, are troublesome,
following three criteria: (1) identification of the and practical aspects, such as the availability of a
allergen, (2) establishment of a causal relation- handkerchief and blowing the nose, are a nui-
ship between exposure to the antigen and occur- sance. Social interaction is limited and there is an
rence of the lesion, and (3) identification of the impact on emotional well-being.4 In addition to
immunologic mechanism involved in the illness, the costs of medication, health seeeices and sick

In this review, the term allergy will be absence, the loss in personal income contributes
restricted to the IgE-dependent reactions. The to the economic impact of rhinitis. To measure
most important clinical manifestations of IgE- the influence of nasal symptoms on day-to-day
dependent reactions are allergic conjunctivitis, life, rhinitis quality of life (QOL) questionnaires

14allergic rhinitis, allergic asthma and atopic derma- have been developed. Juniper et al.4 demon-
titis. However, this review will be restricted to strated that QOL deteriorated after allergen expo-
allergic rhinitis, sure (pollen season) and increased after

symptomatic treatment.

Allergic Rhinitis
Reactions of Nasal Mucosa on Allergen
Exposure

Epidemiology: Allergic rhinitis is the most
common manifestation of the IgE-mediated disor- Most studies concerning the pathophysiology
ders, with a prevalence ranging from 2 to 20%. of allergic rhinitis have been performed in
The prevalence of allergic rhinitis seems to be patients with seasonal rhinitis. The effect of
increasing. In a study performed in Swedish army pollen exposure on the nasal mucosa can be
recruits, the prevalence of hay fever increased determined during the natural pollen season or
from 4.4% in 1971 to 8.4% in 1981. The preva- by nasal challenge models performed outside the
lence of allergic skin test reactivity, i.e. atopy, pollen season. In nasal allergen challenge studies,
increased from 39% to 50% in a community well-known amounts of standardized allergen are
sample in the USA of individuals of all ages for a administered into the nose. In most studies,
mean of 8 years.12 Since skin reactivity and aller- nasal challenges are used to investigate the
gic disease are associated; this suggests that the pathophysiology of allergic rhinitis. However, one
prevalence of allergic rhinitis is also increasing, should keep in mind that the mode of exposure

is not natural and that in a short time high con-
Clinical aspects of allergic rhinitis: According to centrations of allergens are administered to elicit
the international consensus rhinitis is defined as a clear nasal response instead of continuous
an inflammation of the nasal mucosa character- exposure to lower and variable amounts of aller-
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gens. The problem of monitoring nasal response pollen in his nose. This recurrence of symptoms
during natural exposure is the variable and has been termed the late phase reaction.29 To
unknown level and spectrum of allergen content, define the late phase reaction in the nose is diffi-

Several methods have been used to perform cult. Mygind et aL could not detect late phase
nasal allergen challenges. Connel115 developed a reactions by means of symptom scores. Since it
quantitated challenge with ragweed pollen. Later, is hard for patients to estimate their nasal
standardized liquid allergen extracts were devel- patency, and late phase responses are mainly
oped, which can be insufflated into the nose or characterized by nasal blockage and to a lesser
can be administered by filter paper discs or by extent by mild rhinorrhoea, this might show the
special equipment like the ’nasal pool problems detecting clinical late phase responses.
device’.<7 When estimating nasal obstruction by rhino-

Nasal response to allergen challenge can be manometry, a recurrence of nasal blockage could
determined by different methods. Usually, the be demonstrated. In other studies late phase
symptomatic response is monitored by the reactions were determined by measurement of
number of sneezes, the amount of secretion, and nasal obstruction and analysis of nasal lavage
nasal blockage. Sneezing and itchiness are the fluid.
results of a central reflect elicited in the sensory We demonstrated both an immediate and a
nerve endings in the nasal mucosa. Sneezing and late phase reaction by symptom scores when the
itchiness can also be subjectively measured by nasal mucosa of perennial allergic rhinitis
symptom scoring. Nasal blockage is the result of patients were challenged with a house dust mite
pooling of blood in the capacitance vessels of extract.2

the mucosa, and to some degree the result of
tissue oedema. It can be assessed subjectively by Nasal priming.. In the 1960s Connell described
means of symptom scoring. An objective estima- a phenomenon known as nasal primingrepeti-
tion of nasal blockage can be made by methods tive exposure to allergen causes an increased
such as rhinomanometry,s nasal peak flow sensitivity to allergens. This has been demon-
determination,19 acoustic rhinometry2 and rhi- strated with repetitive exposures to a pollen-rich
nostereometry.21 Nasal secretion can be assessed natural environment as well as by repetitive nasal
by weighing the blown secretion or by measur- provocation with allergen. This effect was con-
ing the volume of secretion collected in a funnel firmed by others by nasal challenge studies.4

equipped tube or syringe while the subject is However, the exact processes resulting in nasal
bending her/his head forwards. Several scoring priming remain unclear. In perennial rhinitis the
methods have been developed: visual analogue priming phenomenon has only been examined
scales, combined symptom scores taking nasal in one study.5 This Dutch study demonstrated
blockage, secretion and sneezes22 and a combi- an increased threshold sensitivity to house dust
nation of all signs and symptoms.2 Nasal mite challenge in autumn, compared to spring
response can also be monitored by analysis of months, corresponding with the peak of house
nasal biopsies,24 brushes,25 smears,6 or dust mite levels between August and October.
lavages.27

