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ABSTRACT Perhaps the best-studied mucosal adjuvants are the bacterially derived
ADP-ribosylating enterotoxins. This adjuvant family includes heat-labile enterotoxin
of Escherichia coli (LT), cholera toxin (CT), and mutants or subunits of LT and CT.
These proteins promote a multifaceted antigen-specific response, including inflam-
matory Th1, Th2, Th17, cytotoxic T lymphocytes (CTLs), and antibodies. However,
more uniquely among adjuvant classes, they induce antigen-specific IgA antibodies
and long-lasting memory to coadministered antigens when delivered mucosally or
even parenterally. The purpose of this minireview is to describe the general proper-
ties, history and creation, preclinical studies, clinical studies, mechanisms of action,
and considerations for use of the most promising enterotoxin-based adjuvant to
date, LT(R192G/L211A) or dmLT. This review is timely due to completed, ongoing,
and planned clinical investigations of dmLT in multiple vaccine formulations by gov-
ernment, nonprofit, and industry groups in the United States and abroad.
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The adjuvant dmLT, or more technically LT(R192G/L211A), is an 84-kDa polymeric
protein with an AB5 structure composed of an enzymatically active A subunit

(28 kDa) noncovalently associated with a pentameric B subunit (consisting of five
11.5-kDa monomers) as shown in Fig. 1A. dmLT is distinguished from its parent
molecule heat-labile enterotoxin (LT) by the substitution of two residues in the A
subunit, a glycine for an arginine at amino acid 192 (R192G) and an alanine for a leucine
at amino acid 211 (L211A). The ribbon diagram of dmLT can be extrapolated from the
crystal structure of the partially cleaved LT toxin (1, 2), although there may be
as-yet-unresolved changes in three-dimensional (3D) structure due to the amino acid
substitutions in the A subunit.

dmLT is an adjuvant that enhances vaccine-specific systemic and mucosal immune
responses following mucosal or parenteral delivery, described in detail below (e.g.,
Table 1 and indicated references). These studies indicate four main features that define
dmLT compared with other adjuvant systems.

(1) dmLT promotes immunity to antigens that are codelivered after simply admixing
dmLT and the antigen in aqueous buffer. Thus, unlike many depot-type adjuvants,
such as aluminum hydroxide, no advanced preparation or absorption is required to
formulate the antigen/adjuvant vaccine. dmLT can be formulated with the antigen
at either the point of manufacture or the point of delivery.

(2) Through the combined action of dmLT’s immunostimulatory properties and univer-
sal cell binding, uptake of codelivered antigens is enhanced and mucosal immunity
is promoted. This enables the delivery of immunization formulations (most strikingly
for subunit vaccines) at previously inaccessible sites, such as in oral (p.o.), sublingual
(s.l.), transcutaneous (t.c.i.), etc., delivery. Many of these approaches are needle free
and have the potential to increase ease of administration and compliance and lower
the risk of disease outbreaks from unsafe injections (3–6).

(3) Unlike other adjuvants, such as aluminum hydroxide or many Toll-like receptor
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(TLR)-based adjuvants (e.g., monophosphoryl lipid A [MPL] and CpG), dmLT induces
strong interleukin-17 (IL-17) recall cytokine secretion and antigen-specific Th17
responses after parenteral or mucosal immunization (7–15). This is a newly appre-
ciated arm of the adaptive immune response that is critical in protection from
pathogens, particularly in preventing infections in mucosal tissue and control of
bacterial infections (16). In addition, IL-17 secretion enhances the availability of
mucosal antibodies by upregulating polymeric Ig receptor levels in epithelial cells,
increasing transport of secretory IgA (sIgA) into the lumen of mucosal tissue, and
promoting T-independent B-cell differentiation into IgA-secreting cells (17–20).

(4) Last, dmLT promotes the development of mucosal immune responses following
parenteral immunization (7, 21–23). While these observations are validated only in
preclinical animal models thus far, this is a distinction from most vaccines delivered
by parenteral injection, which can induce serum antibodies and cell-mediated
immunity but only limited or nonexistent responses at mucosal surfaces. In the
remaining sections, we will go into more detail on the history and creation of dmLT
protein, preclinical studies, clinical studies, mechanisms of action, and consider-
ations for use.

