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Abstract.
Background: Accurate longitudinal modelling of cognitive decline is a major goal of Alzheimer’s disease and related demen-
tia (ADRD) research. However, the impact of subject-specific effects is not well characterized and may have implications for
data generation and prediction.
Objective: This study seeks to address the impact of subject-specific effects, which are a less well-characterized aspect of
ADRD cognitive decline, as measured by the Alzheimer’s Disease Assessment Scale’s Cognitive Subscale (ADAS-Cog).
Methods: Prediction errors and biases for the ADAS-Cog subscale were evaluated when using only population-level effects,
robust imputation of subject-specific effects using model covariances, and directly known individual-level effects fit dur-
ing modelling as a natural control. Evaluated models included pre-specified parameterizations for clinical trial simulation,
analogous mixed-effects regression models parameterized directly, and random forest ensemble models. Assessment used a
meta-database of Alzheimer’s disease studies with validation in simulated synthetic cohorts.
Results: All models observed increases in variance under imputation leading to increased prediction error. Bias decreased
with imputation except under the pre-specified parameterization, which increased in the meta-database, but was attenuated
under simulation. Known fitted subject effects gave the best prediction results.
Conclusion: Subject-specific effects were found to have a profound impact on predicting ADAS-Cog. Reductions in bias
suggest imputing random effects assists in calculating results on average, as when simulating clinical trials. However,
reduction in error emphasizes population-level effects when attempting to predict outcomes for individuals. Forecasting
future observations greatly benefits from using known subject-specific effects.
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INTRODUCTION

A prominent goal of Alzheimer’s disease and
related dementias (ADRD) research is the accurate
modelling of cognitive decline. Reliable predic-
tion of cognitive outcomes aids the design of
resource-intensive interventional trials [1–4] and
assists treatment and diagnosis of ADRD in clin-
ical settings [5–7]. Significant emphasis has been
placed on modelling trajectories of decline using
neuropsychological assessments like the Montreal
Cognitive Assessment Scale [8, 9], Mini-Mental State
Examination (MMSE) [10], and the Alzheimer’s
Disease Assessment Scale’s Cognitive Subscale
(ADAS-Cog) [11, 12]. These tools excel in relat-
ing the cognitive performance demonstrated in the
tests directly to clinical and functional outcomes
in patients [13, 14]. Identifying the demographic
characteristics these cognitive assessments most
strongly associate with is central to ADRD research
as they help inform how these characteristics
relate to longitudinal changes in cognition and,
in turn, decline in clinical function [15–17]. This
has led to development of statistical models of
decline which not only identify factors influenc-
ing these outcomes, such as genetic carrier status
of the Apolipoprotein E4 (APOE4) allele and
its relation to cognitive and functional capac-
ity [18, 19], but can also be used for outcome
prediction [20].

For clinical ADRD researchers, a natural follow-up
question for these models is appropriate utiliza-
tion, for example, development of population cohorts
or prediction of observations for individuals. As
such, method evaluations have become crucial,
using a combination of long-running natural his-
tory datasets and clinical trials from the literature
[21–23] alongside data simulation studies to assess
model generalizability across more varied scenarios
[24–26]. While novel techniques have demonstrated
potential with prediction of ADRD outcomes and
highlighted the importance of inclusion of specific
demographics [27, 28], some aspects of modelling
remain under-investigated. For longitudinal predic-
tion in particular, an especially important but often
overlooked component is the role of individual
participant-level effects and their impact on esti-
mation of cognitive outcome measures [29]. This
can be critical as exact subject-level effects are
unique to a specific individual within a given
model yet still greatly influence outcome estimation
[30, 31].

Overall, the decision of how to address subject-
specific effects is largely dependent on the goals of
a given study. For some analyses, subject-specific
effects are not of direct interest, such as examin-
ing the association of the APOE4 allele and AD in
a population. Meanwhile in other paradigms such as
predicting the course of AD in an individual patient,
subject-specific effects are a focus and appropriate
modelling of them is key. These decisions and their
implications come to the forefront when the sub-
ject level effects are unknown and not otherwise
available. In general, they must be imputed based
on model covariances or suppressed entirely and
either practice may not be appropriate depending
on whether an investigator is estimating predictions
for a population or an individual [32, 33]. Further-
more, generative or predictive models are developed
with specific goals but when leveraged outside their
original purpose may have unforeseen consequences.
For example, pre-specified parameterizations, which
have the benefit of accessibility and convenience for
clinical researchers who do not have datasets of their
own, may behave well under certain assumptions but
be severely misrepresentative in scenarios for which
they were never intended [34–37]. Understanding
the influence of subject-specific effects within cer-
tain paradigms can assist researchers when making
design decisions in their own models, such as whether
to impute or suppress these effects, and direct how to
best use calculated predictions of cognitive outcomes.

