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Correlated noise in Brownian 
motion allows for super resolution
Santiago Oviedo‑Casado1,5*, Amit Rotem1,5, Ramil Nigmatullin2, Javier Prior3,4 & 
Alex Retzker1

Diffusion broadening of spectral lines is the main limitation to frequency resolution in non-polarized 
liquid state nano-NMR. This problem arises from the limited amount of information that can be 
extracted from the signal before losing coherence. For liquid state NMR as with most generic sensing 
experiments, the signal is thought to decay exponentially, severely limiting resolution. However, 
there is theoretical evidence that predicts a power law decay of the signal’s correlations due to 
diffusion noise in the non-polarized nano-NMR scenario. In this work we show that in the NV based 
nano-NMR setup such diffusion noise results in high spectral resolution.

Spectral analysis is of utmost importance in a wide variety of fields from material science, to biology and medi-
cine. Among the most widespread techniques to obtain structural information in the form of a spectrum is 
Nuclear Magnetic Resonance (NMR), which is nonetheless hindered by low sensitivity. One promising approach 
to improve the capacities of NMR is to reduce the sample to the nano-scale. This technique, however, is still lim-
ited by the finite resolution of spectral features. A possible solution is to use polarized samples as in conventional 
NMR1,2, but this approach requires either large samples or a substantial increase in experimental complexity. In 
this work we challenge the claim that working with nano-sized samples limits resolution, and provide analytical 
and numerical evidence supporting the viability of the non-polarized setup as an alternative route to nano-NMR.

NV centers have been used extensively in the past as quantum sensors for the implementation of the nano-
NMR scheme1,3–10. In particular, the use of quantum heterodyne (Qdyne) measurement techniques (know as 
well as synchronized measurements), together with a suitable data-analysis algorithm has demonstrated that 
resolving two close frequencies requires no more than accumulating a sufficient number of measurements11,12. 
These techniques, however, are computationally heavy since they need to solve a global maximization problem 
in a large dimensional space that grows linearly with measurement time.

Measuring a spectrum that contains two (or more) similar frequencies that are closer than the characteristic 
width of their line-shape results in a resolution problem (Fig. 1). The intuition behind the limited resolution can 
be understood in terms of the Rayleigh criterion from optics, where two images are resolvable only up to the 
wavelength used to image them. Here, the width of the line-shape plays the role of the wavelength. This resolu-
tion problem for two close frequencies can best be understood by looking at the change in the spectrum ( S ) as 
a function of the frequency difference. For a smooth function; e.g., a Lorentzian, a finite frequency difference has 
a very small effect on the spectrum (Fig. 1a), whereas for a sharp-peak function the change is more pronounced 
(Fig. 1b). This suggests that for a sharp-peaked spectrum, spectral-resolution could be improved.

Spectral resolution in NV based liquid-state nano-NMR is limited mainly by the diffusion of nuclei in the 
sample13–16. When measuring a noisy signal oscillating at frequency δ , the amount of information that can be 
extracted from the auto-correlation of the signal; e.g., cos(δt)C(t) , is limited by the noise coherence time. For 
diffusion noise in liquid state nano-NMR, C(t) is generally considered to be an exponentially decaying function 
leading to Lorentzian spectral line-shapes, impeding high spectral resolution. In this manuscript, we challenge 
this framework by building on the work of Cohen et al.17, which reported that a significant deviation from the 
Lorentzian line-shape paradigm occurs when measuring a magnetic field of a non-polarized nano-sized liquid 
sample with a shallow NV. We show that diffusion does not limit resolution and that the analysis is computation-
ally amenable and can be done with simple algorithms such as Fourier spectrum analysis.

The effect in17 can be understood as follows. The effective sensitivity of an NV located at depth d beneath a 
sample extends to a semi-sphere of radius d above the surface that contains N ∝ d3 non-polarized nuclei. The 
rms of the magnetic field sensed by the NV is thus Brms ∝

√
N/d3 , where the d3 is due to the dipole-dipole 
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interaction between NV and nuclei. The peak of the power spectrum is thus S(δ = 0) ∝ B2rmsTφ ∝ 1/d , with 
Tφ ∝ d2 the characteristic time that it takes the nuclei to diffuse out of the semi-sphere (i.e., the inverse of the 
signal bandwidth). When, for example, applying dynamical decoupling (DD) sequence with detuning δ from the 
nuclei Larmor frequency, a new length scale is introduced, i.e., ℓ =

