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Summary 
Interleukin 1 (IL-1) is a pluripotent cytokine involved in mediating a variety of physiological 
processes, including induction of cell proliferation upon wound healing. Treatment of quiescent 
FS-4 human dermal fibroblast cells with II~l activates c-myc gene transcription, and nuclear 
localization of NF-xB. Previously, we have noted that the murine c-myc gene contains two functional 
NF-t~B sites located at -1101 to -1081 bp (upstream regulatory element [URE]) and +440 to 
+459 bp (internal regulatory element [IRE]) relative to the P1 promoter. Here we have 
demonstrated that IL-1 treatment induced binding of NF-/~B-like proteins (p50/p65) to these 
c-myc elements. Heterologous promoter-CAT constructs driven by multiple copies of either the 
URE or IRE were IL-1 inducible when transfected into FS-4 cells. In contrast, constructs harboring 
elements with two G to C residue conversions, such that they were no longer able to bind NF- 
KB, were not responsive to I~1. Mutation of these two base pairs at both NF-xB sites within 
a c-myc promoter/exon I-CAT construct, resulted in loss of inducibility with IL-1 upon transfection 
into quiescent FS-4 cells. Thus, Ibl  significantly induces c-myc expression through positive regulation 
by NF-KB, suggesting a role for this family of factors in activation of proliferation associated 
with wound healing. 

I ncreasing evidence indicates that the cytokine family of 
factors plays a major role in a number of processes involved 

in host defense mechanisms, tissue remodeling, tumor growth/ 
suppression, and cell proliferation. The action of various 
cytokines appears cell specific and modulated by the presence 
of other cytokines or growth factors. One such factor, IL-1, 
originally designated lymphocyte-activating factor, has been 
shown to exert diverse biological functions, including wound 
healing, immune stimulation, cytocidal activity, endogenous 
pyrogen production, cartilage resorption, and mitogenic stim- 
ulation of diverse tissues and cells (1). For example, II=1 in- 
duces proliferation of quiescent cells such as FS-4 human dermal 
fibroblasts in culture. This growth activation is believed to 
be a model for the in vivo effects of IL-1 during wound 
healing (2). 

II.-1 has been shown to induce expression of other lym- 
phokines and their receptors, such as IL-2, II.-2 receptor (IL- 
2R), gro and IL6, the acute phase protein serum amyloid 
A, and several nuclear protooncogenes such as c-j~s, c-jun, 
and c-myc (2-9). Although some of the activity of II.,1 can 
be attributed to increased metabolism of arachadonic acid, 
most of its effects appear to be mediated by activation of factors 
that control transcription. Thus, in addition to induction of 
the nuclear protooncogenes, which mediate transcriptional 

control, activation of the transcription factor NF-xB and related 
family members has been observed. 

Activation of NF-gB has been implicated in the induction 
by II.-1 of several genes, including II-2, Ib6, and gro (4, 7, 
10). NF-KB, originally described as a B cell-specific factor 
required for transcription of the K L chain gene (11), has been 
shown to be a ubiquitous factor capable of stimulating tran- 
scription of a variety of genes (10). It appears to function 
as a dimer composed of 50- and 65-kD subunits, that are 
highly conserved along species lines (12-15). Binding can in- 
volve a homodimer of two 50-kD subunits or a heterodimer 
composed of a 50- and a 65-kD subunit (12). In mature B 
cells, NF-KB demonstrates constitutive nuclear activity (11, 
16), whereas in other cell types it is sequestered in an inactive 
form in the cytoplasm, complexed with an inhibitor protein, 
termed IKB (17). Induction of NF-gB occurs through release 
from IKB and translocation to the nucleus. 

The c-myc oncogene has proven to play an integral role 
in control of cell growth and differentiation (18). A transient 
induction of the low levels of c-myc mRNA follows growth 
activation of virtually all quiescent untransformed cells ex- 
amined either in vitro or in vivo (18, 19). This increase in 
expression is required for cells to enter S phase. Maintenance 
of a constant elevated level of c-myc mRNA is observed in 
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cycling cells. A major site of control of these changes in ex- 
pression is mediated at the level of transcription of the c-myc 
gene (20, 21). 