This study seeks to address this less well-
characterized aspect of longitudinal analysis in
ADRD cognitive decline as measured by the ADAS-
Cog subscale. Three separate model architectures are
considered, two built directly from data de novo and
a third previously developed by the Critical Path for
Alzheimer’s Disease (CPath) coalition using read-
ily available pre-specified parameterizations [21].
Predictive capacity of the models are evaluated for
error and bias when both estimating entire trajectory
profiles and forecasting future observations in the
ADAS-Cog. Three different subject-specific effects
designs are considered: completely suppressing these
effects and relying solely on population-level param-
eters, robustly imputing probable effects based on
model covariances, and directly relying on known
subject-specific effects using previously observed
data as a natural, positive control with an expecta-
tion of superior prediction performance. Comparing
the relative changes in error, variance, and bias
between these combinations of model designs can
give a better understanding how these components
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influence outcome prediction and help researchers
best choose when and how to use these subject-
specific effects in their own research in cognitive
decline.

METHODS

Evaluation datasets

Evaluation was initially conducted using a meta-
database consisting of 18 Alzheimer’s Disease
Cooperative Study (ADCS) trials and the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) as first
presented by Kennedy et al. [38]. Participants in
the meta-database represent the full spectrum of
Alzheimer’s disease dementia, ranging from cogni-
tively intact to diagnosed AD as determined by the
current clinical criteria at the time of each study.
Both clinical trials and observational studies were
used with data in six-month increments out to 24
months of evaluation. The outcome of interest was
the ADAS-Cog, which evaluates memory, reason-
ing, orientation, praxis, language, and word finding
ability and scored from 0 to 70 errors. Evaluation
time in months was the primary explanatory covari-
ate with additional demographic covariates included
based on their use in the CPath reference model.
These additional covariates consisted of age at study
baseline, sex, APOE4 carrier status using number
of E4 alleles, and baseline MMSE score. Additional
covariates were available within the meta-database,
such as Clinical Dementia Rating (CDR), and while
tabulated for reference, were not actively used dur-
ing this analysis as they were not part of the CPath
model paradigm. Although this precluded use of
covariates in the meta-database known to be associ-
ated with cognitive decline, such as disease duration
and education, covariates were restricted to those
used in the CPath reference parameterization to com-
pare models solely on the basis of subject-specific
effects.

Model evaluations were validated using simula-
tion of 500 separate synthetic cohorts each with
400 participants. Simulations were generated out
to 60 months at six-month intervals with serial
correlations established to test generalizability to
more variable ADAS-Cog measures compared to the
meta-database. The same covariates described in the
meta-database were also used in the synthetic cohorts
to orient all models relative to the parameterization
of the CPath reference design. Further details on
dataset development including generation of baseline

covariates and simulation of ADAS-Cog values can
be found in the supplemental methods.

Model designs

The CPath model for AD progression was devel-
oped using literature reported values and cohort
studies to model progression of the ADAS-Cog in
natural history or randomized clinical trial settings,
and create a framework to generate representative
simulation cohorts [21], with an implementation in R
using the adsim package, version 3.0 [39]. The model
uses the parameterizations from a beta regression
(BR) mixed-effects framework to accommodate the
bounded 0 to 70 scores of the ADAS-Cog by first nor-
malizing the score to a 0–1 range. Initial ADAS-Cog
scores are created using baseline MMSE score with
longitudinal trajectories according to baseline age,
sex, APOE4 allele count, and baseline MMSE. Devel-
opment used both summary and patient data to create
population-level fixed effect parameters and model
covariances to simulate individual-level effects with
coefficient values provided in the manuscript and
software package. Although originally designed for
clinical trial cohort simulation, the CPath implemen-
tation has seen utilization as a forecasting tool as
the model parameters are convenient and readily
available to all ADRD clinical researchers to pre-
dict ADAS-Cog scores, even in the absence of their
own dataset [16, 20, 40]. This makes it a natural ref-
erence model for this type of analysis focusing on
subject-specific effects.

To complement the pre-specified CPath parameter-
ization, BR mixed-effects models were developed de
novo for the datasets. A BR model was chosen to meet
statistical assumptions necessary to appropriately
model the 0–70 bounded range of the ADAS-Cog,
the same rationale used by the CPath model authors.
Selection of model covariates for baseline and lon-
gitudinal fixed effects and random effects mirrored
those of the CPath model but coefficient and covari-
ance values were generated dynamically from each
dataset to provide a comparison point to the pre-
defined values presented by Rogers et al. [21]. Use of
ad hoc models also created both model covariances
for random effects imputation as well as exact random
effects to create known subject-specific effects for
final observation forecasting of ADAS-Cog measures
for modeled individuals.

A final de novo model used mixed-effects random
forests (MERF) [41] combining the feature selec-
tion aspects of random forests with an extension
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to include mixed-effects models to accommodate
repeated measures in panel data and adjust predic-
tions using subject-specific effects. This provided
another ad hoc model potentially used by “big data”
ADRD research. This analysis used a modification
of the LongituRF package, version 0.9, in R adapted
for the current battery of random effect designs. Fur-
ther information about the CPath model can be found
in Rogers et al. [21] and development of the MERF
design in Capitaine et al. [41].