Immediate allergic reaction.. When the nasal Allergen-induced Nasal Hyperreactivity

mucosa of patients with allergic rhinitis is Hyperreactivity can be described as a clinical
exposed to allergen, allergen activates mast cells feature characterized by an exaggerated response
and basophils by bridging two or more IgE of the nasal mucosa to everyday stimuli
molecules on their surfaces. After being activated (perfume, tobacco smoke, change of tempera-
these cells produce and release biochemical ture) as estimated by history (clinical hyperreac-
mediators.7 Gomez et a/.27 and Fokkens et al.28 tivity). In comparison to allergens, these stimuli
demonstrated in biopsy studies an increased per- are nonspecific, that is, they can affect the nasal
centage of degranulated mast cells at the surface mucosa of any individual, albeit to a different
of the nasal mucosa after nasal pollen challenge, extent. By analogy to challenge studies in bron-
The released substances act on the local cells, chial asthma, rhinitis patients were challenged
vessels and sensory nerve endings, leading to with histamine and methacholine to measure
nasal itching, sneezing, rhinorrhoea and nasal nonspecific nasal hyperreactivity.6 Gerth van
blockage in this immediate allergic reaction. Wijk et al.7 demonstrated that the amount of

secretion and the number of sneezes in response
Late allergic reaction: Blackley in 1873 was the to histamine challenge were associated with the
first to describe the recurrence of symptoms clinical hyperreactivity assessed by a hyperreactiv-
several hours after the introduction of grass ity score. It was also demonstrated that assess-
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ment of the number of sneezes and the amount
of secretion is more appropriate in distinguishing Allergic Rhinitis: A Model to Study

patients from healthy subjects in terms of repro- Airway Inflammation?

ducibility and estimation of clinical hyperreactiv- Asthma and allergic rhinitis are common dis-
ity compared with assessment of nasal airway orders, with a high socio-economic impact and
resistance after histamine challenge.8 the cause of much morbidity. Many studies have

In patients with allergic rhinitis, part of the been performed concerning the pathophysiologi-
symptoms is due to exposure to nonspecific cal mechanisms. Such studies are easier to
stimuli. Repetitive exposure to allergen not only perform in the nose, as this is readily accessible,
increases sensitivity allergens, but also to non- and biopsies and lavages accompanied by less
specific stimuli. Borum et al.9 demonstrated risk and discomfort to the patient. It would
that in patients with seasonal allergic rhinitis therefore be easy if studies evaluating the patho-
the nasal response to histamine and methacho- physiology and therapeutic intervention of
line increased during the pollen season. Aller- asthma were to be replaced by a study of the
gen challenge also increased nasal response to nasal mucosa. However, the upper and lower
histamine and methacholine.4 In contrast, airways are not entirely similar since some of the
repeated challenges with histamine or metha- symptoms in asthma are caused by contraction
choline do not increase nasal responsiveness to of smooth muscle tissue, resulting in broncho-
histamine, constriction.

In a few studies evaluating the effect of topical Repetitive allergen challenge causes an
corticosteroids, effective anti-inflammatory drugs, increased sensitivity to allergen and nonspecific
nasal hyperreactivity was reduced,4 which might stimuli. This phenomenon was first described for
indirectly give evidence of the involvement of the lower airways46 and could also be explored
inflammation in this process. This is confirmed in the nose.4 In the lower airways, the late
by our recent work on perennial allergic rhini- phase response to allergen challenge was found
tis.42 Gerth van Wijk et al. found that in peren- to be associated with inflammation and bronchial
nial allergic rhinitis patients nasal reactivity to hyperreactivity,47 suggesting that inflammation is
histamine was associated with clinical symptoms involved in the pathogenesis of hyperreactivity.
and the sensitivity to everyday stimuli. Several studies have been performed to deter-
The exact mechanism of nasal hyperactivity is mine whether similar associations could also be

unknown. Several hypotheses with respect to the shown in patients with allergic rhinitis. However,
mechanisms underlying hyperreactivity have been in. studies performed in pollinosis patients tested
advanced. (1) Increased epithelial permeability, outside the pollen season, no relation was found
which would lead to an increased accessibility between nasal hyperreactivity and late nasal
for stimuli to sensory nerve endings, vessels and response,4 between nasal hyperreactivity and

4Onasal glands. An indirect support to this hypoth- activation of eosinophils, or between nasal
esis has been delivered by Buckle and Cohen,43 priming and late nasal response.49
who demonstrated that topically applied 125I- In contrast, in a study with rhinitis patients
albumin penetrates better into the nasal mucosa allergic to house dust mite, an association
of allergic rhinitis patients compared with healthy between nasal responsiveness to allergen and
subjects. However, in more recent studies there pre-existent nasal hyperreactivity was found,42’5
is little evidence that the nasal epithelium suffers a finding more in agreement with data from the
much damage in acute or chronic allergic rhini- lower airways. So this subpopulation might be
tis.24 (2) Increase sensitivity of sensory nerve more suitable to study the association between
endings would induce an exaggerated response nasal hyperreactivity, nasal inflammation and the
to normal stimuli. No firm data are available to late phase response and might serve as a better
confirm this theory. (3) Imbalance of the auto- model to study airway inflammation.
nomic nerve regulation caused by changes of the
neuroreceptors in the nasal mucosa. Megen et Histopathologya/.44 demonstrated an increased sensitivity and a
decreased number of muscarinic receptors in the The histopathological features of allergic
nasal mucosa of allergic subjects. Increased pre- inflammation involve an increase in blood flow
sence of the neuropeptide substance P or dimin- and in vascular permeability leading to plasma
ished levels of vasoactive intestinal peptide (VIP) exudation and the formation of oedema. In addi-
might contribute to hyperreactivity. Until now, tion, a cascade of events occurs which involves a
evidence for this hypothesis has only been variety of inflammatory cells. These inflammatory
demonstrated in the lower airways.45 cells migrate under the influence of chemotactic

agents to the site of injury and induce the

82 Mediators of Inflammation Vol 5 1996



Allergic rhinitis

Table 1. Cells and products in allergic rhinitis

Cells Arachidonic acid
metabolites

Cytokines Others

Mast cells PGD2,52 TB453
LTC4/D4/E4,52 PAF54

IL-4,5,6, TNF-,55

IL-3, GM-CSF56
Histamine,52

Adenosine,57

Tryptase,58 Chymase,59 NOS6

Macrophages, PGD2, PGF2=,7 IL-6, TNF,73 Glucuronidase,
Monocytes LTB4,7’71 PGE2, LTC4,7 IL-11],TM GM-SCF,75 Neutral proteases,