√
D/δ ; this length scale can be understood 

as a cut-off for the interaction between NV and distant nuclei; fields coming from these nuclei are slow changing 
and thus attributed to low frequency. Using the same reasoning as before, the power spectrum around the peak 
is S(δ) ∝ 1/d − α/ℓ = 1/d − α

√
δ/D , where α is a positive number. Therefore the power spectrum in NV based 

nano-NMR of liquid samples is a sharp-peaked function. A similar effect has also been observed in diffusing atom 
systems18. Conversely, in the time domain, where the resolution problem is manifested by our ability to see a beat-
note, the measurement protocol with a shallow NV produces a correlation function with polynomial rather than 
exponential decay, such that the beating between close frequencies can be observed, allowing higher resolution.

Results
FI analysis.  We now analyze the effect of long-lived correlations on frequency estimation and resolution. The 
resolution problem is characterized by an estimation error for the frequencies that diverges when the frequency 
difference is much smaller than the characteristic noise frequency, T−1

φ  , as demonstrated by a vanishing amount 
of information extracted from the signal19. For a noise that is a stationary Gaussian process, with a covariance 
function of the form Cov(t) ∝ C(t)

∑N
j=1 cos(δjt) , the resolution problem occurs for |δi − δj|Tφ < 1 . We restrict 

the derivation to the estimation of a small single frequency, which is a good model for the resolution problem 
since the average frequency is generally easier to estimate. We analyze the three possible measurement scenarios, 
i.e. correlation spectroscopy4,20, Qdyne/synchronized measurement protocol1,8,9, and power spectrum probing21. 
For the full details of this derivation and schematics of each protocol we refer the reader to the Supplementary 
Information.

Correlation spectroscopy.  The fluorescence response of the NV can be modeled by a Poisson distribution with 
a rate parameter that depends on the NV state ( m = 0, 1 ). In the correlation spectroscopy scenario, the average 
number of photons detected is given by4,20

where η, c are the average detection rate and contrast, and φs(φs+t) is the phase accumulated by the NV during 
the first (second) interrogation time ( τ ). These phases are calculated by integrating over the magnetic field. 
We model the magnetic field as stationary Gaussian processes oscillating at frequency δ , with a characteristic 
correlation time Tφ and a mean field strength of Brms . Averaging over realizations of the magnetic field yields

(1)p = η +
c

2
�sin(φs) sin(φs+t)�,

Figure 1.   Problem illustration. When the line-shapes of two underlying frequencies (blue and orange) 
overlap, the measured line-shape (solid green) can be very similar to line-shape of a single, strong frequency 
(dashed green). The difference between the two line-shapes is most notable at the peak/center of the spectrum, 
where the changes brought about by the two underlying line-shapes coincide (blue and orange “minus” signs, 
indicating that �S is negative for a finite �f  ), whereas at the edge of the spectrum the changes are opposite 
(blue “plus” and orange “minus” signs on the left, and vice versa on the right). (a) For a smooth function; e.g., 
Gaussian or Lorentzian, �S /�f  is linear in �f  and thus small. In contrast, for a sharp-peak function as in 
(b) �S /�f ∼ �f −1/2 , as can be shown from the diffusion dominated correlation function (Eq. 13), and 
resolution is not limited. See Supplementary Information for more details.
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where C(·) is the correlation function (envelope) of the phases. The rms of the accumulated phase and its cor-
relation function can be approximated by φrms ≈ γBrmsτ and C(t/Tφ) cos(δt) ≈ corr(Bs ,Bs+t) for a short inter-
rogation time τ ≪ Tφ , where γ is the gyromagnetic ratio of the NV. For a weak signal (i.e., φ2

rms ≪ 1 ) Eq. (2) 
can be approximated by

The FI of δ from a single measurement (a single choice of t  ) is given by

in the weak signal regime. Eq. (4) shows that the sine term is the reason for the limited resolution. The maxi-
mum amount of information from a single measurement (for small δ ) depends on the correlation function. An 
exponential decay imposes an optimal measurement time that scales as topt ∝ Tφ ; i.e., the longest time possible 
before the correlation is exponentially small. Thus the information scales as jδ,δ ∝ δ2T4