As mentioned, selection of explanatory model
covariates for this study was based on those parame-
terizations provided by the CPath reference model.
This focused model comparisons solely on differ-
ences due to subject-specific effects even if the
inclusion of other explanatory covariates could have
yielded more accurate predictions in the two de novo
models. Additional details about the current model
implementations are in the supplemental methods.

Influence of subject-specific effects on ADAS-Cog
measures

Evaluation was performed on holdout sets sam-
pled from both the meta-database and the simulated
data for two types of ADAS-Cog predictions: whole
trajectories for subjects across all time points and
forecasting of final observations. Validation holdouts
began with 20% of all subjects held out for whole
trajectories followed by 20% of final observations of
the model building datasets to forecast final observa-
tions. Holdout sampling was repeated 200 times for
the meta-database and performed once for each of
the 500 synthetic cohorts. For each model and pre-
diction type, subject-specific effects were either 1)
suppressed with only population-level effects used,
2) robustly imputed using 100 samplings from the
random effects covariance parameters, or 3) applied
directly based on the de novo BR and MERF model
fitted values when forecasting final observations as
a positive control with the expectation of highest
model performance. The impact on model predictive
capacity considered two common evaluation met-
rics. First was root mean square error (hereafter
referred to as error), the mean of the squared differ-
ence between the predicted and true values. The other
metric was absolute value of the measurement bias
(henceforth referred to as bias), the absolute value
of the mean difference between predicted and true
outcomes. Although related, these metrics evaluate
different aspects of prediction. Error is a character-
istic of a sample assessing overall accuracy and is

largely comprised of random variation. Meanwhile
bias is an aspect of an estimator, quantifying its devi-
ation from its expected value (e.g., the mean) and
is strongly influenced by non-random or systematic
effects. Larger values of both metrics are indicative
of poorer model prediction. Comparisons evaluated
percent differences in metrics, calculated 95% con-
fidence intervals via 1000-fold bootstrapping, and
identified models with improved metrics in at least
90% of the meta-database samplings and synthetic
cohorts.

RESULTS

Meta-database dataset

Observed ADAS-Cog scores from the meta-
database are summarized at each time point in
Table 1A, with participant disposition for the addi-
tional demographic covariates shown in Table 1B
for the entire cohort as well as by CDR status for
reference. Evaluation results of errors and bias for
the meta-database across the 200 samplings are pre-
sented in Figs. 1 (whole subject trajectories) and 2
(final observation forecasting) with average results
reported in Table 2 and percent differences in Table 3.
Within models, imputation of subject-specific effects
led to increases in error compared to designs using
only population-level effects with notably larger per-
cent increases for the CPath model compared to the
de novo BR and MERF models. Across models when
only using population effects, there was no observ-
able difference in error; however, when imputing
subject-specific effects, the CPath model observed
increases in error compared to the de novo models
for both whole trajectories and final observations.
Also, under imputation, error for the MERF mod-
els was higher compared to the de novo BR model
for both prediction types. As anticipated for the con-
trol design, using known subject-specific fitted effects
when forecasting led to the least prediction error with
smaller error for both de novo BR and MERF models
compared to their population-level effects only and
robust imputation designs.

Patterns for changes in bias for the meta-database
were less consistent than those for error. When com-
paring within models between the population-level
effects only and robust imputation designs, the CPath
model observed an increase in all samplings in bias
under imputation for both whole subject trajectories
and final observation forecasting while the de novo
BR method had decreases in bias under imputation.
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Table 1
ADAS-Cog scores in the meta-database cohort by time point (A) along with subject characteristics (B) for the whole cohort and according
to CDR dementia status for reference. ADAS-Cog scores, baseline age, and MMSE score shown as mean score ± standard deviation with

sex and APOE4 carrier status shown as count and percent

A) ADAS-Cog scores by time point

Timepoint Full meta-database Cognitively normal Mild cognitive AD dementia
cohort (CDR = 0) impairment (CDR = 0.5) (CDR ≥ 1.0)

Baseline 12.9 ± 5.74 (N = 2840) 6.0 ± 2.95 (N = 525) 11.7 ± 5.42 (N = 1759) 23.3 ± 8.21 (N = 556)
6 months 13.5 ± 6.31 (N = 2563) 5.7 ± 2.90 (N = 496) 11.5 ± 5.82 (N = 1451) 24.5 ± 8.88 (N = 616)
12 months 14.1 ± 6.98 (N = 2333) 5.5 ± 2.81 (N = 428) 11.3 ± 6.18 (N = 1273) 25.6 ± 9.88 (N = 632)
18 months 17.5 ± 8.14 (N = 1067) 6.6 ± 3.22 (N = 26) 11.5 ± 5.61 (N = 656) 28.4 ± 11.38 (N = 385)
24 months 11.6 ± 6.45 (N = 1626) 5.3 ± 2.94 (N = 438) 10.4 ± 5.51 (N = 889) 24.6 ± 11.11 (N = 299)