Recent evidence from this laboratory indicates that the mu- 
fine c-myc oncogene contains two binding sites for NF-KB-like 
factors. One site lies 1101-1081 bp upstream of the Pl pro- 
moter, and is thus termed the upstream regulatory element 
(URE) t (22). The second site is found at +440-+459 bp 
within the noncoding portion of the first exon, and is thus 
termed the internal regulatory element (IRE) (23). These sites 
are functional in mouse and human cells, as judged by binding 
and transfection analysis (22, 23). To test the role of NF-KB 
in the induction ofc-myc gene transcription via IL-1, we have 
employed the FS-4 dermal fibroblast cells, discussed above. 
Here we report that the Ibl-induced stimulation of quies- 
cent FS-4 fibroblasts results in a rapid activation of specifc 
binding of NF-KB-like factors to both the URE and IRE, 
and that this binding appears to play a direct role in medi- 
ating the increase in c-myc gene transcription. 

Materials and Methods 

Cell Culture and Transfection Conditions. Human dermal diploid 
fibroblast FS-4 cells were kindly provided byJ. Vilcek (New York 
University Medical Center, NY) (2). Cells were maintained in 
DMEM supplemented with glucose/glutamine, penicillin- 
streptomycin, nonessential amino acids, and 10% fetal bovine serum 
(FBS) (DMEM-10% FBS), as described (2). Cells were used at pas- 
sage 14 and 15 for all experiments. 

Transfections were performed by plating 4 x 10 s cells in 
DMEM-10% FBS in 60-cm dishes 24 h before transfection. Cul- 
tures were transfected overnight with plasmid DNA (10 #g) by 
a modified calcium-phosphate method (24), washed in PBS, and 
replated in DMEM-0.25% FBS for 50 h. After stimulation with 
0.27 ng/ml recombinant human Iblce (generously provided by J. 
Sipe, Boston University Medical Center, Boston, MA) for 4 h, ceils 
were harvested, lysates prepared, and protein concentration deter- 
mined with the protein assay reagent (Bio-Rad Laboratories, Rich- 
mond, CA) (25). Samples containing equal amounts of proteins 
were assayed for chloramphenicol acetyltransferase (CAT) activity 
essentially as described previously (22). 

Nuclear Extract Preparation and Gel Shift Analysis. Cells (5 x 
106) were plated in 100-cm dishes, allowed to grow to confluence 
over 5 d, and then made quiescent as above by incubation for 50 h 
in DMEM-0.25% FBS. Nuclei were either isolated directly or after 
treatment with IL-1 for 30 min by a modification of the protocol 
of Strauss and Varshavsky (26). Confluent cells were scraped from 
dishes, washed in PBS, and incubated in 400 #1 of modified Buffer 
A (10 mM Hepes, pH 7.5, 10 mM KC1, 0.1 mM EDTA, 0.1 mM 
EGTA, 1 mM dithiothreitol, 0.5 mM PMSF, 10 mg/ml leupeptin) 
for 15 min at 4~ Cells were lysed by addition of 25 #1 of 0.1% 
NP-40. Nuclear pellets were extracted in two packed nuclear volumes 
of 0.35 M NaC1, 5 mM EDTA, 1 mM dithiothreitol, 10 mM Hepes, 
pH 7.5, 1 mM PMSF, and 10 mg/ml leupeptin for 30 rain with 
intermittent gentle stirring. Nuclei were pelleted and the superna- 
tants were adjusted to 15% glycerol and frozen at -80~ Mo- 
bility shift analysis was performed as previously described (22), ex- 

1 Abbreviations used in this paper: BrdU, bromodeoxyuridine; CAT, chlor- 
amphenicol acetyl transferase; FBS, fetal bovine serum; IRE, internal 
regulatory element; TK, thymidine kinase; URE, upstream regulatory 
element. 

cept that 3 #g/ml poly(dI-dC) was used as a nonspecific competitor, 
and 5% polyacrylamide gels were used to separate protein bound 
versus free DNA. Competitions were performed with 100-fold 
molar excess of the stated unlabeled oligonucleotide. 