mxA2,72 PAF54 IL-1076 Lysosomal enzymes,
Superanion,77 NOS78

Epithelial cells

Basophils

Eosinophils

Neutrophils

Lymphocytes
TH1

8-HETE, 12-HETE,
15-HETE,8 PGE2,81

PGF2=, PAF83

LTC4,98 PAF,54, 1-acyI-PAF99

LTC4/D4/E4,15 PGE2,
TxB2,106 15-HETE, 106a

PAF54

LTB4, LTC4,
5-HETE, PGE2,
TxA2,122 PAF54

TxA2,139 12-HETE,
PAF, 139,140 PGD2141

TH2

IL-6, IL-8, TNF-,84

GM-CSF85

IL-4, TNF-loo

IL-3, GM-CSF,17

IL-5,8 IL-6,9 IL-8,
TNF_

IL- 1, TNF-,120 11_-3,
GM-CSF,17 11_-8123

IFN-7, IL-2,5,6,
TNF-, GM-CSS131
IL-4,5,6, TNF-,
GM-CSF131

Platelets

iNOS, cNOS86

Tryptase, 101 histamine98

EPO, MBP, ECP,
EDN,111 Superoxide,
H202, hydroxyl radical 112

02--radicals,
Myeloperoxidase, 124

NOS78

Adenosine diphosphate,
Serotonin, Platelet
factor 4, I-Glucuronidase,39

H202,142 NO143

process of repair. Several types of inflammatory
cells have been implicated in the pathogenesis of
allergic rhinitis. What remains unclear is how the
different cellular components interact with each
other to induce the pathological symptoms of
allergic rhinitis, and the relationship between the
inflammatory infiltration, cellular activation and
hyperreactivity still need to be established. After
specific or nonspecific stimuli, inflammatory
mediators are generated from cells normally
found in the nose, such as mast cells, antigen-
presenting cells and epithelial cells (primary
effector cells) and from cells recruited into the
nose, such as basophils, eosinophils, lympho-
cytes, platelets and neutrophils (secondary effec-
tor cells). This review describes the identification
of each of the inflammatory cells and their med-
iators which play a role in the perennial allergic
processes in the nose of rhinitis patients.

Cells in Allergic Rhinitis

The cells involved in allergic rhinitis, together
with their products (arachidonic acid metabo-
lites, cytokines, and others) are given in Table 1.

Primary effector cell.

Mast cells. Human mast cells can be character-
ized by the presence of tryptase on the one
hand (MC) or tryptase and chymase (MCTc) on
the other. More than 95% of the epithelial mast
cells and 75% of the subepithelial mast cells in
human airways are of the MCT-subtype.5

Binding of allergen to specific IgE molecules
on mast cells leads to secretion of mediators.42

Mast cell-derived mediators can be divided into
two main categories: pre-formed or granule-asso-
ciated mediators and the newly formed or mem-
brane-derived mediators.

Mast cells have been implicated in the patho-
genesis of allergic diseases ever since histamine
was localized to these cells. The number of
mast cells in the nasal mucosa is increased in
allergic rhinitis.28 Elevated levels of mast cell
mediators are present in the nasal lavage fluid

17after experimental allergen challenge and cha-
lenge with cold dry air, and experimental appli-
cation of mast cell mediators to the nasal
mucosa produces symptoms of rhinitis. Several
studies have demonstrated that the amount of
mast cells in the epithelial layer is increased after

Mediators of Inflammation Vol 5 1996 83



I. M. Garrelda et al.

allergen exposure, which can be interpreted as Langerhans cells were found in the epithelium
shift of cells from the lamina propria to the and lamina propria of the nasal mucosa and
epithelium or proliferation of precursor cells in higher amounts of Langerhans cells were
the epithelium.’4 Borres demonstrated that detected in nasal biopsies of allergic patients
metachromatic cells can be found superficially in compared with controls.28 During the grass-
the nasal mucosa 5-24 h after allergen challenge, pollen season, the nasal epithelium of patients
with a correlation between the amount of cells with an isolated grass-pollen allergy demon-
and symptom score.5 strated more Langerhans cells than before or

Mast cells are multifunctional cells which can after the season.7

play more than one role and can contribute to
the chronic inflammation underlying allergic dis- Epithelial cells. Epithelial cells play an important
eases by producing a number of immunomodu- role in the defence of the airways and in inflam-
latory and proinflammatory cytokines and matory processes, but it seems to be more than
mediatrs. a protective barrier. Immunohistochemical

studies of human lung tissue have reported that
Antigen-presenting cells. Responses to most anti- epithelial cells have the ability to express the
gens require processing of the antigen by HLA-DR antigens, suggesting that these cells play
antigen-presenting cells (APC), because T-cells an important role in the antigen presentation and
ordinarily recognize antigens only together with immunoregulation.
major histocompatibility complex (HMC; human The epithelial layer in the airways is enriched
leukocyte antigen HLA-DR,-DQ,-DP) antigens on with nerve endings which contain tachykinins,
the surface of other cells. These MHC proteins such as substance P, which is chemotactic for
are expressed on the surface cell membrane of neutrophils8 and monocytes,sv and potentiates
macrophages, dendritic cells in lymphoid tissue, phagocytosis and lysosomal enzyme release by
Langerhans cells in the skin and the nose, neutrophils and macrophages.88 Substance P is
Kupffer cells in the liver, microglial cells in the 89 n hmitogenic for T-lymphocytes and s ’mu a es ’s-
central nervous system tissue, epithelial cells and tamine release by mast cells.9 It also stimulates
B-cells. B-cells are relatively poor activators of T- airway epithelial ion transport,9 causes airway
cells when presenting antigens, possible because smooth muscle contraction92 and stimulates sub-
such T-cells require activating factors such as mucosal-gland secretion.9
interleukins which B-cells fail to provide. There- Although damage of the epithelial layer causes
fore, it is believed that macrophages or Langer- an increased permeability to antigens, exposure
hans cells probably play the dominant role as of sensory nerve fibres and actuation of local
APCs in the initial or primary immune response reflex mechanisms, changes in osmolarity of the
whereas B-cells may dominate in the memory or bronchial surface lining fluid and a decreased67 68secondary response. production of epithelial relaxant factors,45 this