HISTORY OF LT-BASED PROTEINS AND dmLT CREATION

LT is expressed by enterotoxigenic Escherichia coli (ETEC) strains and was first
purified by Clements and Finkelstein in 1979 (24). This effort differed from previous
attempts to purify LT by conventional gel-filtration and ion-exchange chromatography
as a result of their discovery that LT binds to galactose-containing gel filtration medium
(e.g., agarose or immobilized D-galactose) and can be recovered by elution from
columns following application of galactose-containing buffers. In addition, unlike chol-
era toxin (CT) from Vibrio cholerae (which had been purified in 1969), Clements and
Finkelstein demonstrated that the majority of LT is not secreted from the bacterium in
vitro but rather is in the periplasm in an unactivated form.

In the 1980s, CT was being used to investigate the intestinal IgA response, with
Elson and Ealding elegantly demonstrating that CT can abrogate oral tolerance and
promote serum IgG and mucosal IgA to p.o.-codelivered antigen (25, 26). Subsequent
studies by Clements et al., published in 1988, demonstrated that LT could also prevent
induction of oral tolerance and act as an oral adjuvant (27). In a prelude to the current

FIG 1 dmLT adjuvant structure, summary of main features, and creation timeline. See text for details.
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understanding of tolerance and memory regulatory responses, they found that oral
tolerance could be prevented if LT was included upon first exposure to an antigen but
that tolerance could not be broken once established. In addition, enzymatic activity in
the form of the A subunit (LTA) was required since recombinant LT B subunit (LTB) had
no effect on induction of tolerance or oral adjuvanticity. A key component in the
success and accuracy of this research was the use of recombinant proteins (e.g., LTB) as
opposed to the products of dissociation chromatography using the holotoxin, the latter
of which commonly resulted in CTB/LTB that was contaminated with a trace amount of
holotoxin, which can complicate the interpretation of results in many older publications
(28).

Despite contrary evidence in animal studies, clinical trials with human volunteers
beginning in the 1990s demonstrated that even low doses (�2.5 �g) of p.o. LT induced
diarrhea (29, 30). In parallel, Tamura et al. began testing native LT admixed with LTB as
an intranasal (i.n.) adjuvant in humans (31). Subsequent animal studies by a variety of
investigators showed excellent promotion of immune responses for multiple antigens
delivered by this route. Initial success in clinical studies led to the licensure for an
LT-adjuvanted inactivated influenza vaccine in Europe (Nasalflu; Berna Biotech), which
was available in Switzerland for the 2000 –2001 influenza season. Unfortunately, it soon
became clear that the presence of LT was associated with cases of Bell’s palsy or facial
paralysis in i.n. vaccine recipients, resulting in a 19-fold-higher risk of developing Bell’s
palsy compared to case-controls in a retrospective study (32). Similar results were
reported in phase 1 clinical trials with i.n. delivery of mutant LT(S63K) in adjuvanted HIV
and tuberculosis subunit vaccines (33). Follow-up research suggests that the risk for
Bell’s palsy after i.n. vaccination is a direct consequence of B-subunit neuronal gangli-
oside binding and retrograde axonal transport combined with the inflammatory re-
sponse occurring with ADP-ribosyltransferase activity of intact AB5 proteins (34). While
investigation into other administration routes continues, use of LT or any AB5 mutant
protein for i.n. delivery in humans is unadvised based on these past safety issues
(though our studies indicate that the enzymatically active A1 subunit [LTA1] free of any
B subunit is a promising adjuvant for i.n. delivery [8]).

A number of investigators have genetically modified LT in an attempt to detoxify the
molecule and make it safe for inclusion either as an antigen (in an ETEC vaccine) or for
use as an adjuvant. Creation of dmLT was initiated through purposeful stepwise
mutations of the LT holotoxin A subunit, based on our understanding of how the
holotoxin interacts with mammalian cells. Induction of intestinal fluid secretion by LT
and CT occurs after a series of events involving both changes to toxin structure and
activation of intracellular signaling pathways, reviewed in reference 28. After B-subunit
binding and entry, the subsequent proteolytic cleavage and disulfide bond reduction
separate the A subunit into two domains: the enzymatically active A1 subunit and a
smaller A2 peptide. Transport of A1 into the cytoplasm results in ADP-ribosylation of
Gs�, followed by irreversible activation of adenylate cyclase and increases in intracel-
lular levels of cAMP. In intestinal epithelial cells, this causes a dysregulation of cAMP-
sensitive ion transport mechanisms which inhibits intracellular salt absorption, in-
creases electrolyte transport into the gut lumen, and creates an osmotic gradient
favoring intestinal water secretion (35).