φ , and vanishes for δ → 0 . 
By contrast, for a slow polynomial decay (i.e., C(z) ∝ z−n for large z and 0.5 < n < 1.5 , with z henceforth being 
z = t/Tφ ) the optimal measurement time scales as topt ∝ δ−1 ; i.e., the correlations are significant enough such 
that the sine term poses no problems. Thus the information scales as jδ,δ ∝ δ2n−2T2n

φ  , with a weaker dependence 
on frequency. With respect to the measurement time, the information rate is jδ,δ/Ttot ∝ δ2n−1T2n

φ  ; consequently, 
for correlations with n < 1.5 there is a slight improvement in resolution, and for n = 1.5 , as in17 (Eq. 13), there 
is no improvement over exponential correlations. For this reason it may be desirable to consider different meas-
urement protocols.

Qdyne/synchronized measurements.  Further improvement can be made considering a synchronized measure-
ment protocol1,8,9. In this scenario, the fluorescence response of the NV has a detection rate of

Thus the average probability for measuring the pair (ys , ys+t) of number of photons is

Estimating the signal using the covariance between the number of photons detected at different times, the infor-
mation about δ (from two measurements with a time difference t  ) is given by

This FI is obtained for a weak signal by (least-squares) fitting of the correlation function. With each additional 
measurement (performed at time t + τ̃ ) we effectively obtain t/τ̃ additional “measurements” by correlating with 
all previous measurements. For small rms we can safely assume that the noise in the “measurements” is uncor-
related. For data taken at times tm = mτ̃ , the total FI is given by

where we assumed δτ̃ and τ̃ /Tφ to be small. The behavior of the integral in Eq. (9) for small δ depends on the 
correlation function. For an exponential decay, Z ∝ δ2TφTtot in the regime of δTφ ≪ 1 ≪ δTtot , whereas for 
polynomial decay

in other words, there is a minute correction for small δ when the polynomial decay is slower than 2.5 . For decay 
rates slower than 1.5 the information is independent of δ , and the information rate increases with time ( ∝ T3−2n

tot  ) 
(see Fig. 2). In the limiting case of n = 1.5 , Z ∝ log(δTtot)Ttot/Tφ and the correction grows logarithmically 
when Ttot is large.

(2)p = η +
c

2
e−φ2

rms sinh(φ2
rms cos(δt)C(t/Tφ)),

(3)p ≈ η +
c

2
φ2
rms cos(δt)C(t/Tφ).

(4)jδ,δ ≈
c2

4η + c2
φ4
rmst

2 sin2(δt)C2(t/Tφ),

(5)qt = η +
c

2
sin(φt).

(6)�qsqs+t� = η2 +
c2

4
e−φ2

rms sinh
(

φ2
rms cos(δt)C(t/Tφ)

)

.

(7)jδ,δ =
c4

(4η + c2)2
φ4
rmst

2 sin2(δt)C2(t/Tφ)+ O (φ6
rms).

(8)Jδ,δ ≈
c4

(4η + c2)2
φ4
rms

T4
φ

τ̃ 2
Z ,

(9)Z =
Ttot/Tφ
∫

0

z2 sin2(δTφz)C
2(z)

(

Ttot

Tφ

− z

)

dz,

(10)Z ∝







(Ttot/Tφ)
4−2n , n < 1.5

δTtot(δTφ)
2n−4 , 1.5 < n < 2.5

δ2TφTtot , n > 2.5



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19691  | https://doi.org/10.1038/s41598-020-76745-4

www.nature.com/scientificreports/

Compared to the correlation spectroscopy in Eq. (4), the information from synchronized measurements 
in Eq. (7) suffers from an extra c2/(4η + c2) factor (which is small in current experiments) due to correlations 
being obtained at post-processing rather than on the NV. Nevertheless, this factor is compensated for by the fact 
that more statistics are gathered in Qdyne; i.e., roughly a factor of (Tmax/τ̃ )

2 , assuming correlation spectros-
copy measurements are performed using sequantial correlation times up to time Tmax . For exponential decays 
Tmax ∼ Tφ and Tmax ∼ δ−1 for slow polynomial decays, as seen in Eq. (4). These extra statistics compensates the 
logarithmic correction for small δ , meaning that the resolution with Qdyne is not limited by T−1

φ .
Note that for correlation spectroscopy the shortest correlation time is limited by the DD sequence (which must 

be shorter than the coherence time of the signal), whereas for Qdyne is limited also by the readout/initialization 
time ( ̃τ − τ ≈ 2.1µs , see for example8); for exponential correlations this limits the Qdyne technique to samples 
with coherence time longer than the readout time. But for a slow polynomial decay this induces only a small 
constant factor on the information, as most of the information comes from long-time correlations.