Macrophages play a central role in host has not been demonstrated in the nose. Epithe-
defence, which includes ingesting and killing lial cells may play an important role in the local
invading organisms/antigens and releasing a recruitment, differentiation, and survival of
number of factors involved in host defence and inflammatory migrating cells,94 and contribute to
inflammation. Macrophages possess low affinity the pathologic and clinical events which occur in
IgE receptors and after binding of IgE they will allergic rhinitis.
release mediators.9

Although macrophages are the most common
cell type residing in the lumen of the lower Secondary effector cells:

airways, little is known about the presence and Basophils. The blood basophil count increases
pathogenic implications of macrophages in the during the pollen season, suggesting that baso-
upper airways. Both local allergen challenge and philopoiesis may be influenced by environmental
natural exposure increase the number of macro- factors, such as allergens,95 but this has not been
phages on the mucosal surface during the confirmed by others. Several studies have
immediate as well as late phase reactions, indicat- demonstrated that the amount of basophils in
ing that macrophages are involved in the inflam- the mucus and in the nasal lavage fluid is
matory processes of allergic rhinitis.8 increased 4-11 h after allergen exposure, which

It is important to note that the undoubtedly can be interpreted as a shift of cells to the super-
96effective antigen-presenting ability of pulmonary ficial layers of the mucosa.

interstitial dendritic cells may be limited to the It has been suggested that basophils play an
interstitial lung-compartment.79 This is in con- important role in the late phase of the allergic
trast with other investigators, who found that process, based on their release of lipid media-
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tors.92 However, whether basophils are asso- Due to their ability to produce these inflamma-
ciated with hyperresponsiveness is not known, tory mediators, neutrophils could play an impor-

tant role in allergic rhinitis, although the role of
Eosinophils. In vitro experiments have shown neutrophils is still unclear.25 An increased influx
that eosinophil-derived enzymes are capable of of neutrophils is measured in nasal lavages of
degrading mast cell products, such as histamine rhinitis patients after exposure to ozone.126

and leukotrienes.2’ Eosinophils have cyto-
plasmic granules which contain cytotoxic pro- Monocytes/macrophages. The tissue macrophages
teins, which can stimulate upregulation of arise either by immigration of monocytes from
intercellular adhesion molecule-1 (ICAM-1) on the blood (probably the predominant mechan-
human nasal epithelial cells, which suggests a ism) or by proliferation of precursors in local
positive feedback mechanism in which the pro- sites. During differentiation of monocytes to
ducts released from migrating eosinophils might macrophages, the azurophilic peroxidase-contain-
promote additional human nasal epithelial cell- ing cytoplasmic granules are lost and lysosymes
leukocyte adherence.4 containing hydrolytic enzymes become promi-
The role of eosinophilic inflammation in nent. Although monocytes produce myeloperoxi-

allergy has been studied most thoroughly in the dase, macrophages do not.2r Their role in
pathogenesis of the airway inflammatory rhinitis has already been outlined on page 84.
response in asthma. Cytotoxic proteins which are
cytotoxic towards respiratory epithelium and Lymphocytes. On the basis of expression of cell
cause histamine release,1 are elevated in surface markers called clusters of differentiation
sputum and bronchoalveolar lavage fluid of asth- (CD) and by their antigen receptors, three dis-
matics. There is evidence for eosinophil partici- tinct lineages of lymphocytes have been identi-
pation in the induction of airway hyperreactivity fled: thymus-derived lymphocytes (T-cells), bone-
in asthma.4 marrow-derived lymphocytes (B-cells) and
A relationship between the influx of eosino- natural-Miler (NK)-cells. Moreover, the presence

phils into the nasal mucosa and allergic rhinitis or absence of certain cell surface markers has
was noted5 and during asymptomatic periods, been used to delineate stages of differentiation,
the eosinophils were absent from the nasal secre- states of cellular activation and functionally dis-
tions. There are numerous factors, like GM- tinct subsets of lymphocytes. After direct interac-
CSF, PAF and lymphocyte chemotactic factor tion with antigen, B-cells can differentiate into
(LCF), which have been shown to be chemotactic plasma cells, which can secrete large amounts of
for eosinophils, to prolong eosinophil progenitor all immunoglobulin subclasses, including IgE.
multiplication, maturation and differentiation.v After the same exposure to antigen, some B-cells
The eosinophils are probably derived, in part, can differentiate to memory B-cells which are
from progenitors at the site of inflammation, responsible for the rapid recall response
which, in turn, are derived from the bone marrow observed after re-exposure to antigens previously
via the circulation. The role of the eosinophil in recognized by the immune system. In addition to
perennial rhinitis has been rather less intensively producing immunoglobulin, B-cells can secrete
studied than in seasonal rhinitis. It has been certain mediators, so-called lymphokines, such as
shown that the number of eosinophils is IL-6 that affect the growth and differentiation of
increased in the biopsies and secretions com- B-cells and other lymphocytes.
pared with controls. An eosinophil infiltration has APCs present the processed antigen to the
been identified in nasal secretions as early as 30 helper/inducer T-cells (T), expressing the
min after nasal antigen challenge and has been surface protein CD4. The T-cell receptor
shown to persist for as long as 48 h. 118’119 complex on the cell surface of the T-cell binds

to the peptide/MHC (class II) on the APC. This
Neutrophils. One of the earliest events in acute interaction generates an activation signal for the
inflammation is increased adherence of circulat- T-cells, leading to differentiation and proliferation