Clements and Finkelstein had originally shown that proteolytic cleavage at position
192 was essential for activation of the LT molecule (24). Later in the early 1990s,
Dickinson and Clements created LT(R192G), or mLT, by substituting a glycine for an
arginine at position 192, thereby altering the proteolytically sensitive site in the A
subunit that separates A1 and A2 and preventing trypsin cleavage and “activation” (36).
In both in vitro assays and animal studies, mLT showed reduced toxicity (36, 37) but
maintained adjuvanticity equivalent to LT, inducing a balanced Th1/Th2 cytokine and
antibody subclass profile similar to native LT (10, 38–49). The success of these preclin-
ical studies led to several clinical trials with mLT as an adjuvant. In a phase 1 escalating
dose-safety study in adults, up to 50 �g of p.o. mLT given twice was well tolerated;
however, 16.7% (2 of 12) of volunteers receiving a 100-�g mLT dose reported mild to
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moderate diarrhea (50). In contrast, �2.5 �g of native LT or CT causes diarrheal
secretion in adult volunteers (29, 51). In other clinical studies, 25 �g of p.o. mLT alone
was well tolerated, but when it was combined with killed whole-cell bacterial vaccines,
20% of adults receiving killed Campylobacter (52) or killed Helicobacter (53) p.o. vaccines
experienced mild diarrhea. Thus, the combination of mLT and a whole-cell antigen
delivered p.o. induced enough secretion to overcome the natural resorptive capacity of
the intestine, resulting in the observed self-limited, mild diarrhea not seen with mLT
alone.

In the early 2000s, in order to further detoxify mLT while preserving adjuvanticity, an
additional mutation was added by changing leucine 211 to alanine (L211A) in the
A1-A2 activation loop on the A2 domain. This resulted in the adjuvant dmLT. In a 2011
publication, we demonstrated that this extra mutation results in two significant differ-
ences: (i) dmLT is more sensitive to trypsin or intracellular proteolytic degradation (as
opposed to activation) than either native LT or mLT, and (ii) 250 �g of dmLT completely
lacks the ability to induce detectable intestinal secretion after p.o. feeding in a patent
mouse assay compared with �5 �g LT or �125 �g mLT (1).

As summarized in Fig. 1B, dmLT is the product of more than 25 years of research on
the use of bacterial ADP-ribosylating enterotoxins as adjuvants. While the adjuvant
potential of LT and CT has been known for some time, reducing toxicity while
preserving adjuvanticity was challenging. Our efforts to detoxify LT for use as an
adjuvant through directed genetic mutations has yielded dmLT, whose mutations make
it a subunit more vulnerable to intracellular proteolytic degradation but prevent
cleavage into the highly enzymatically active A1 domain. However, dmLT maintains the
immunostimulatory properties without associated epithelial cell cAMP intoxication or
intestinal fluid secretion of the parent molecule LT or single mutant mLT.

PRECLINICAL STUDIES

Since 2000, a number of preclinical vaccine studies have been published with
dmLT adjuvant, as listed in Table 1. Of these, most target bacterial pathogens with
subunit antigens, although some have examined dmLT-adjuvanted whole-killed or
live-attenuated bacterial and viral vaccines. The target pathogens for many of these
vaccine candidates cause predominantly gastrointestinal infections, including Clos-
tridium difficile, ETEC, Helicobacter pylori, poliovirus, Shigella, Salmonella, and V. chol-
erae. However, other mucosal pathogens—nontypeable Haemophilus influenzae
and Streptococcus pneumoniae— or organisms causing systemic infections—Clos-
tridium tetani and hepatitis B virus— have also been evaluated. In addition, there
are a large number of unpublished preclinical studies that have been performed by
various groups leading to clinical trials.

We and other researchers have documented improvement of parenteral and/or
mucosal immunity to bacterial and viral antigens following p.o., buccal (in the mouth
by the cheek [b.c.]), s.l. (in the mouth under the tongue), i.n., t.c.i., intradermal (i.d.),
and/or intramuscular (i.m.) delivery of dmLT-adjuvanted vaccination (8, 9, 22, 23, 38,
54–59). By far the most common findings after either parenteral or mucosal immuni-
zation were improvement of humoral and systemic immunity—including neutralizing
antibodies and serum or mucosal IgA and Th17 responses—and protection from lethal
challenge or bacterial colonization. Comparative evaluations verified that the adjuvant
effects with dmLT are fairly equivalent to those with LT, mLT, or CT adjuvants, including
Th17 responses to mucosal pneumococcal vaccine (10), serum IgG and fecal IgA to
colonizing factors and LTB after p.o. immunization with an engineered whole-killed
ETEC vaccine (59), tetanus toxoid-specific serum IgG and fecal IgA after p.o. or i.n.
immunization (1, 8), anti-Shigella PSSP-1 serum IgG1 or IgG2a (60), and immunity and
protection against H. pylori infection after s.l. immunization with lysate antigens (12) or
p.o. immunization with formalin-inactivated bacteria (38).