Power spectrum measurements.  In the power spectrum measurement scenario, the interrogation time, τ , must 
be increased beyond the correlation time of the noise, which in most cases is impossible since the coherence time 
of the NV ( TNV

2  ) is too short. The fluorescence response of the NV is given by

where Sτ (ω) is the unit-less (normalized by Tφτ ) power spectrum (convoluted with the filter function defined 
by the DD protocol). The restriction on the interrogation time poses an extra limit on the field strength being 
probed γ 2B2rmsTφτ � 1 (i.e., a large rms value will saturate the signal exponentially fast). In addition, the inverse 
interrogation time sets the resolution for this measurement protocol; i.e., in order to resolve a frequency differ-
ence δ we must set τ > δ−1.

When these requirements are met, the shape of the spectrum will dictate the information scaling; correla-
tions that decay with a power law −n correspond to a spectrum that scales with a power law n− 1 around 
the peak. For a smooth spectrum ( n > 2 ) the information scales as the derivative of the spectrum (squared), 
jδ,δ ∝ T2

φ(δTφ)
min[2n−4,2] at ω = 0 . For a sharp spectrum (derivative is discontinuous at the peaks, 1 < n < 2 ) the 

optimal measurement is performed at ω − δ ∝ τ−1 (as close as possible to the peak, before the shape of the filter 
function starts to dominate) and the information scales as jδ,δ ∝ T2

φ(τ/Tφ)
4−2n . For the former case, resolution 

limit is set by T−1
φ  , albeit with a reduced “penalty”, and by τ−1 for the latter.

Nano‑NMR signal analysis.  We now demonstrate resolution and verify the theoretical analysis by simu-
lating and analyzing both single and multi-frequency signals. The procedure is as follows; First, we generate 
accumulated phases φt (Eq. 5) by either using molecular dynamic (MD) simulations for a more accurate descrip-
tion of an experimental situation (see “Methods”), or we sample a multivariate Gaussian distribution which 
simplifies the theoretical analysis. These phases are then used to simulate measurement vectors in a Qdyne 
protocol. Parameter estimation is then performed by least squares fitting the signal correlation function to the 
theoretical model

(11)�yω� = η −
c

2
exp

(

−
1

2
γ 2B2rmsTφτSτ (ω)

)

,

Figure 2.   Scaling of the FI rate about δ as a function of δ (Eqs. 8, 9); for this plot we set Ttot = 104Tφ . Different 
polynomial scalings are presented in different colors. The case of exponential correlation is presented as a 
dashed line. The information per unit of time saturates for δTtot � 1 , for correlations with slow polynomial 
decay ( n < 1.5 ). For faster decays ( 1.5 < n < 2.5 ) the characteristic time changes continuously towards δTφ � 1 
(see top horizontal axis). For the limiting case of n = 1.5 the information rate changes its behavior for δTtot � 1 , 
but only saturates for δTφ � 1 , which is attributed to the small logarithmic correction log(δTφ).
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which corresponds to Eq. (6) for weak signals. C(z) is considered either as polynomial correlations ∝ z−3/2 
corresponding to Eq. (13) from17 (henceforth C(z ≫ 1) ∝ z−3/2 ), or an exponential correlation exp(−z) for 
comparison purposes. The ϕi in Eq. (12) is a dummy parameter added for numerical reasons, and which tends 
to zero. For more information about the numerical procedure see “Methods”.

Resolution.  Figure 3 illustrates resolution beyond the Rayleigh Limit. We generate the signals of the magnetic 
field at different NV depths by using MD simulations of N ≈ 46k dipolar particles diffusing as a Lennard-Jones 
fluid, whose correlations behave as C(z ≫ 1) ∝ z−3/2 at long times. Comparison to an exponential correlation 
function decay is done by fitting the MD results to an exponential model and using this model as a noise source. 
In generating the signals, each NV-depth from MD is used, and is appropriately scaled according to the Tφ 
associated with the NV depth at which it is measured. Moreover, we work in the limit of δTφ small ( ∼ 0.3[2π] ) 
and small φrms ( ∼ 0.6 ), where as in the theoretical analysis shown in Eq. (9) the exponential correlations limit 
the resolution.