B) ADAS-Cog scores by subject demographics

Covariate Full meta-database Cognitively normal Mild cognitive impairment AD dementia
cohort [N = 2840] (CDR = 0) [N = 525] (CDR = 0.5) [N = 1759] (CDR ≥ 1.0) [N = 556]

Baseline age 73.5 ± 7.42 73.8 ± 5.80 72.7 ± 7.58 75.7 ± 8.24
Baseline MMSE 26.0 ± 2.55 29.1 ± 1.15 26.7 ± 2.54 20.9 ± 3.41
Sex (female) 1333 [46.9%] 270 [51.4%] 761 [43.3%] 302 [54.3%]
Heterozygous APOE4 carriers 1136 [40.0%] 138 [26.3%] 736 [41.8%] 262 [47.1%]
Homozygous APOE4 carriers 329 [11.6%] 12 [2.3%] 212 [12.1%] 105 [18.9%]

CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Examination.

Fig. 1. Error (A) and bias (B) for each of the models predicting whole subject trajectories for each of the 200 meta-database samplings. Error
bars for root mean square error presented as mean and standard deviation while error bars for bias represent median and interquartile range.
CPath, Critical Path for Alzheimer’s Disease; BR, beta regression; MERF, mixed-effects random forest; PLE, population-level effects; SSE,
subject-specific effects.

Fig. 2. Error (A) and bias (B) for each of the models forecasting final observations of the holdout sets for each of the 200 meta-database
samplings. Error bars for root mean square error presented as mean and standard deviation while error bars for bias represent median
and interquartile range. CPath, Critical Path for Alzheimer’s Disease; BR, beta regression; MERF, mixed-effects random forest; PLE,
population-level effects; SSE, subject-specific effects.
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Table 2
Results for the 24-month meta-database for error (A presented as mean ± standard deviation) and bias (B presented as median ± interquartile
range) across the 200 sampling imputations used to build the two de novo models comparing subject-specific effects designs for whole

subject trajectories and final observation forecasts

A) Root mean square error

Prediction type Subject-specific CPath De novo De novo
effects design parameterization BR model MERF model

Whole subject trajectories Population effects only 6.43 ± 0.196 6.42 ± 0.232 6.32 ± 0.239
Imputed subject effects 12.54 ± 0.124 7.79 ± 0.191 8.14 ± 0.179

Forecast of final observations Population effects only 7.70 ± 0.348 7.78 ± 0.385 7.47 ± 0.380
Imputed subject effects 16.52 ± 0.195 8.93 ± 0.339 10.07 ± 0.291
Fitted subject effects – 4.24 ± 0.238 4.44 ± 0.249

B) Absolute value of bias

Prediction type Subject-specific CPath De novo De novo
effects design parameterization BR model MERF model

Whole subject trajectories Population effects only 1.12 ± 0.312 0.60 ± 0.414 0.21 ± 0.259
Imputed subject effects 3.03 ± 0.308 0.22 ± 0.286 0.20 ± 0.212

Forecast of final observations Population effects only 0.57 ± 0.482 1.02 ± 0.529 0.63 ± 0.277
Imputed subject effects 3.94 ± 0.497 0.58 ± 0.525 0.39 ± 0.454
Fitted subject effects – 0.25 ± 0.256 0.27 ± 0.275

CPath, Critical Path for Alzheimer’s Disease; BR, beta regression; MERF, mixed-effects random forest.

For trajectories, there was no difference in bias within
the MERF models although there was a decrease
in bias in 92% of the meta-database samplings for
observational forecasting. When using fitted subject-
specific effects for forecasting, the de novo BR model
saw decreases in bias compared to its other two
designs, meeting the 90% meta-database sampling
threshold (98% for imputation and all samplings for
population-level effects). This threshold also held
for the MERF model comparing fitted effects to
population-level effects (91% of samplings) but not
when comparing fitted effects to the imputed design
(67.5% of samplings). Across models when using
only population-level effects, although median bias
was largest in the CPath model for whole trajec-
tories and largest in the de novo BR model when
forecasting, neither met the 90% consistency thresh-
old compared to bias in the two de novo models.
Under imputation, the CPath model had higher bias
compared to both de novo models for both predic-
tion types. There was no observed difference in bias
between the de novo BR and MERF models under
imputation for either prediction type nor was there a
difference in bias when using fitted subject-specific
effects.