20ing neutrophils to vascular endothelium. In with the formation of T-lymphoblasts and the
response to bacterial lipopolysaccharides and secretion of soluble mediators, such as IL-4 and
cytokines, such as IL-1, TNF and IFNq,, endothe- IL-5 which augment to help B-cells to respond
lial cells become adhesive for neutrophils.2 A and regulate the IgE production.28

large number of chemotactic factors can recruit Two functional subclasses of murine T-helper
neutrophils to sites of tissue inflammation. Cellu- clones have been described and are commonly
lar sources of factors chemotactic for neutrophils designated Tm and TH2.129 The murine Tin-
include bacteria, macrophages, lymphocytes, pla- lymphocytes produce dominantly IL-2, IFN-, and
telets and mast cells. TNF-a, and they are thought to be involved in
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delayed-type hypersensitivity reactions and in the participate in the pathogenesis in the allergic
synthesis of IgM and some IgG subclasses. The disease.
murine TH2- lymphocytes, on the other hand,
have been shown to synthesize IL-3, IL-4, IL-5, IL- Products of Allergic Inflammation6, IL-8, IL-10, and also TNF- and are thought to
be important in allergic-type inflammatory reac- The role of each product itself is complex and
tions and defence against parasites. In their interactions are even more complex. The
humans, atopic allergic disorders seem to be most important features of the products relevant
related with the activation of T-helper lympho- for rhinitis are reviewed in the following para-
cytes with a type 2 cytokine secretion profile,a graphs.
Non-atopic T lymphocytes resembled murine Inflammatory products may have a large spec-
Tra-cells. The atopics’ TI2-cells were excellent trum of effects on a variety of target cells in the
helper cells for IgE induction and the non-atopic airways, which are relevant in rhinitis. Some of
Tin-cells were cytolytic, with activity towards them lead directly and indirectly to contraction
autologous antigen presenting cells, of smooth muscle or enhance muscle tone, via

Cytotoxic/suppressor T-cells (Tc/s), expressing secondary mediators or neuronal substances.
the surface protein CD8, have the ability to kill They may also lead to oedema of the airways
other cells that are perceived as foreign, for and exudation of plasma into the lumen. These
example virus-infected cells. These Tc/s cells inflammatory products can attract and activate
recognize peptide antigens bound to class I inflammatory cells which thereafter can release
MHC molecules on the cell surface of the target mediators themselves, consequently leading to
cell, whereafter the target cell is destroyed by the on-going inflammation.
Tc/s-cell.
A few studies have shown that T-cell subsets Histamine.. Histamine may be released by

change in bronchoalveolar fluid and peripheral a number of immunologic substances, such as
blood from asthmatic patients.2 The produc- IgE, antigen and cytokines, and non-immuno-
tion of IFN-y, IL-4 and IL-5 is enhanced in asth- logic substances, such as anaphylatoxins,
matics, showing an increased activity of TI- peptides (e.g. substance P), drugs (e.g. opiates),
cells. and physical stimuli. After release from the

It was recently demonstrated in biopsies from storage granules, histamine rapidly diffuses
allergic patients and nonallergic controls that into the surrounding tissues, and changes in
there were no differences between the number blood concentration may be detected within
of T-helper cells and cytotoxic T-cells in the minutes.44

epithelium, but a higher number of activated T- Released histamine interacts with specific
cells expressing CD4 was found in the allergic receptors on target cells. To date, three subtypes
group in the lamina propria. Following a local of histamine receptors have been characterized:
allergen challenge of the nose, an increased H, H2 and H receptors. The first physiologic
number of CD4 + T-helper cells were found in action of histamine to be described was smooth
the nasal submucosa.4 muscle contraction.45 In vitro blockade of

smooth muscle contraction by histamine H
Platelets. The role of platelets in inflammatory receptor antagonists has clearly demonstrated
reactions is not as well defined as that of neutro- that this effect is mediated predominantly via the
phils, eosinophils, macrophages or mast cells. An H receptor subtype.146 In human airways
increased number of platelets have been smooth muscle contraction in response to hista-
observed at the sites of the reaction in asthma mine causes bronchoconstriction.4 Histamine
after allergen challenge.15 Cooperation of plate- increases vascular permeability to macromole-
lets with basophils and/or mast cells was cules by the formation of intercellular gaps in
reported in the release of histamine during the postcapillary venules.48 Histamine affects
antigen challenge of asthmatics, which resulted in both the quantity and viscosity of mucus secre-
a potentiated six-fold increase of histamine tion, mediated via H2149 and H5 receptors,
release. respectively. The chemotactic activity of eosino-

151 152A significant increase in platelet volume and a phils and neutrophils may be increased by
shorter life-span (2-3 days)of platelets was histamine and the antigen-induced histamine

5noticed in patients with allergic rhinitis compared release from basophils is controlled. Histamine
with controls.v A potential role of platelet also modulates immunoglobulin synthesis, which
release compounds in the development of includes interference with the maturation of
delayed responses in allergic patients has been antigen-stimulated B-cells,54 suppressing anti-
proposed. These findings suggest that platelets body secretion from plasma cells,.55 and modu-
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lating immunoglobulin production of mature Eicosanoids: Free arachidonic acid may be enzy-
mononuclear cells.56 matically oxygenated by two major pathways:

Nasal challenge of rhinitis patients with hista- cyclooxygenase and lipoxygenase. The prosta-
mine induces nasal blockage, measured by nasal glandins and thromboxane are generated
airway resistance (NAR), and is accompanied by through the cyclooxygenase pathway and leuko-
dose-dependent sneezing and rhinorrhoea.36 A trienes are derived via the lipoxygenase pathway.
greater change in NAR is found in rhinitis
patients compared with controls, suggesting non- Cyclooxygenase metabolites. Cyclooxygenase
specific hyperreactivity of the upper airways,5 (COX) products have effects on bronchial
which is in contrast with other investigations, in smooth muscle and vessels. PGF2 and PGD2 are
which an equal effect of histamine provocation potent bronchoconstrictors.6 PGD2 also has
on NAR in patients and controls was found.8 vasoactive properties, causing increase in pul-