Various delivery techniques or devices for i.d. delivery did not impair the adjuvant
effect of dmLT, including the use of transdermal silk fibroin microneedles (61) and
NanoPass MicronJet 600 needles (9). Similarly, various antigen forms—including freeze-

Minireview

July/August 2018 Volume 3 Issue 4 e00215-18 msphere.asm.org 6

msphere.asm.org


dried forms (13, 38), polysaccharide conjugates (57), and even a live-attenuated strain
modified to express dmLT (62)—also demonstrated improved immunity with inclusion
of the adjuvant.

In all these studies, only three studies reported lack of significant immunity with
dmLT adjuvant with specific formulations. The first was a study immunizing mice
p.o. with germ-enriched maize material expressing hepatitis B antigen; however,
slightly higher (but nonsignificant) antibody titers were observed in the dmLT-
containing group, suggesting that more animals (to better power the study) or an
optimized dose may be needed to see a clear adjuvant effect with this vaccine
formulation (54). The second study evaluated doses of a highly immunogenic
trivalent formalin-inactivated Shigella vaccine that saw improvement only in mu-
cosal IgA and protection from lethal challenge in mice receiving dmLT admixed
with the lowest-formulation dose (58). In this same vaccination study, dmLT pro-
vided no benefit in a guinea pig model of Shigella keratoconjunctivitis, which may
indicate a failure of dmLT to boost eye-specific immunity. Last, in another study
with Shigella IpaB/IpaD subunit vaccination, dmLT was unable to skew immunity to
a nonprotective high dose of antigen, even though inclusion of dmLT at a medium
dose elicited maximal protection from i.n. challenge (9). These studies reveal an
important consideration in any vaccine formulation—there is a limit to the adjuvant
effect. The antigen formulation, delivery dose, route, and likely other factors
continue to play major roles in the overall outcome of responses postvaccination.

An interesting finding reported in several preclinical studies was that the dmLT-only
control group provided some nonspecific protection from disease. A t.c.i. band-aid
application of 10 �g dmLT significantly reduced the percentage of infected middle ears
and bacterial burden of existing nontypeable H. influenzae biofilms in chinchillas
despite any observable enhancement of antigen-specific cellular or humoral immunity
(11). Similarly, fecal shedding after oral Campylobacter jejuni challenge was decreased
(although the percentage of animals colonized was not) in mice who had been treated
with three weekly doses of dmLT 1 week prior to infection (63). In this study, there was
also no detection of antigen-specific immunity to C. jejuni. Last, mice receiving 5 �g
dmLT i.n. on days 0 and 14 exhibited 64% survival of lethal Shigella flexneri 2a
pulmonary challenge on day 21 (58).

In several studies, dmLT has been evaluated as a toxoid antigen for ETEC vaccines.
dmLT can generate anti-LT antibody responses, detected routinely after p.o. or paren-
teral immunization (1, 9, 59, 63, 64). It has also been incorporated in a multiepitope
fusion antigen for ETEC vaccination to neutralize activity of LT toxin (65). Of note, the
existence of preexisting antibodies to dmLT does not impair the ability of subsequent
immunization to provide adjuvant effects to a de novo antigen not previously seen by
the immune system (E. B. Norton and J. D. Clements, unpublished data).

The consensus of these studies is that dmLT is uniquely able to induce systemic and
mucosal responses after parenteral or mucosal immunization. The success of these
studies has also led to recent preformulation studies evaluating buffers to promote
stability and freeze-dried formulations to maximize dmLT adjuvant and/or antigen
responses (66, 67). dmLT has also been used in immunologic studies for mucosal
vaccination in order to evaluate how immunity is generated or impacted by infections
(68, 69). In addition, as discussed in the next section, there are now several completed
and planned clinical studies using dmLT.