Simulation datasets

Evaluation results for the 500 60-month simula-
tion datasets are shown in Figs. 3 (whole subject
trajectories) and 4 (final observation forecasting) with
average results reported in Table 4 and percent dif-
ferences and confidence intervals in Table 5. General

patterns in error for the meta-database were largely
repeated under simulation although overall error
values were larger due to the longer evaluation time-
frames. Imputation of subject-specific effects again
led to increases in error compared to population-
effects only designs for both types of predictions.
However, the percent increases in error for the CPath
model were notably attenuated at half the magnitude
in the synthetic cohorts while the percent increases
were mildly larger under simulation for the two de
novo methods. When using only population-level
effects, there was no difference in error values across
the various models with none of the comparisons
meeting the 90% threshold. However, under impu-
tation of subject effects, the CPath model did have
higher error compared to the de novo BR and MERF
models in nearly every synthetic cohort although
not to the degree observed in the meta-database.
As before, using fitted subject-specific effects led to
error values significantly lower for both types of de
novo models compared to the other subject-specific
effects designs, but no difference was observed in
error between the de novo BR and MERF models
when using fitted effects.

For bias under simulation, the patterns observed
in the meta-database for the de novo BR and MERF
models were again observed. For whole trajectories,
bias was numerically lower under imputation com-
pared to population-level only designs for the de
novo BR model, although this reduction was only
observed in 78% of the cohorts, with no statistical
difference for the MERF models. When forecasting
final observations, imputation did lead to numerically
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Table 3
Percent differences in mean error and median bias across associated models and subject-specific effect designs for whole subject trajectories (A) and forecasting of final observations (B) for the
meta-database. Error results are in the lower half of the table and bias results in the upper half. Negative percentages indicate better predictive performance for the design listed in the row relative
to the design in the column. Tests which were not associated either by model type or subject-specific effects design were not evaluated and are indicated with ‘-’. Comparisons where the better

predicting model demonstrated improved metrics in at least 90% of the 200 meta-database samplings are bolded

A) Subject trajectories – meta-database
���������Error

Bias

CPath PLE only CPath SSE imputed De novo BR PLE only De novo BR SSE imputed MERF PLE only MERF SSE imputed

CPath PLE only –171.0% 85.8% – 434.1% –
[–201.4% – –155.5%] [52.2% – 141.6%] – [287.7% – 764.7%]

CPath Imputed 95.0% 1284.6% – 1443.7%
[92.9% –96.9%] [825.4% – 1929.2%] – [1032.4% – 2052.6%]

De novo BR PLE only –0.1% 174.9% 187.4% –
[–1.6% – 1.3%] [68.4% – 292.9%] [98.0% – 370.5%]

De novo BR SSE imputed – –60.9% 21.3% – 11.5%
[–62.3% – –59.6%] [19.6% – 23.1%] [–38.1% – 84.9%]

MERF PLE only –1.8% – –1.6% – 6.6%
[–3.3% – –0.3%] [–3.3% – –0.1%] [–57.9% – 65.9%]

MERF SSE imputed – –54.0% – 4.5% 28.8%
[–55.2% – –52.9%] [3.5% – 5.6%] [27.0% – 30.6%]

B) Forecasting final observations – meta-database
���������Error

Bias
CPath PLE only CPath SSE imputed De novo BR PLE only De novo BR SSE imputed De novo BR SSE fitted MERF PLE only MERF SSE imputed MERF SSE fitted

CPath PLE only –593.4% –79.0% – – –11.8% – –
[–862.4% – –448.9%] [–151.3% – –32.7%] [–59.0% 17.3%]

CPath SSE imputed 114.7% – 575.9% – – 899.3% –
[111.5% – 117.8%] [422.7% 849.0%] [625.7% 1462.8%]

De novo BR PLE only 1.0% – 74.5% 305.2% 60.1% – –
[–1.0% – 3.2%] [25.7% 143.2%] [196.1% 439.9%] [28.2% 92.2%]

De novo BR SSE imputed – –85.0% 14.9% 132.3% – 47.8% –
[–87.3% – –82.8%] [12.6% 17.2%] [50.3% 238.7%] [–3.5% 152.3%]

De novo BR SSE fitted – – –83.4% –110.7% – – –8.5%
[–87.5% –79.3%] [–114.8% –106.3%] [–52.8% 35.9%]

MERF PLE only –3.0% – –4.1% – – 61.1% 133.4%
[–5.3% – –0.8%] [–6.4% –1.9%] [15.6% 151.0%] [79.0% 213.8%]

MERF SSE imputed – –64.1% – 12.7% – 34.8% 44.9%
[–65.8% – –62.4%] [11.2% 14.4%] [32.5% 37.4%] [–6.3% 124.1%]

MERF SSE fitted – – – – 4.8% –68.1% –126.6%
[2.2% 7.4%] [–72.0% –64.2%] [–130.7% –122.4%]

CPath, Critical Path for Alzheimer’s Disease; BR, beta regression; MERF, mixed-effects random forest; PLE, population-level effects; SSE, subject-specific effects.
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Fig. 3. Error (A) and bias (B) for each of the models predicting whole subject trajectories for each of the 500 synthetic cohorts. Error bars
for root mean square error presented as mean and standard deviation while error bars for bias represent median and interquartile range.
CPath, Critical Path for Alzheimer’s Disease; BR, beta regression; MERF, mixed-effects random forest; PLE, population-level effects; SSE,
subject-specific effects.