In Fig. 3a we depict the estimation of a single frequency for 600 measurement vectors, each composed of 212 
measurements. In fitting the correlation function Eq. (12), a fitting is only accepted if r2 > 0.95. Fig. 3b depicts 
resolution for two close frequencies, which in this case loosely correspond to those of the experiment in16 but 
performed with an applied magnetic field one order of magnitude smaller. For this case we generate 200 meas-
urement vectors of 214 measurements each. A fitting is accepted if r2 > 0.95 . In both cases, the frequencies were 
not resolved for the same parameters but rather with exponential correlations.

Estimating close frequencies is a global optimization problem whose complexity increases exponentially in 
parallel with the size of the search space in which the frequencies live. In Fig. 3c we depict the resolution of three 
close frequencies which correspond to the frequencies from the experiment by Glenn et al.1 but performed with 
a non-polarized sample. This is compared to a signal generated with exponential correlations, which does not 
allow for resolution of the frequencies. Furthermore, we include the histogram corresponding to a signal with 
one frequency slightly offset from the central frequency of1, generated with the same parameters and analyzed in 
the same way. It demonstrates that the Mean Square Error (MSE) is independent of the number of frequencies.

Scaling analysis.  We now proceed to the numerical analysis of the theoretical model presented in the previ-
ous section, in the case of one and two frequency signals. We show that for the anticipated signal in the nano-
NMR scenario, the characteristic time for resolution is the total measurement time. In this case, we simulate 
synchronized measurements by generating signals with an analytical correlation function C(t/Tφ) where the 
noise comes from sampling a multivariate Gaussian distribution mimicking the scenario of small φrms . We focus 
here on the case of n = 1.5 in Eq. (10) corresponding to the correlation function in Eq. (13) ( C(z ≫ 1) ∝ z−3/2 ) 

(12)
∑

i

(φ(i)
rms)

2 cos(δit + ϕi)C(t/Tφ),

Figure 3.   (a) One frequency below the Rayleigh Limit is estimated for correlation C(z ≫ 1) ∝ z−3/2 
(purple) whereas estimation is not possible for exponential decay (green). φrms of the signal is 0.6. In purple, 
combinations of 50 estimation instances for each of the 12 different NV depths normalized to Tφ . Signal noise 
in this case is generated by randomly taking vectors of length N from MD data (see “Methods”). In green, result 
for signals with the same parameters but with noise which is generated by fitting MD data to an exponential 
and fitting the signal to Eq. (12) with C(z ≫ 1) ∝ z−3/2 . (b) Two frequencies with a frequency difference 
( �δ)Tφ = 0.3[2π] are resolved for long-lived correlations (purple) but remain unresolved for exponential decay 
(green). The amplitude of the signal is φrms ≈ 0.6. Each histogram contains correlation function fittings of 200 
measurement vectors with 214 measurements. (c) Three frequencies (purple) with a frequency separation below 
the Rayleigh Limit, (�δ)Tφ ≈ 0.3 [ 2π ], are resolved for the case of long-lived correlations C(z ≫ 1) ∝ z−3/2 . 
For exponentially decaying correlations the same signal produces a histogram in which no single frequency 
can be pinpointed. In yellow, we generate a single-frequency signal. A signal with one frequency is estimated 
showing that the MSE is commensurate with the multi-frequency analysis.
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from17. A point in Fig. 4 corresponds to the MSE of a histogram composed of N = 28 measurement vectors each, 
with 214 measurements.

Figure 4a displays the behavior of the MSE of the estimator as a function of φrms . For fixed δTφ = 0.5[2π] , 
below the Rayleigh Limit such that the signal with an exponential correlation could not be resolved, we simu-
late signals with varying φrms . According to Eq. (10), for a weak signal the MSE (i.e. 1/Jδ,δ ) diverges as φ−4

rms as 
we observe in Fig. 4b, thus setting the optimal region for nano-NMR around φrms = 1 . For strong signals, the 
information rate is exponentially suppressed. The scaling in the case of one frequency is not fundamentally dif-
ferent from that of two frequencies.