Oligonudeotides and Construct. The oligonucleotides used were as 
follows: IRE wild-type: 5 ' ~ C ~ ~ G T - 3 '  
(23); URE wild-type: 5'-AAGTCCGGGTTTTCCCCAACC-Y 
(22); IL-2 R NF-gB wild-type: 5 ' - G A T C C G C ~ A ~ C  
CT-3' (27); IRE mutant: 5'-GGCTCCGGGGAGCCAATTTTT 
GT-Y (23); URE mutant: 5'-AAGTCCGCCTTTTCCCCAACC-Y 
(22); and CK: 5'W_W_,A_TCCIE CITIW_AA- 
AAGGATCC-Y (25). The core sequence of NF-KB elements are un- 
derlined. Oligonucleotides corresponding to the wild-type IRE, LIKE, 
and mutant IRE and URE sequences (Amber, Inc., Guilford, CT) 
were synthesized with directional BamHI linkers for end labeling and 
cloning. Multiple copies of either the IRE or URE were cloned into 
the BamHI site of the thymidine kinase (TK) promoter CAT vector 
(28), as described previously (22, 23). The pl.6 Bgl and pl.2 Ace 
c-myc-CAT constructs span -1141 to +513 bp and -615 to +513 bp, 
respectively, of genomic murine myc DNA linked to the CAT gene. 
Whereas pl.6 Bgl c-rayc-CAT includes both the URE and IRE ele- 
ments, pl.2 Acc c-myc-CAT construct contains only the IRE. These 
were kindly supplied by John Cleveland (St. Jude Children's Research 
Hospital, Memphis, TN). The double ollgonucleotide primer method 
(29) of site-directed mutagenesis was used to introduce the two G 
to C transversions, illustrated above, at the IRE and URE sites within 
pl.6 Bgl c-myc-CAT. 

UV Crosslinking. Nuclear proteins were covalently crosslinked 
to 5-bromodeoxyuridine (BrdU)-substituted oligonucleotides by 
UV irradiation. For preparation of BrdU-substituted DNA, the 
opposite strand of the IRE oligonucleotide was synthesized with 
two additional encoded nucleotides (TG) to enhance annealing with 
the primer 5'-CAGGCTCCGG-Y. The Klenow fragment of DNA 
polymerase I was used to extend the primer in the presence of BrdU 
and 32P-dCTP and dGTP. After purifcation over a GS0 Sephadex 
column, protein-DNA binding reactions were performed as above 
except that 5 ng of 32p-labeled BrdU-substituted oligonucleotides 
were reacted with 20 #g nuclear protein in a total volume of 50 
#1. After binding, the mixtures were chilled to 4~ and then ir- 
radiated with 305 nm UV at a distance of 5 cm for 45 min. Laemmli 
(2 x) buffer was added to each reaction, the mixture boiled for 3 
rain, and protein-oligonucleotide complexes resolved on a dena- 
turing 7.5% polyacrylamide gel. For competition assays, a 100- 
fold molar excess of double-stranded oligonucleotide was included 
in the binding reaction. The protein molecular weight markers used 
were: myosin (200 kD), BSA, (66 kD), OVA (45 kD), and car- 
bonic anhydrase (29 kD). 

Results 

Effects of ll_,l on Binding to the URE and l R E  Elements. To 
determine whether Ib l  treatment induces binding to the NF- 
KB-like elements in the c-myc locus, mobility shift analysis 
was performed. A 30-rain period of ILl treatment was selected 
since Lin and Vilcek had previously shown that c-mxc mKNA 
induction was detected by this time (2). Binding of nuclear 
extracts from serum-starved FS-4 control cells to 3zp-labded 
IRE and URE oligonucleotides revealed a single band. IL-1 
treatment resulted in a change in the pattern, marked by an 
increase in intensity of a complex comigrating with the con- 
stitutive band and the appearance of a higher molecular weight 
complex (Fig. 1). This latter complex comigrates with com- 
plexes formed with nuclear extracts from the murine WEHI 
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Figure 1. Induction of binding to the URE and IRE elements after 
ILl treatment. Extracts were prepared from serum-deprived untreated ( - )  
FS-4 cells or after 30 min of treatment with Ib l  (11.,1) and used in mo- 
bility shift analysis with wild-type or mutant (m) URE or IRE 32P-hbeled 
oligonucleotides. Binding competition was performed with excess unla- 
beled NF-gB oligonucleotide from the Ib2R promoter using extracts from 
IL-1 treated cells (IL.1/C). (Dash) Position of induced higher molecular 
complex. (a) URE; (b) IRE. 