Thus, histamine derived from mast cells and monary arterial pressure.162 TxA2 has broncho-
acting via H and H2 receptors is responsible for constrictor properties, stimulates airway
much of the sneezing, nasal blockage and rhinor- smooth muscle cell proliferation,164 and causes
rhoea during the early response to nasal allergen vasoconstriction and platelet aggregation.65

challenge. Increased concentrations of histamine PGE2 and PGI2 are broncho- and vasodilators.62

are found in nasal washings of rhinitis patients However, inhaled PGI2 may have bronchocon-
immediately after allergen provocation.48 Also strictor properties in some mild allergic asth-
during the late phase response histamine, matics,6 this paradox has not been resolved.
released from basophils, is found in increased PGD2, PGE2 and PGI2 inhibit platelet aggrega-
concentrations in nasal washings.96 tion.5 PGF2a, PGE2 and PGI2 are potent indu-

cers of cough, perhaps through stimulation of
Tryptase: Dog mast cell tryptase has been irritant receptors and C-fibres.-.6 PGE2 inhibits
reported to increase the contractile response of phagocytosis, mediator function and cytotoxicity
canine bronchial smooth muscle strips to hista- of macrophages, chemotaxis of macrophages
mine and other agonists. This effect appeared to and neutrophils and several lymphocyte func-
be dependent on the enzymatic activity and was tions.68

prevented by H1 receptor antagonists and voltage COX has two isoforms: COX1 and COX2.
dependent Ca2+ channel blockers. This observa- COX1 is constitutively expressed and involved in
tion has not been confirmed with human tissues, prostaglandin synthesis in cellular ’housekeeping
but raises the possibility that tryptase could con- functions’. COX2 expression is inducible and
tribute to bronchial hyperreactivity. Tryptase has involved in inflammatory processes.69 COX2 is
been found to increase vascular permeability, expressed in lung tissue, but whether COX2
when injected into guinea-pig skin and stimulate plays a role in rhinitis is not known.
neutrophil accumulation.5s Increased concentrations of PGD2 and TxA2

In rhinitis, comparatively little attention has were found in bronchoalveolar lavage fluid gfter
been paid to the contribution of proteases in antigen-induced bronchoconstriction in atopic
disease pathogenesis. However, the recent devel- asthmatics.17 In addition to constrictor/dilator
opment of sensitive procedures for the detection properties, prostanoids have also been demon-
of proteases from mast cells, and the discovery strated to induce airway hyperreactivity in
of their potent biologic effects has provoked asthma.71

interest in the potential of these enzymes to act PGD2 was released into nasal secretions during
as major mediators of allergic disease.159 the immediate response to nasal challenge with
Increased levels of proteases have been detected pollen anen, though not during the late phase
in the nasal secretions of rhinitis patients. Provo- response. Only a release of PGD2 during the
cation of acute rhinitis with allergen or cold dry immediate allergic response to allergen challenge
air is associated with the rapid release of mast of perennial allergic rhinitis patients was

42 173cell tryptase as well as histamine and other found.’ In another study with allergic rhinitis
mast-cell-derived mediators into nasal fluid.6 In patients, increased concentrations of PGD2 were
nasal lavage fluid of perennial allergic rhinitis reported to occur within minutes of an allergen-
patients levels of tryptase were elevated only induced early nasal response.14

during the immediate phase reaction to provoca-
tion with house dust mite extract.32’42 Tryptase Lipoxygenase metabolites. LTC4, LTD4 and LTE4
may thus participate in many of the processes have potent bronchoconstrictor properties, and
of rhinitis and deserves attention beyond its role increase microvascular permeability in the
as a marker for mast cell activation in the airways and decrease blood pressure.75 LTB4 is
airways, a potent chemoattractant for neutrophils and
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monoc.es, but is less effective for eosino- Nasal challenge with PAF induced nasal obstruc-
phils.v LTB4 also stimulates the release of lyso- tion, rhinorrhoea and itching in allergic rhinitis
somal ene.s from macrophages and patients, but no increase in histamine levels was
neutrophils, ncreases vascular permeability observed in nasal lavages. No changes were seen
and releases oxygen radicals from neutrophils.rs after challenge with lyso-PaF.196 Topical nasal
5- and 15-HETE modestly contracted human application of PAF induced an increase in eos-
bronchial muscle,r9 and HETEs are chemotactic inophils in the nasal lavage fluid and brushes of
for neutrophils and eosinophils.s Neutrophils allergic rhinitis patients, but did not produce any
are degranulated by 5- and 12-HETE.m changes in methacholine-induced secretory

Increased concentrations of LTC4, LTD4 and responsiveness.9v Thus, PAF may have patho-
LTE4 were found in nasal lavages of rhinitis genetic and clinical relevance in allergic rhinitis.
patients allergic to ragweed during allergen-
induced early nasal response.v4 During the Eosinophil-derived granule proteins.. Activation of
immediate allergic reaction to allergen provoca- granulocytes, including eosinophils, can result in
tion of perennial allergic rhinitis patients an the release of granule contents, providing the
increase of cysteinyl leukotrienes was found.42’73 cells with a very potent mechanism of inflamma-
As a consequence of their activity, the eicosa- tory action. Degranulation of these cationic pro-

noids have been implicated as potential candi- teins has been correlated to several of the
dates in the pathogenesis of rhinitis, symptoms of asthma and rhinitis and hyper-

responsiveness. MBP is toxic to many mamma-
Platelet activatingfactor: PAF is a potent in vitro lian cells, such as human lung epithelium,198 and
activator of eosinophil, platelet, neutrophil, induces mast cell and basophil histamine release.
monocyte and macrophage chemotaxis and The EPO can stimulate mast cell secretion,99