CLINICAL STUDIES

As shown in Table 2, dmLT has now been tested for safety and efficacy in several
ongoing and recently completed human clinical trials. There have been two dmLT-only
phase 1 safety studies. The first trial (NCT01147445) was a dose escalation study with
a single dose of 5 to 100 �g p.o. dmLT. Treatment was well tolerated with no reported
diarrhea, abdominal pain, anorexia, nausea, vomiting, or fever in any adult subject (70).
The second dmLT-only phase 1 safety study (NCT02052934) was conducted to assess
the safety and tolerability of dmLT when administered in three 1- to 50-�g s.l. doses
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compared with three 25-�g p.o. doses of dmLT in healthy adult subjects. This study also
assessed long-term safety through 7 months postvaccination. While this study has
concluded, no results have been reported to date. An additional phase 1 safety trial
(NCT02531685) with dmLT i.d. administration is currently recruiting. The primary ob-
jective of this study is to assess the safety and tolerability of dmLT when administered
in three i.d. injections over a range of dosages in healthy adult subjects.

There have also been a number of phase 1 and 2 trials with dmLT as one component
of killed or live-attenuated whole-cell ETEC vaccines that are either completed or
ongoing. The killed whole-cell vaccine (ETVAX) is a formalin-inactivated, recombinant
E. coli expressing increased levels of ETEC colonization factors (CFs) combined with a
recombinant protein (LCTBA), which is a hybrid between the binding subunits of LTB
and CT B subunit. The first of these studies (EudraCT no. 2011-003228-11) evaluated the
safety of ETVAX administered alone or combined with 10 �g or 25 �g dmLT in two p.o.
doses (71). This study observed only minor adverse events and reported no significant
differences in adverse events between vaccination groups with and those without
dmLT. The vaccine response generated was potent even in the nonadjuvanted group;
however, 10 �g dmLT boosted immunity to the least immunogenic antigen evaluated,
CS6, and increased the percentage of IgA responders to all five antigens in the vaccine
strain to 83% from 74%. In this study, the 10-�g dose of dmLT was optimal. Since none
of these studies were performed without the 1-mg dose of LCTBA, the influence of a 25-
to 100-fold excess of a B-subunit antigen that competes for receptor binding with dmLT
cannot be determined.

A follow-up phase 1 and 2 double-blind, placebo-controlled, dose-escalation study
(NCT02531802) evaluating the safety, tolerability, and immunogenicity of ETVAX alone
and together with dmLT in descending age groups (45 years to 6 months) was
conducted in Bangladesh. This study observed some vomiting in young children when
a full adult dose was administered, but the vaccine was tolerable at fractional doses
with no significant differences in adverse events in vaccine groups with or without
dmLT (F. Qadri, M. Chowdhury, T. Bhuiyan, M. Akhtar, F. Khanam, T. Ahmed, A.
Lundgren, L. Bourgeois, R. Walker, N. Maier, A. Fix, T. Wierzba, and A. Svennerholm,
presented at the Second International Conference on Vaccines for Shigella and ETEC
[VASE], Mexico City, Mexico, 13 to 15 June 2018). An immunologic assessment is under
way. The same vaccine (ETVAX plus 10 �g dmLT) is currently being evaluated in a phase
2b trial (EudraCT no. 2016-002690-35) to evaluate safety, immunogenicity, and diag-
nostic methodology and estimate vaccine efficacy of an oral ETEC vaccine for preven-
tion of clinically significant ETEC diarrhea in healthy adult travelers visiting West Africa.

The use of dmLT with a live-attenuated ETEC vaccine, ACE527, was evaluated in a
phase 1 and 2b challenge trial (NCT01739231). For this study, individuals were immu-
nized three times p.o. with ACE527, an admixture of three frozen or lyophilized
attenuated ETEC strains expressing CFA/I, CS1, CS2, CS3, CS5, CS6, and LTB, with or
without 25 �g dmLT. Six to seven months after the last immunization, individuals were
orally challenged with ETEC strain H10407 and monitored for moderate to severe
diarrhea (MSD), stool volume, number of stools, and shedding of the challenge strain.
Significantly, the protective efficacy of the vaccine against MSD in individuals immu-
nized with ACE527 plus dmLT was 65.9%, compared to 20% in individuals receiving
ACE527 alone (72). Addition of dmLT also increased the protective efficacy against
diarrhea of any severity to 58.5% compared to �3.7% in individuals receiving ACE527
alone, reduced the mean stool volume (30 g versus 859 g) and total number of stools
(1 versus 13), and produced a 13-fold reduction in shedding of the challenge strain
compared to individuals receiving ACE527 alone. The mechanism of protection engen-
dered by inclusion of dmLT in the formulation is not clearly defined, but studies to
evaluate this are under way.