nuclear protein from control serum starved FS-4 calls to the 
IRE dement resulted in the formation of a specific complex, 
which could be competed by addition of excess unlabded IRE 
oligonudeotide. Under denaturing conditions, the protein 
migrated at ,,o67,000 daltons (Fig. 2). Crosslinking of nu- 
dear extracts derived from Ibl  treated cells indicated the for- 
mation of several new specific protein-DNA interactions: 
bands migrating at ,v65 and 50 kD were observed (Fig. 2). 
The unequal labding of the two subunits is likely due to 
the preferential BrdU labding of the 3' end of the binding 
site, the region that interacts with the p65 subunit of NF-gB 
(30). Competition for these proteins by unlabded IRE indi- 
cate the specificity of the crosslinking reactions. These data 
suggest IL-1 treatment activates interaction of the c-myc de- 
ments with p50 and p65 proteins, similar to the patterns ob- 
served with NF-gB constitutively present in B cells. 

Functional Activity of the IRE and URE Elements Linked to 
a Heterologous Promoter. As an initial test of the functional 
significance of these protein-DNA interactions, heterologous 
promoter constructs containing multimerized copies of ei- 
ther the IRE or URE driving the TK promoter linked to 
the CAT reporter gene (22, 23) were employed. These con- 
structs were transfected into cultures of FS-4 cdls, which were 
then deprived of serum for 50 h and stimnlated by IL-1 addi- 
tion for 4 h. As seen in Fig. 3, constructs containing two 
or four copies of the IRE were inducible, whereas constructs 
with only one copy of the IRE or the parental TK-CAT vector 
failed to be induced. Similarly, a construct containing one 

231 B ceU lymphoma line (data not shown), which contains 
NF-~B protein (11, 22). Addition of 100-fold molar excess 
unlabeled oligonudeotide corresponding to the human II--2 
receptor gene promoter NF-KB dement reduced formation 
of complexes induced by Ibl  treatment (Fig. 1). Similarly, 
the murine g chain NF-KB oligonudeotide itself, as weU as 
IRE and URE oligonudeotides, competed in the same manner, 
whereas an oligonudeotide encoding an unrdated binding 
sequence (CK) from the myosin L chain gene did not alter 
the binding profile (data not shown). Methylation interfer- 
ence analysis of the IRE indicated the importance of the two 
internal G residues for binding of IL-1 induced proteins (data 
not shown), consistent with results with the WEHI 231 line 
(23). Mutant IRE or URE oligonudeotides, with two base 
pair transversions of G to C residues, show no induction of 
the upper complex in mobility shift analysis upon Ibl  treat- 
ment (Fig. 1). Thus, Ibl  treatment of FS-4 cells activates 
factors that bind to the IRE and URE NF-gB dements within 
the c-myc gene. 

UV Crosslinking Analysis of Induced Binding Proteins. To 
begin to characterize the II.-1-induced proteins binding to 
the c-rayc NF-gB sites, UV crosslinking analysis was per- 
formed. Since migration of the Ibl-induced URE and IRE 
comple~s was similar, we sdected the IRE, which has a stretch 
of T residues for substitution, for analysis. Protein-DNA com- 
plexes were covalently crosslinked by UV irradiation to a BrdU- 
substituted 32p-labded IRE oligonucleotide. Crosslinking of 
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Figure 2. UV crosslinking analysis of induced binding factors. Binding 
to BrdU substituted 32p-labeled IRE oligonucleotide of extracts from un- 
treated ( - )  or IL-1 treated (IL-I) cells was performed in the absence or 
presence (c) of e~cess unlabeled IRE oligonudeotide. Positions of the p51 
and p66 bands, determined based on mobility of the protein markers, is 
consistent with pS0 and p65 protein-oligonudeotide complexes. 