superoxide anion production, and an activator of inactivate mediators of immediate hypersensitiv-
the release of arachidonic acid metabolites, such ity,2 and is cytotoxic to various target cells. ECP
as LTC4, by neutrophils, eosinophils and macro- can inhibit T-lymphocyte proliferation in a non-
phages.182-84 PAF has been shown to be a cytotoxic fashion, but the mechanisms involved
potent mucus secretagogue for human airways in are unclear.2m

vitro5 and to stimulate the secretion of chloride
ions and, thus, allow the movement of water Eosinophil cationic protein. Motojima et al.202

toward the lumen.8 Basophils are activated by found that ECP caused dope-dependent damage
PAF and, thereafter, release histamine and LTC4 to guinea-pig tracheal epithelium in vitro.
by a rise in calcium influx.87 Intravenous injec- However, ECP had no effect on bronchoconstric-
tions of PAF to guinea-pigs leads to a broncho- tor or airway hyperresponsiveness of cynomolgus
constriction and hypotension88 as well as monkeys.2

bronchial hyperreactivity to serotonin,189 hista- Increased serum levels of ECP occur in aller-
mine or acetylcholine.9 In humans PAF induces gen-provoked asthma.24 Elevated levels of ECP
bronchial hyperreactivity to methacholine in non- have been found in bronchoalveolar lavage fluid
asthmatics.9 This is in contrast with other inves- of asthmatics obtained during the late phase
tigators, who found that PAF failed to induce reaction after allergen-inhalation challenge of
hyperreactivity to methacholine in normal sub- asthmatics, as well as in unchallenged patients

192 193jects and asthmatic patients, with chronic asthma.
Lyso-PAF-acether, but almost no PAF was sig- In both allergic and nonallergic rhinitis

nificantly increased in nasal secretions from aller- increased serum levels of ECP are obseed.122

gic patients in the immediate reaction to antigen Lavage fluid from allergic rhinitis patients showed
challenge.94 In a study with perennial allergic marked elevations of ECP after segmental bron-
rhinitis patients a 15-fold increase from baseline chial antigen challenge.25 In nasal lavage fluid of
of PAF after allergen provocation was demon- perennial allergic rhinitis patients levels of ECP
strated, which tended to decrease after treatment were elevated only during the late phase reaction
with a corticosteroid.42’7 Topical pretreatment to provocation with house dust mite
with PAF of seasonal allergic rhinitis patients extract.2’42’2 An increased number of eosino-
induced only minor changes in nasal respiratory phils and raised levels of ECP were found on the
peak flow rate and symptom score as compared nasal mucosal surface during natural allergic rhi-
with placebo. However, it induced an increase in nitis patients.27 These changes were not accom-
responsiveness of the nasal vasculature to aller- panied by an increased secretory responsiveness

20gen challenge, measured as increased symptoms of the nasal mucosa to methacholine. In the
and nasal peak flow, but other parameters, such lavage fluid of the patients with a late phase reac-
as sneezes and secretion remained identical.95 tion, a significant eosinophilia was found, com-
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pared with controls and those patients who only tion of bone marrow precursors into eosinophils
demonstrated early responses. This suggested and supports the growth of eosinophilic cell
that eosinophils and their mediators might be lines and induction of cytotoxic T-cells. IL-5
involved in the development of the late phase enhances eosinophil development and differen-
reaction, tiation219 and prolongs survival of eosinophils.22

IL-5 can alter functional and immunologic prop-
Cytokines: Cytokines modulate reactions of the erties of eosinophils. Data from patients with
host to foreign antigens or injurious agents by eosinophil-related disorders suggest that IL-5 pro-
regulating the growth, mobility and differentia- duces ’activated’ eosinophils.22 It has been
tion of leukocytes and other cells. Normal resting observed that IL-5 increases eosinophil, but not
cells must be stimulated to produce cytokines, neutrophil, adherence to vascular endothelium222

and therefore usually no cytokines are normally and IL-5 is chemotactic for eosinophils.223 Eosi-
present in serum. Many cytokines are simulta- nophils can be primed by IL-5 for chemotaxis
neously produced by activated cells, towards PaF.224

Some cytokines have direct histamine-releasing Although the T-lymphocyte is considered to be
properties, such as IL-3, GM-CSF and IL-1 from a major source of IL-5, eosinophils contribute to
bas,ophils and mast cells.29 Cytokines can prime the production of IL-5 in allergic airway inflam-
basophils for enhanced histamine release in mation.225 This raises the possibility of an auto-
response to other secretagogues, such as anti-IgE crine mechanism whereby stimulated eosinophils
and FMLP. This priming effect has been docu- may both release and respond to cytokines, such
mented for IL-1-3,2’2, IL-5,98 IL-11, GM-CSF22 as IL-5. Thus, there is the potential for a self-per-
and IFN-7.213 Some of these priming cytokines, petuating cycle, with continuous eosinophil infil-
such as IL-5, also upregulate adhesion molecules tration and activation and consequently chronic
in nasal mucosa, including E selectin, P selectin, inflammation.
ICAM-1, ICAM-2 and vcam-1.214 The inducible In humans, elevated serum IL-5 was noted in
expression of these molecules on endothelium symptomatic asthmatics in association with acti-
directs the focal adherence of leukocytes to vated T-lymphocytes and eosinophilia.226 In aller-
endothelium for extravasation at sites of inflam- gic rhinitis patients, IL-5 levels were elevated 48 h
mation, after antigen challenge and found to correlate

Several investigators have suggested that cyto- strongly with eosinophil number, eosinophil
kines may contribute to the occurrence of degra- granule proteins and LTC4 levels.25 IL-5 levels
nulation of cells in bronchial mucosa of were increased in nasal lavages during both the
asthmatics.25 Durham et al.216 showed with in immediate and the late phase response to aller-
situ hybridization messenger ribonuclear acid gen challenge of perennial allergic rhinitis
(mRNA) for IL-3, IL-4, IL-5 and GM-CSF in nasal patients. Treatment with a corticosteroid
biopsies 24 h after allergen challenge, which is decreased the evoked IL-5 levels in the late phase