In Fig. 4b we set φrms = 0.6 and study the behavior with δTφ . Here we can observe the difference caused by 
extended correlations in the information rate and thus the resolution capacity. While for exponential correlations 
the MSE diverges quadratically with δ , and rapidly saturates the histogram, for polynomial decays the divergence 
is slower. In the case of C(z ≫ 1) ∝ z−3/2 the divergence is logarithmic in δ (see Eq. (10)), as we see in Fig. 4b, 
i.e., it can easily be compensated for by increasing the measurement time. Note in addition that since φrms ( Brms ) 
∼ 1/d3/2 and Tφ ∼ d215, for C(z ≫ 1) ∝ z−3/2 according to Eq. (10) the MSE is independent of the depth of the 
NV, as occurs with polarized nano-NMR.

Discussion
We showed that spectral resolution in non-polarized liquid state nano-NMR is not necessarily limited by the 
broadening of spectral lines due to diffusion. While for exponential correlations the resolution is limited by the 
inverse characteristic coherence time of the signal, we demonstrate that for (slow) polynomial correlations, as 
predicted by17, resolution is not limited.

We analyzed the scenario in which the sensor is a shallow NV center. In this case, the correlations decay as 
C(z ≫ 1) ∝ z−3/2 at long times, producing sharp spectral features. Moreover, increasing the number of frequen-
cies analyzed does not hinder resolution.

Comparing the three measurement protocols we observe that for exponential correlations, the resolution 
problem always appears for δTφ < 1 , but the sensitivity of Qdyne is different by a factor of about (c2/η)(Tφ/τ̃ )

2 . 
For a low viscosity, water-like fluid this could still prove beneficial, despite the low contrast in state of the art 
systems ( c2/η ≈ 0.016 ). For power-law decay (with power of 3/2), while the sensitivity remains the same as 
the exponential case, the resolution capabilities of the power spectrum measurement and Qdyne protocols are 
extended. For power spectrum measurements, the protocol is limited by the time of a single measurement ( τ ) 

Figure 4.   (a) MSE of the frequency estimator δ̃ (blue) and frequency difference estimator �δ̃ = |δ̃1 − δ̃2| 
(orange) as a function of φrms with δTφ = 0.5[2π] . The line shows the theoretical prediction from Eq. (8) 
(valid only for small φrms ) dominated by 1/φ4

rms . Below φrms ≈ 0.1 the MSE saturates, indicating that the 
estimator is distributed across the whole search region. (b) MSE of the frequency estimator δ̃ and frequency 
difference estimator �δ̃ = |δ̃1 − δ̃2| for fixed φrms = 0.6 as a function of δTφ for polynomial C(z ≫ 1) ∝ z−3/2 
(diamonds) and exponential (stars) correlations. Horizontal line in (b) represents the flat histogram limit 
(noise level). Solid lines are the theoretical predictions from Eq. (10) for n = 1.5 (dark green) proportional to 
1/ log(δTtot) , and exponential (light green) ∝ 1/(δTφ)

2 . Each point represents the MSE of 28 measurement 
vectors with 214 measurements per vector. Note that the small differences between the one frequency and two 
frequency cases are merely numerical artifacts which would diminish for a higher number of measurement 
vectors. In both plots Ttot/Tφ ≈ 164 for all points. In (a) δTtot ≈ 82[2π].
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which is only restricted by the coherence time T2 of the NV sensor. The Qdyne protocol is virtually not limited 
by diffusion as the only limitation is the total measurement time.

The power law analysis presented here is so far based on theoretical grounds. Nonetheless, experimental evi-
dence for a deviation from the exponential correlations paradigm already exist. In fact, Staudacher et al. found 
in20 a correlation function for a non-polarized liquid state nano-NMR experiment which exhibits a long-lived 
tail. Such behaviour was attributed to a surface effect which creates a thin layer of static, rotating molecules close 
to the surface of the diamond, finding a reasonably good agreement between the model and the experimental 
results. It is clear that the assumption of macroscopic Brownian motion with a Lorentzian profile and exponential 
correlations is too crude an approach to the non-polarized nano-NMR setting. As such, the diffusion induced 
long-lived correlations described in17, which we have demonstrated lead to enhanced resolution, are but a lower 
limit on the achievable resolution scaling of the non-polarized nano-NMR setup. Different physical effects such 
as those described in20 demonstrate that even longer-lived correlations can be expected to exist. As our analysis 
demonstrates, harnessing these power-law correlations leads to an increase of the information gathered (see 
Fig. 2), resulting in even better scaling for resolution of frequencies in a nano-NMR spectra.