Recruitment is under way for one additional ETEC vaccine trial (NCT03404674). This
will be a phase 1 open-label, dose-escalating study of 5 to 45 �g of a prototype CS6
vaccine (CssBA) administered three times i.m. with and without 0.1 to 0.5 �g of dmLT.
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The purpose will be to examine reactogenicity of the antigen, adjuvant, and formula-
tion when administered i.m. This will be the first use of dmLT i.m. in humans.

These clinical studies indicate that dmLT is safe and efficacious. More information
will become available as study results are reported in the future.

MECHANISM OF ACTION

The broad mechanisms of action for LT, CT, and related proteins have been well
established over the past decades and extensively reviewed (28, 73), and slight but
significant differences in the immunologic biases between CT- and LT-based adju-
vants have consistently been reported in the literature (e.g., references 28 and 74).
Still, the subunits of these AB5 proteins contribute uniquely to their mechanisms of
action. The B subunit is responsible for receptor binding, leading to cellular entry,
and, during mucosal delivery, helping shuttle whole-vaccine antigens across mu-
cosal surfaces (75). The A subunit binds to cytosolic proteins (e.g., ADP-ribosylation
factors [ARFs]) and ADP-ribosylates Gs�, resulting in irreversible adenylate cyclase
activation and accumulation of intracellular cAMP. The complete immunologic
effects of LT appear to require the B subunit, A subunit, and some level of cAMP
induction. LT promotes in vitro dendritic cell activation, cytokine secretion, and
Th17 cell induction through processes that can be mimicked with cAMP analogs or
other cAMP-inducing agents like forskolin (75, 76). However, when isolated B
subunit (e.g., LTB) or enzymatically inactive mutants of LT are substituted for native
LT as adjuvants, reduced or ablated immunologic effects are observed (37, 77–79).
In recent studies, we have demonstrated that purified A subunit of LT has adjuvant
properties by itself, inducing a similar quality (e.g., mixed Th1/Th2/Th17) but
smaller magnitude of immune responses than native LT, whereas the B subunit
alone induces a more Th2/T regulatory cell (Treg)-skewed response (8).

A major question with these adjuvants has always been whether toxicity can be
divorced from adjuvanticity. With dmLT, we have determined that detoxification occurs
without a reduction in adjuvanticity due to cell-specific effects. dmLT treatment results
in no detectable intestinal secretion and over 1,000 times less cAMP in cultured
epithelial cells compared to native LT (1), similar to the difference in secretion observed
in human volunteers after p.o. treatment with LT versus dmLT (29, 30, 70). In contrast,
during comparative vaccine studies dmLT exhibits adjuvanted immunity equivalent to
that of LT, mLT, or CT (1, 8, 10, 12, 38, 60). In our newer experiments with murine
dendritic cells (DCs), key initiating cells of the immune system, there are surprisingly
few differences between cAMP levels, activation, cytokine secretion, and expansion of
CD4 T cells between LT, mLT, and dmLT adjuvants (unpublished data). Thus, detoxifi-
cation of LT into dmLT results in a cellular specific change in the mechanisms of action
on epithelial cells responsible for secretion but not DCs responsible for immune
stimulation.

The immunologic events that occur with dmLT adjuvant can be summed up in the
steps depicted in Fig. 2 (with supporting evidence also described below). First, at the
site of immunization, antigen uptake and activation of innate immunity are promoted,
including cytokine/chemokine (IL-8, granulocyte colony-stimulating factor [G-CSF]) pro-
duction by epithelial cells. Second, DCs are recruited to the site of immunization and
activated for antigen processing/presentation (including antigen loading of major
histocompatibility complex [Ag-MHC]), upregulation of costimulatory molecules (CD80
and CD86), and polarizing cytokine secretion (IL-1, IL-23, IL-6, and G-CSF). Third, these
adjuvant-activated and antigen-loaded DCs drain to secondary lymphoid organs and
mediate production of antigen-specific T-helper (Th) cells and B-cell differentiation into
IgA/IgG antibody-secreting plasma cells (PC). A mixed Th1/Th2/Th17 response is in-
duced after immunization, with particularly strong induction of Th17 cells (1, 10, 15, 69)
and mucosal homing markers (7). Th17 cells are recognized as integral in immunity,
including promoting germinal center formation in secondary lymphoid organs and
enhancing IgA secretion (18–20).