42 206correlated with the number of activated T-cell reaction. Application of recombinant human
and eosinophils. In addition to the work in nasal IL-5 onto the nasal mucosa of patients allergic to
mucosal tissue, attempts have been made to pollen increased the numbers of eosinophils,
quantitate cytokines in nasal secretions following epithelial cells, ECP and IgA in the nasal lavage
antigen challenge.2v In general, little success has fluid. Also the number of eosinophils in both the
been reported in nasal lavages, with some cyto- epithelium and lamina propria as well as in the
kines such as IL-113, IL-2 and IL-6 being detect- lumens of the blood vessels in the nasal mucosa
able in higher levels than prechallenge fluids were increased. The response to histamine was
only in a subset of allergic subjects. Increased also enhanced after the application.227

levels of IL-113 and GM--CSF have been detected
by using strips of filter paper to collect secre- Nitric oxide.. NO generated by intact endothelium
tions from the nose.217 Of these cytokines, IL-5 is not only induces smooth-muscle relaxation, but
highly important, because IL-5 alone is capable of also appears to serve to inhibit further adhesion
inducing eosinophil degranulation in the absence and aggregation of normal platelets, which sug-
of a ligand and greatly enhancing ligand-stimu- gests protective effects against inflammation.228

lated eosinophil degradation.2 NO has the ability to suppress leukocyte adher-
ence and T-lymphocyte proliferation and to regu-

229Interleukin-5. IL-5 promotes the proliferation late the mitogen responses. NO can modulate
and differentiation of B-cells and promotes the the release of histamine from mast cells.23

antibody production by B-cells, particularly, of NO has been shown to be a potent broncho-
the IgA isotype. IL-5 has modest mitogenic effects dilator in isolated guinea-pig trachea smooth
on T-cells. In addition, it induces the differentia- muscle and in humans,xv8 Probably, NO mediates
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airway smooth muscle relaxation by inhibiting
the release of acetylcholine from nerve term-
inals.2 NO also leads to the production of
cP.232 The products of NO are extremely cyto-
toxic. Because epithelial damage is related to the
development of bronchial hyperreactivity,233 NO
may be greatly responsible for hyperresponsive-
ness in asthmatics. This is supported by Golden,
who found that inhalation of nitrogen dioxide
and ozone increases bronchial reactivity in
healthy humans234 and by Barnes, who suggested
that free oxygen radicals from inflammatory cells
increases the breakdown of NO, thus leading to
exaggeration of the cholinergic reflex broncho-
constriction.231

Inhalation of ozone of allergic rhinitis patients
caused an increase in symptoms after allergen
challenge. Also, an increase in nasal lavage neu-
trophils, eosinophils, mononuclear cells and
epithelial cells was observed. The histamine and
albumin concentration in lavage fluid increased
on the ozone exposure day. NO metabolites
(measured as nitrite + nitrate) were present in
nasal lavage fluid of both controls and perennial
allergic rhinitis patients.42’235 However, the level
gradually increased with time and treatment with
fluticasone propionate did not affect initial pro-
duction of NO nor production following provo-
cation with allergen. These findings do not
suggest that NO is associated with rhinitis nor
hyperreactivity.

Pharmacotherapy

Antihistamines, corticosteroids, mast cell stabi-
lizers, decongestants and anticholinergics are the
major topical drugs used in the treatment of
allergic rhinitis. Although H1 antihistamines are
effective in controlling sneezing, pruritus and rhi-
norrhea, they are not useful for alleviating con-
gestion. Some H1 receptor antagonists
(terfenadine, cetirizine) inhibit mediator release
from basophils and mast cells and decrease
recruitment of inflammatory cells. Intranasal cor-
ticosteroids, such as fluticasone propionate, may
be the most effective treatment of rhinitis. They
decrease vasodilatation, oedema and inflamma-
tion and decrease symptoms, including nasal
blockage. Mast cell stabilizers constitute a class
of drugs, such as cromolyn sodium, that prevent
degranulation and mediator release from mast
cells. Cromolyn is more helpful for sneezing, rhi-
norrhoea and nasal itching, than for nasal
obstruction. Nasal decongestants (vasoconstrictor
sympathomimetic agents) reduce blood flow,
oedema and blanching of the nasal mucosa.
They are very effective for short-term use to
increase nasal airway patency, but they do not

improve rhinorrhea, sneezing or nasal pruritis.
The anticholinergic ipratropium bromide has
been shown to be effective for perennial allergic
rhinitis.236-28

Concluding Remarks

Several inflammatory cells, such as mast cells,
basophils, lymphocytes and eosinophils and their
mediators released after specific or nonspecific
stimuli, have been demonstrated during the nasal
allergic processes. Although some of these med-
iators, such as histamine, prostaglandins and leu-
kotrienes may be biologically active in allergic
rhinitis, the role of others, such as PAF, IL-5 and
nitric oxide still needs clarification. The interac-
tion between these different cellular components
to induce the clinical symptoms of allergic rhini-
tis remains unclear. Also the relationship
between the inflammatory infiltration, cellular
activation and hyperreactivity needs further estab-
lishment. We have particularly reviewed the role
of tryptase, as a marker of activated mastcells,
ECP, as a marker of activated eosinophils, and
further more histamine, LTC4/D4/E4, PGD2, PAF,
IL-5 and NO, which may be involved in the
immediate and late phase nasal reaction to aller-
gen challenge, in hyperreactivity and in therapeu-
tic intervention. Intranasal corticosteroid is the
most effective treatment of allergic rhinitis,
because not only are the symptoms improved
but nasal inflammation is also decreased.
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