Methods
Noise model for diffusing particles.  Each nucleus composing the sample substance interacts with the 
NV center via dipolar coupling; in the nano-NMR setting, nucleus dynamics manifests through the dephasing 
rate of the NV center. Calculating this dephasing rate involves solving the drift-diffusion dynamics equation. For 
an NV situated at a depth d from the diamond surface and assuming that the liquid fills a semi-infinite volume 
above the diamond surface, the correlation function for the nucleus distribution is17

Figure 5.   (a) Sample of the molecular dynamics results for the magnetic field created at the NV position by 
a distribution of randomly diffusing dipolar particles. (b) Correlation function of the magnetic field created 
at the NV position for depths ranging from 0.3 to 5. Each correlation curve is the average of two realizations 
of molecular dynamics. The inset shows the correlation time of the magnetic field as a function of depth, 
obtained by fitting the correlation data to a correlation C(z ≫ 1) ∝ z−3/2 (FT of Eq. 13). Each Tφ is calculated as 
C(z = t/Tφ ≈ 0.255791) = 1/2 . Deviations from the theoretical exponent ( Tφ ∝ d2 ) occur due to finite box-
size and simulation errors. Shallower NVs feature a different box-size; hence, a departure from a straight line. 
(c) Correlation of the magnetic field scaled to Tφ . At short-times the correlation decays exponentially, whereas 
at long-times the decay is polynomial. This demonstrates that the diffusing particles create a highly correlated 
signal. Residuals are with respect to fitting in Fig. 5a.
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with z = d−2Dt = t/Tφ , where D is the diffusion coefficient for the fluid.
To accurately simulate the NV response signal to the magnetic field generated by a distribution of diffusing 

molecules used to demonstrate resolution in an experimental-like scenario, we perform molecular dynamics 
simulations.

For the molecular dynamics we consider N ≈ 46k dipolar particles within a simulation box of size 
Lx,y,z ≈ (50, 50, 24) , with a NV located at depths in the range of (0.3, 5). The particles within the box are simu-
lated as a Lennard–Jones fluid with normalized parameters ε = σ = 1 , and are initialized into a thermal state 
at temperature T = 1 . During the simulation, the magnetic field induced by the particles at the NV position is 
measured along the z direction for several NV depths.

Analysis of the generated magnetic fields at different NV depths shows that the data have no trend and that the 
standard deviation remains scale invariant. This means we can compare different depths if appropriately scaled. 
This is done by calculating the correlations and partial correlations of the different time series. An example of a 
time series can be found in Fig. 5a.

In Fig. 5b we analyze the temporal correlation in the magnetic field as a function of NV depth. The correla-
tion, which is akin to the autocorrelation after correcting by the mean, tells us how a point in the time series is 
related to itself after k time-steps. We observe that it is highly dependent on the depth of the NV, as expected 
from the relation Tφ ∝ d2 (the diffusion coefficient D is the same for all depths). Since resolution depends on 
δTφ Fig. 5b gives us information about which depth is more convenient, depending on the characteristics of the 
signal that we want to analyze.

Figure 5c depicts the correlation corrected by depth. Note the deviation from exponential decay at long times, 
as described by Eq. (13), which is responsible for long-lived correlations. Moreover, this deviation is independent 
of the depth of the NV, which means that the same description is valid for the magnetic field at any NV depth.

When using MD vectors to simulate the accumulated phases φt , we avoid correlations among different MD 
vectors by calculating each noise realization by randomly sampling two different instances of magnetic fields in 
the corresponding NV depth.