Table 4
Results for the 60-month synthetic cohorts for error (A presented as mean ± standard deviation) and bias (B presented as
median ± interquartile range) across the 500 datasets comparing subject-specific effects designs for whole subject trajectories and final

observation forecasts

A) Root mean square error

Prediction type Subject-specific CPath De novo De novo
effects design parameterization BR model MERF model

Whole subject trajectories Population effects only 12.88 ± 1.552 11.80 ± 1.537 11.54 ± 1.441
Imputed subject effects 18.77 ± 0.904 15.75 ± 1.230 15.85 ± 1.373

Forecast of final Population effects only 15.15 ± 2.101 13.04 ± 1.926 12.41 ± 1.849
observations Imputed subject effects 23.35 ± 1.267 17.03 ± 1.619 17.15 ± 1.685

Fitted subject effects – 2.89 ± 1.548 2.65 ± 1.364

B) Absolute value of bias

Prediction type Subject-specific CPath De novo De novo
effects design parameterization BR model MERF model

Whole subject trajectories Population effects only 1.14 ± 1.677 2.24 ± 2.170 1.11 ± 1.387
Imputed subject effects 2.34 ± 2.120 1.08 ± 1.421 1.12 ± 1.423

Forecast of final Population effects only 2.01 ± 2.435 2.23 ± 2.241 1.77 ± 2.043
observations Imputed subject effects 3.11 ± 2.829 1.19 ± 1.326 1.08 ± 1.353

Fitted subject effects – 0.38 ± 0.470 0.44 ± 0.414

CPath, Critical Path for Alzheimer’s Disease; BR, beta regression; MERF, mixed-effects random forest.

lower bias for both models although neither met
the 90% threshold (74.8% of cohorts for de novo
BR and 70.2% of cohorts for MERF). Using fitted
subject-specific effects led to greatly reduced bias
compared to population-level only models for both
de novo BR (96.6% of cohorts) and MERF mod-
els (92% of cohorts) but did not meet the cohort
threshold when comparing subject-specific effects
which were imputed to subject-specific effects fit
directly (84% for de novo BR and 80.2% for MERF).
Most notably for the CPath model, although bias
values were still larger when subject-specific effects
were imputed compared to using only population-
level effects, the increases were several times lower
under simulation (1.5–2 times larger) compared to the
increases for the meta-database (2–5 times larger),

with increased bias only observed in 66% of the
whole trajectory cohorts and 62.6% of the forecasting
cohorts. In addition, when comparing across mod-
els using either population-level effects only or when
imputing subject-specific effects, none of the model
comparisons reached the 90% threshold which held
for both whole trajectories and observational fore-
casting.

DISCUSSION

This study is the first comprehensive assess-
ment of the impact of subject-specific effects when
predicting longitudinal change in cognitive decline
as measured by the ADAS-Cog with comparisons
considering a widely available and readily accessi-
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Table 5
Percent differences and 95% confidence intervals in mean error and median bias with significance testing comparing across associated models and random effect designs for whole subject
trajectories (A) and forecasting of final observations (B) for the for the simulated datasets. Error results are in the lower half of the table and bias results in the upper half. Negative percentages
indicate better predictive performance for the design listed in the row relative to the design in the column. Tests which were not associated either by model type or subject-specific effects design

were not evaluated and are indicated with ‘-’. Comparisons where the better predicting model demonstrated improved metrics in at least 90% of the 500 synthetic cohorts are bolded

A) Subject trajectories – simulation
���������Error

Bias
CPath PLE only CPath Imputed De novo BR PLE only De novo BR Imputed MERF PLE only MERF Imputed

CPath PLE only –106.3% –97.5% – 1.9% –
[–175.6% –48.2%] [–161.1% –40.2%] [–33.3% 48.1%]

CPath SSE Imputed 45.7% – 116.5% – 108.3%
[42.2% 49.5%] [70.4% 194.1%] [58.4% 177.1%]

De novo BR PLE only –9.1% – 107.3% 101.2% –
[–13.2% –5.6%] [57.8% 185.7%] [58.0% 172.1%]

De novo BR SSE Imputed – –19.1% 33.5% – –3.9%
[–21.4% –16.9%] [29.5% 37.4%] [–47.2% 30.1%]

MERF PLE only –11.6% – –2.3% – –0.9%
[–15.5% –7.8%] [–5.7% 1.3%] [–43.2% – 35.8%]

MERF SSE Imputed – –18.4% – 0.6% 37.4%
[–20.8% –16.1%] [–1.9% 3.0%] [33.0% 41.9%]