Figure 4. Ibl inducibility of the c-myc 
promoter. W'fld-type and mutant (m) pl.6 
BgI-CAT constructs were analyzed for 
effects of Ibl after transient transfection, 
as above. 

Figure 3. IL-1 inducibility of IRE element driven TK-CAT constructs. 
CAT enzyme activity of TK-CAT constructs containing the indicated copy 
number of wild-type or mutant (M) IRE elements was analyzed in the 
absence (-) or presence (+) of II~1 after transient transfection into FS-4 ceUs. 

copy of the URE was also not induced significantly by ILl  
treatment (Table 1). These findings are consistent with the 
results of other laboratories indicating that two copies of an 
NF-KB element are required for induction of a heterologous 
promoter. An average increase in CAT activity of 5.9-fold 
for the construct containing four copies of the IRE, and 6.6- 
fold for the construct containing two copies of the URE was 
measured after IL-1 stimulation for 4 h compared with non- 
stimulated control ceils (Table 1). These values are comparable 
with those obtained previously upon 48 h of phorbol ester 
and PHA treatment after transient transfection ofJurkat T 
cells (22, 23). Furthermore, TK-CAT constructs with mu- 
tant IRE (Fig. 3) or URE (data not shown) elements were 
not responsive to stimulation by I/r as expected based on 
the binding data. Therefore, each wild-type dement is capable 
of behaving as a positive regulator of IL-l-induced tran- 
scription. 

Function of IRE and URE in Context of the Murine c-myc 
Promoter. To directly test whether the IRE and URE ele- 
ments actually play a role in induction ofc-myc transcription 
by Ibl ,  we first assessed the ability of Ib l  to induce tran- 
scription of the c-myc promoter. The construct pl.6Bgl con- 
tains 1.6 kb of murine c-myc upstream and exon 1 sequences 
linked to CAT, including both the URE and IRE elements. 
After transfection into the FS-4 cultures, cells were serum 
starved and treated with IL-1 or used as matched untreated 

Table 1. Transactivation of lRE/URE-TK-CA T Constructs 
by IL-1 

Construct Fold-induction* 

1 x IRE 1.0 (1) 
2 x IRE 3.2 (1) 
4 x IRE 5.9 (2) 

1 x URE 1.7 (1) 
2 x URE 6.6 (2) 

" Values for fold-induction represent the mean of the number of experi- 
ments indicated in parenthesis. 

starved and treated with II~l or used as matched untreated 
controls as above (Fig. 4). The results of this and two dupli- 
cate experiments demonstrated that the pl.6Bgl construct 
was inducible an average of 8.1-fold by II.,1 treatment (Table 2). 

To determine whether the presence of both elements was 
required, another construct pl.2 Arc c-myr-CAT was em- 
ployed. This construct contains 615 bp of sequences upstream 
of the P1 promoter, and 513 bp of exon 1 sequences linked 
to the CAT reporter gene, and thus includes only the IRE. 
As seen in Table 2, pl.2 Acc c-myc-CAT was not significantly 
induced upon IL-1 treatment of transfected FS-4 cells. This 
result implies that sequences within the 400-bp region be- 
tween -1141 and -615 bp, which includes the URE, is re- 
quired for activation. Consistent with this finding, a con- 
struct containing exon 1 sequences and only the basal c-myc 
promoter (-137 to +513 bp) also failed to be induced, 
whereas constructs with exon 1 and upstream sequences that 
included the URE (up to -3660 bp) were all inducible (data 
not shown). 

To test directly the involvement of binding of NF-KB-like 
factors to the IRE and URE elements, site-directed muta- 
genesis was used to introduce the two G to C transversions 
into the pl.6Bgl construct at both the IRE and URE sites. 
The activity of the mutant (ml.6Bgl) was measured after trans- 
fection (Fig. 4). The introduced mutations had little apparent 
significant affect on the basal activity of the construct. How- 
ever, the ml.6Bgl construct was no longer responsive to Ib l  
induction (Table 2). These results indicate a direct role for 
the IRE and URE elements in transcriptional activation of 
the c-myc gene by IL-1. 