The role for DCs as a central orchestrator for immunity has strong scientific
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evidence. Ex vivo treatment of small intestinal explants with dibutyryl cAMP, mLT,
LT, or CT results in recruitment of DCs to lymphoid follicle-associated epithelia for
enhanced luminal antigen uptake (75). Depletion of DCs prior to p.o. CT adminis-
tration inhibits generation of adjuvant-associated CD4 T-cell and antibody re-
sponses unless much higher doses of antigen are used (80). Other studies have
shown that DC treatment with LT and other cAMP stimulants (including dibutyryl
cAMP, forskolin, and phosphodiesterase inhibitors) increases chemokine expression
(81), upregulation of maturation markers (76, 82, 83), and antigen presentation for
T-cell responses, including Th2 (84, 85), Th1 (86), and Th17 (8, 10, 83, 87, 88).
Similarly, after i.d. microneedle injection with dmLT-adjuvanted vaccine, murine

FIG 2 Mechanisms of the adjuvant dmLT. See text for details.
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CD11c� DCs in the skin were shown to take up Shigella subunit antigens as soon
as 4 h postimmunization (although other antigen-presenting cells, including neu-
trophils, macrophages, and Langerhans cells, also took up antigen) (9). In a chin-
chilla model of nontypeable H. influenzae otitis media, carboxyfluorescein succin-
imidyl ester (CFSE)-labeled dermal DCs (DC-SIGN� CD11c� CD207�) were observed
in the nasal-associated lymphoid tissue (NALT) after t.c.i. immunization with dmLT
and antigen (55). In another paper by this same group, the authors were able to
detect labeled dmLT and antigen in CD11c� secondary lymphoid organs that
depended upon the placement of a t.c.i. band-aid vaccine (22).

The activation of DCs with LT and dmLT triggers a strong Th17-biased response
due to activation of caspase 1 inflammasome and subsequent secretion of specific
secreted factors, including IL-1 and IL-23. Brereton et al. elegantly showed that
mouse dendritic cells stimulated with LT secrete IL-1� that is required for genera-
tion of Th17 cells and can be inhibited with pretreatment with caspase 1 and NLRP3
inflammasome chemical inhibitors (83). Similarly, restimulation of human peripheral
blood mononuclear cells (PBMCs) from recently vaccinated individuals with dmLT
and vaccine antigens enhanced IL-17A and IL-13 secretion that was prevented
when cultures included anti-IL-1� and anti-IL-23 neutralizing antibodies (15). In a
follow-up study, these authors demonstrated that dmLT-stimulated PBMC cytokine
expression could be detected through intracellular staining of CD4 T cells and that
this adjuvant effect on PBMCs or isolated monocytes could be prevented with
inhibition of protein kinase A (PKA), IL-1RA (soluble IL-1 receptor), or caspase 1 (14).
The consequences of this antigen-presenting cell (APC) stimulation are immune
activation and promotion of mucosal and systemic immunity. Th17 induction and
IgA isotype class switching are also important mediators of the effect of dmLT. In
addition, using tetramer CD4 T-cell studies in mice, Frederick et al. have also shown
upregulation of mucosal homing markers �4�7 on lymphocytes in draining lymph
nodes after i.d. or i.m. immunization and corresponding localization of T cells within
intestinal tissue (7). This indicates that something in the adjuvant-DC interaction
promotes upregulation of gut homing markers, although at this point the exact
mechanism is unclear.

Intriguingly, as reported above, several studies now indicate that dmLT can also
provide nonspecific protection from disease (11, 58, 63). These reports are similar to
older studies done by us and others with related proteins. For example, we have shown
that 5 �g CT or mLT improves survival and decreases weight loss from influenza virus
pulmonary challenge 24 h after a single or double weekly i.n. treatment (74). Improved
survival with this regimen correlated with appearance of inducible bronchus-associated
tissue (iBALT) structures in the lung. Similarly, a lower trend of lung CFU after Strepto-
coccus pneumoniae nasopharyngeal challenge was observed in mice who had received
their last boost of CT or mLT by i.n. immunization 1 month earlier (10). These studies
indicate that activation of innate immunity is likely occurring to mediate these effects.
Whether these represent long-term or epigenetic changes like those observed with
trained immunity (89) is still unclear and requires further study.

Last, it is important to note that responses generated with dmLT may not be
equivalent to all enterotoxins, particularly when specific mechanisms or secretion of
specific cytokines is being measured (12, 14). For example, dmLT alteration of gene
expression in murine splenic CD11c� DCs only partially overlaps those of CT, including
some notable differences in TSP-1, IL-6, MIP-2� (higher with CT), and gamma interferon
(IFN-�) (higher with dmLT) (12). These slight variations may have important consider-
ations in generation of protective immunity.