B) Forecasting final observations – simulation
���������Error

Bias
CPath PLE only CPath SSE imputed De novo BR PLE only De novo BR SSE imputed De novo BR SSE fitted MERF PLE only MERF SSE imputed MERF SSE fitted

CPath PLE only –54.7% –11.2% – – 13.6% – –
[–106.2% –17.2%] [–51.9% 19.7%] [–18.8% 55.0%]

CPath SSE imputed 54.1% – 161.2% – – 186.9% –
[50.0% –58.7%] [109.5% 247.7%] [121.5% 281.2%]

De novo BR PLE only –16.2% – 87.8% 480.1% 26.3% – –
[–20.5% –11.9%] [43.8% 158.9%] [357.3% 671.1%] [–1.7% 69.6%]

De novo BR SSE imputed – –37.1% 30.6% 208.9% – 9.8% –
[–40.1% –34.2%] [26.4% 35.1%] [133.2% 315.5%] [–25.3% 47.3%]

De novo BR SSE fitted – – –350.6% –488.5% – – –14.0%
[–399.7% –303.9%] [–561.0% –427.8%] [–46.3% 15.8%]

MERF PLE only –22.1% – –5.1% – – 63.3% 303.0%
[–26.9% –17.3%] [–9.4% –0.6%] [21.2% 121.2%] [212.6% 418.8%]

MERF SSE imputed – –36.1% – 0.7% – 38.2% 146.8%
[–39.1% –33.2%] [–2.3% 3.4%] [33.6% – 42.8%] [88.0% 228.5%]

MERF SSE fitted – – – – –9.3% –369.0% –548.2%
[–27.3% 5.5%] [–422.1% –325.0%] [–622.5% –488.7%]

CPath, Critical Path for Alzheimer’s Disease; BR, beta regression; MERF, mixed-effects random forest; PLE, population-level effects; SSE, subject-specific effects.
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ble pre-parameterized model originally designed for
cohort generation, an analogous regression model
built directly from a dataset similar to what may
be available to clinical researchers, and a more
novel ensemble method using mixed-effects random
forests also developed ad hoc from a dataset. Impu-
tation of subject-specific effects was associated with
increases in error as measured by root mean square
error compared to designs where these effects were
suppressed while, as an expected high-performance
control, using known fitted subject-specific effects
led to the smallest prediction error. For models
fit directly from the data, bias as measured by
absolute value of the bias was numerically largest
when only population-level effects were used and
decreased when subject-specific effects were imputed
and decreased further when previously fitted subject-
specific effects were used directly. Notably, under
imputation, the percent decreases in bias were
not as large as the percent increases in error, an
important consideration in bias-variance tradeoff for
researchers seeking to jointly minimize both aspects
of erroneous prediction instead of one specifically.
Critically, for the pre-parameterized CPath model,
bias increased under imputation of subject-specific
effects. However, although this increase in bias was
approximately 2–5 times for a real-world meta-
database, it was significantly attenuated when tested
under simulation with more generalized datasets,
ranging only from 1.5 to 2 times larger, and observed
in less than 70% of the collection of synthetic cohorts.

Careful examination of subject-specific effects
is underappreciated but especially important when
modelling progressive disorders like ADRD. Their
studies should preferably be longitudinal wherein
the same individuals have multiple repeated mea-
sures over time for several months or even years and
provide datasets with unique structures. While these
data are powerful when predicting ADRD related
worsening, care is needed as rudimentary statistical
designs are unable to adequately account for within-
subject relationships. Ignoring the interrelatedness of
repeated measures can lead to errors in inference
and, in turn, incorrect conclusions on ADRD pro-
gression [42–44]. Internal similarity within subjects
is expected under repeated measures and appropri-
ate modelling and utilization of these subject-specific
effects is critical whether predicting outcomes for
population cohorts or individual subjects [45].

From a clinical perspective, the most impor-
tant consideration from this analysis is how these
observed patterns in error and bias should direct

model utilization in ADRD research. Ultimately, this
is dependent on the goals of a study since, as demon-
strated, different types of predictions and model
designs have their own strengths and weaknesses
and are best used in their appropriate scenarios. To
highlight this, consider two vignettes for an ADRD
clinical researcher: generation of a synthetic repeated
measures cohort in a feasibility proposal for a longitu-
dinal study, and direct outcome prediction of a future
observation for an actual AD patient.

For the synthetic feasibility proposal scenario,
generation of predicted outcomes over multiple time-
points for several study participants emphasizes a
response across the entire cohort and, under this
design, the predicted cognitive outcome of an indi-
vidual subject is of less importance. This prioritizes
a population-level estimate which is as close to the
expected value as possible, that is, an estimate which
should have especially low bias across the collec-
tion of participants, even if the predicted outcome for
a specific individual may have higher variance and
error. In this situation, imputation of subject-specific
effects for each subject in the synthetic cohort is an
appropriate course of action as it would be expected
to reduce the bias across the cohort as a whole and
give a more accurate average estimate for the entire
dataset.