D i s c u s s i o n  

The results of this study indicate the involvement of NF- 
KB-like factors in the IL-1 induction of c-myc gene transcrip- 

Table 2. Transactivation of c-myc-CA T Constructs by IL-I 

Construct Fold-induction* 

1.6 Bgl 8.1~ (3) 
1.2 Acc 1.2 (2) 
ml.6 Bgl 0.9 (2) 

" Values for fold-induction represent the mean of the number of experi- 
ments inducated in parenthesis. 
*SD + 1.6. 
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tion. Mobility-shifr and UV crosslinking analysis demonstrated 
that I1-1 treatment of quiescent FS-4 fibroblasts induces 
binding to the UtLE and IRE elements of the c-myc gene 
that is competable by known NF-rB elements from other 
genes. The induced proteins have molecular weights of ,,o50 
and 65 kD, consistent with the sizes of the previously identified 
NF-gB subunits (13-15), as well as the more recently detected 
pS0 alternative subuuit (31, 32). Commensurate with the pre- 
viously observed rapid induction of c-myc mRNA, i.e., by 
20-30 min after I1-1 addition to FS-4 cells (2), the increase 
in NF-rB-like binding to the IRE and URE elements medi- 
ated by I1-1 has occurred within 20 min, the earliest time 
point we tested (data not shown). Transfection analysis indi- 
cated this binding plays a major role in mediating activation 
of transcription of the murine c-myr gene by I1-1. Given the 
observed importance of c-myr gene expression in signaling 
of quiescent untransformed cells to proliferate (18), I1,1-medi- 
ated signaling of growth activation, such as that associated 
with wound healing, is likely to be mediated at least in part 
by the induction of the NF-rB family of factors by I1-1. 

This is one of the first reports demonstrating the direct 
role of elements within the c-myc gene in the response of 
this gene to physiologically relevant activators of its expres- 
sion. Given our current knowledge of NF-rB, this factor has 
the potential to play a major role in the regulation of c-myc 
gene transcription. In non-B cells, NF-rB is in an inactive 
cytoplasmic form complexed with an inhibitor protein (17). 
Activation of NF-kB involves release from the inhibitor and 
translocation to the nucleus. In addition to I1-1 and TNF-c~, 

activation can be mediated by such diverse agents as phorbol 
ester, serum, LPS, and infection with such viruses as HTLV-1 
and herpes (10, 16, 33, 34). These agents are also known 
to induce c-myr expression in lymphocytes, fibroblasts, and 
many other cell types, Recently, we have demonstrated trans- 
activation of the c-myc promoter by the tax gene product of 
the HTLV-1 virus, implicating these NF-rB sites in T cell 
activation and viral-induced immortalization (34a). 

Cytokine production by infiltrating mononuclear cells at 
wound sites and in situ production of these cytokines by fibro- 
blasts and stromal cells is complex. For example, in addition 
to II-1, production of TNF-o~ and I1-6 has been demonstrated. 
TNF-a, originally called cachectin, was discovered as an 
endotoxin-induced monocyte cell product that caused necrosis 
in certain tumors in vivo (35). Signifcant overlap of actions 
of TNF-ot and I1-1 has been noted. For example, TNF-o~ also 
activates NF-rB (10). TNF-ot has also been found to modu- 
late c-myc expression in FS-4 fibroblasts with essentially the 
same kinetics as I1-1 (2). We have recently found that TNF-ol 
results in similar induction in binding profiles for the IRE 
and URE sites in this cell line (data not shown). However, 
evidence for differential activity of I1-1 and TNF-ol has also 
recently been obtained. These two cytokines act in synergy 
to greatly enhance fibroblast expression of the I1-6 gene, 
through its NF-rB and serum response elements (36). Thus, 
the response of the c-myc oncogene during wound healing 
may result from the interaction of a complex array of cytokines 
mediating multiple stimulatory events. 
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