In conclusion, studies to date indicate that a precise series of events takes place with
dmLT stimulation that results in a protein that cannot induce enterocyte intoxication
but is a potent stimulator of APCs and vaccine immunity. Future research into the
precise intracellular mechanisms responsible for these adjuvant-induced responses is
warranted.
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CONSIDERATIONS FOR USE

dmLT adjuvant has the unique potential to promote protective, long-lasting immunity
to vaccine antigens when included in vaccination. However, as with any aspect of a vaccine
formulation there are several caveats of use that should be carefully scrutinized.

(1) Is dmLT the best adjuvant for anticipated delivery route? dmLT is a good
adjuvant to promote dose sparing, mucosal immunity, and/or mucosal delivery. In
the last characteristic, dmLT is one of the few adjuvants that can directly assist
antigen uptake at mucosal sites through the activity of its B subunit. Current data
indicate that dmLT is safe and efficacious in promoting antigen responses with s.l.
and p.o. routes but should not be used i.n. Less information is available for i.d. and
i.m. routes, but ongoing clinical trials will determine this and also provide clinical
data that dmLT may be able to safely promote mucosal immunity even with
parenteral delivery routes.

(2) Is dmLT the best adjuvant to promote immunologic biases associated with
antigen-specific disease protection? dmLT adjuvant enhances a mixed Th1/Th2/
Th17 cellular response and enhances magnitude and longevity of antibody re-
sponses. However, the specific outcome of any adjuvanted vaccine responses will be
heavily influenced by the nature of the antigen itself. This has been demonstrated
recently by Leach et al., examining IL-17 secretion in human cells restimulated with
human vaccine antigens and dmLT (15). Immunologic outcomes will need to be
evaluated for each antigen(s), which may be complicated by delivery route, dose of
antigen or adjuvant, and interactions between vaccine components (e.g., TLR li-
gands).

(3) Which dose of dmLT adjuvant should be used? Route studies have demonstrated
clear differences in doses of dmLT required by each route. For example, dmLT or
similar adjuvants are commonly used at a 10- to 25-�g range p.o., 1 to 5 �g s.l., 10
to 50 �g t.c.i., or 0.1 to 5 �g parenterally. However, many studies have indicated that
these adjuvant doses may depend upon the nature of the antigen (e.g., subunit,
whole-killed, or live-attenuated), as the combination with inflammation induced by
antigen alone may play a significant role in immunologic outcomes. Basic immu-
nology studies, furthermore, have clearly indicated that “more is not always better.”
Too much inflammation or high doses of antigen can suppress the magnitude of
responses and also bias to a stronger antibody/Th2 response. This appeared to be
the case in ETVAX clinical trials, where 10 �g p.o. dmLT was superior to 25 �g (71).
We also observed higher induction of antibodies and lower development of Th1/
Th17 memory responses in mice immunized i.m. or i.d. with 1 �g dmLT and a
Mycobacterium tuberculosis subunit antigen at 5 �g compared with 0.5 �g antigen
(Norton and Clements, unpublished).

(4) Potential differences between human and animal models. The enterotoxin family of
adjuvants has been successfully used in fish, avian, rodent, rabbit, pig, monkey, and
human species (e.g., reference 90), often at relatively similar doses between species,
pointing to their versatility as an adjuvant family. However, there may be species
differences in receptor-ligand interactions or other host cell factors related to dmLT and
possibly those pertinent to other vaccine antigens. Therefore, one should be careful in
extrapolating or assuming that vaccine formulation research in animal models will
perfectly mimic human responses.

CONCLUSION AND FUTURE DIRECTIONS

In conclusion, dmLT is the product of more than 25 years of research. It was the
purpose of this review to succinctly describe the history of dmLT and all published
studies with dmLT, thereby providing the first review on this adjuvant protein. Both
preclinical and clinical data thus far indicate that dmLT is a safe and effective
adjuvant that in the right formulation can promote protective immunity. Unan-
swered questions for future studies include limitation on use of dmLT adjuvant,
safety of antigen-adjuvant combinations, and formulation optimizations (including
for route and non-cold-chain delivery, such as stability buffers). In addition, the
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mechanisms of adjuvanticity and generation of protective immunologic outcomes
with dmLT adjuvant require more detailed study. Similarly, comparisons of dmLT
with older enterotoxin adjuvants (e.g., LTK63 or LTR72) or other adjuvant classes
(e.g., alum and TLR agonists) or even in combinatorial adjuvant formulations are
warranted.
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