As a counterpoint, consider a researcher attempt-
ing to predict an outcome for a particular participant
for a follow-up visit. Now the emphasis is on the
most accurate estimate possible for this single indi-
vidual, an estimate that has the lowest possible error
even if the predicted outcome may be biased rela-
tive to the population average. In this paradigm, if
the subject-specific effects for this given participant
are unknown, imputation would lead to undesirable
increases in prediction error. Rather, it is more appro-
priate to suppress subject-specific effects and rely
solely on population-level parameters for prediction.
The idea of suppressing subject-specific effects for
subject-level predictions at first sounds counterintu-
itive but can be appreciated in this scenario with the
understanding that the exact subject-specific param-
eters for the individual in question are unknown. By
extension, the most ideal scenario would arise if the
participant were part of a dataset the researcher had
access to, in which case subject-specific effects for
this individual could be calculated directly, giving the
most accurate cognitive outcome prediction possible.

This dichotomy in clinical utilization of prediction
comes into clearer focus when considering the devel-
opmental goals of the CPath model. Similar to the first
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Fig. 4. Error (A) and bias (B) for each of the models forecasting final observations of the holdout sets for each of the 500 synthetic cohorts.
Error bars for root mean square error presented as mean and standard deviation while error bars for bias represent median and interquartile
range. CPath, Critical Path for Alzheimer’s Disease; BR, beta regression; MERF, mixed-effects random forest; PLE, population-level effects;
SSE, subject-specific effects.

scenario, it was originally developed to generate fea-
sible cohorts to simulate studies in cognitive decline.
This is a very different objective from explicitly pre-
dicting either trajectories of decline or forecasting
of future events at the individual level. Instead, the
goal was to develop a methodology which could gen-
erate a reasonable mean ADAS-Cog response for a
cohort an investigator could anticipate recruiting for
feasibility purposes. Here, under this data generation
framework, it can be seen how increased variance and
reduced bias are in fact desirable. Much like the inves-
tigator proposing a study, the priority is for expected
ADAS-Cog trajectories which, on average, will tend
to be close to the ground truth for a population of
interest as possible. Thus, the imputation of subject-
specific effects is beneficial, yielding outcomes with
greater variability in individuals but reduced overall
bias.

In comparison, when attempting to predict out-
comes for an individual AD study participant or
clinical patient, as in the second scenario, it is far
more desirable to have outcomes that are highly accu-
rate with the lowest possible error. In these situations,
relying solely on population-level effects leads to
predictions with reduced error when compared to
imputation of a potential subject-specific effect. Even
more preferred is making use of previously observed
data in a previously evaluated individual to calculate
known and fitted subject-specific effects which will
give the most accurate predictions possible. Unfortu-
nately, this is predicated on researchers having access
to these datasets to build their own parameterizations
which may not always be possible. Regardless, for
predictions at the individual level, researchers and
clinicians are best served building their own mod-
els if possible using previously observed data, or if

relying on readily accessible outside parameteriza-
tions for convenience, only using demographic and
population-level effects.

A key point to mention is when attempting to
predict ADAS-Cog scores in the meta-database, a
collection of real-world data, the pre-parameterized
CPath model showed large increases in both error and
bias. On the surface, this would suggest the model as
a whole is poorly designed for either generation of
synthetic cohorts (its intended purpose) or individual
prediction. However, it is important to reiterate its
utility in the current study was as a reference parame-
terization which any ADRD clinical researcher could
readily leverage, even without access to an ADRD
data cohort of their own, a facet of convenience
which should not be understated. Furthermore, when
applied to the more generalized synthetic cohorts dur-
ing simulation, the increases in error and bias were
markedly smaller in magnitude and much more in
line with the evaluation metrics observed in the two
models built directly from the data. This suggests a
specific issue of using the pre-specified parameteri-
zation with this particular dataset under a prediction
framework. Nonetheless, the CPath model can be
expected to generalize well to other cohorts like
those generated during simulation. This makes its uti-
lization, including the imputation of subject-specific
effects as recommended by the authors, more than
appropriate for its intended use of generating mean
responses in cohorts for clinical trial simulation and
calculate expected on-average ADAS-Cog values.

Ultimately, the role of subject-specific effects in
modelling cognitive decline is dependent on the
investigator’s research question of interest. If the
goal is generating data where on average accuracy
is desired for a full cohort, the inclusion of imputed
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subject-specific effects is warranted. However, if
the goal is instead to predict the trajectory or end-
point of a specific individual, only population-level
fixed effects should be used to get the most accu-
rate prediction possible. The exception to this is
when forecasting future observations for an individ-
ual whose subject-specific effects are known, having
been determined using previously observed data dur-
ing model building. In these cases, making use of
fitted subject-specific effects will always lead to the
most unbiased predictions with the smallest errors.
Recognizing these scenarios and aligning them with
the desired study goals is what will lead to better,
more accurate outcomes and higher quality research
in cognitive decline.
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