Numerical calculations.  Parameter estimation is done by numerically fitting each measurement vector to 
the theoretical model

The fitting is done by a non-linear least squares algorithm with finite-difference estimation of gradient. Each 
fitting is initialized with random values taken from uniform distributions around the mean signal values for 
each parameter in Eq. (12). The width of the distributions coincides as well with the allowed search regions 
in the fitting process. These are, respectively, φrms ∈ [ φavg

rms/2, 3φ
avg
rms/2 ], δ ∈ [ δavg/2, 3δavg/2 ], ϕ ∈ [ 0, 2π ] and 

Tφ ∈ [Tφ/100, 100Tφ] . Average values are estimated from the signal for the φrms or from the signal FT for δ.
The ϕi in Eq. (14) is non-physical and is included for reasons of numerical stability. In all of the fittings it 

tends to either 0 or 2π.

Received: 18 May 2020; Accepted: 2 November 2020

References
	 1.	 Glenn, D. R. et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555, 351–354. https​

://doi.org/10.1038/natur​e2578​1 (2018).
	 2.	 Bucher, D. B., Glenn, D. R., Park, H., Lukin, M. D. & Walsworth, R. L. Hyperpolarization-enhanced nmr spectroscopy with fem-

tomole sensitivity using quantum defects in diamond (2018). arXiv​:1810.02408​.
	 3.	 Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560. https​://doi.

org/10.1126/scien​ce.12315​40 (2013).
	 4.	 Laraoui, A. et al. High-resolution correlation spectroscopy of 13c spins near a nitrogen-vacancy centre in diamond. Nat. Commun. 

4, 1651. https​://doi.org/10.1038/ncomm​s2685​ (2013).
	 5.	 Müller, C. et al. Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 5, 4703. https​://doi.

org/10.1038/ncomm​s5703​ (2014).
	 6.	 Ajoy, A., Bissbort, U., Lukin, M. D., Walsworth, R. L. & Cappellaro, P. Atomic-scale nuclear spin imaging using quantum-assisted 

sensors in diamond. Phys. Rev. X 5, 011001. https​://doi.org/10.1103/PhysR​evX.5.01100​1 (2015).
	 7.	 Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 

836–841. https​://doi.org/10.1126/scien​ce.aad80​22 (2016).
	 8.	 Boss, J. M., Cujia, K. S., Zopes, J. & Degen, C. L. Quantum sensing with arbitrary frequency resolution. Science 356, 837–840. https​

://doi.org/10.1126/scien​ce.aam70​09 (2017).
	 9.	 Schmitt, S. et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 356, 832–837. https​

://doi.org/10.1126/scien​ce.aam55​32 (2017).
	10.	 Pfender, M. et al. Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters. Nat. 

Commun. 8, 834. https​://doi.org/10.1038/s4146​7-017-00964​-z (2017).
	11.	 Rotem, A. et al. Limits on spectral resolution measurements by quantum probes. Phys. Rev. Lett. 122, 060503. https​://doi.

org/10.1103/PhysR​evLet​t.122.06050​3 (2019).
	12.	 Gefen, T., Rotem, A. & Retzker, A. Overcoming resolution limits with quantum sensing. Nat. Commun. 10, 4992. https​://doi.

org/10.1038/s4146​7-019-12817​-y (2019).

(13)

C(z) =
4√
π

(

z−
3
2 −

3

2
z−

1
2 +

√
π

4
+ 3

√
z −

3
√
π

2
z +

√

π

z
erfc

(

z−
1
2

)

exp z−1
(

− z−
3
2 + z−

1
2 −

7

4

√
z +

3

2
z+

3
2

)

)

,

(14)
∑

i

(φ(i)
rms)

2 cos(δit + ϕi)C(t/Tφ).

https://doi.org/10.1038/nature25781
https://doi.org/10.1038/nature25781
http://arxiv.org/abs/1810.02408
https://doi.org/10.1126/science.1231540
https://doi.org/10.1126/science.1231540
https://doi.org/10.1038/ncomms2685
https://doi.org/10.1038/ncomms5703
https://doi.org/10.1038/ncomms5703
https://doi.org/10.1103/PhysRevX.5.011001
https://doi.org/10.1126/science.aad8022
https://doi.org/10.1126/science.aam7009
https://doi.org/10.1126/science.aam7009
https://doi.org/10.1126/science.aam5532
https://doi.org/10.1126/science.aam5532
https://doi.org/10.1038/s41467-017-00964-z
https://doi.org/10.1103/PhysRevLett.122.060503
https://doi.org/10.1103/PhysRevLett.122.060503
https://doi.org/10.1038/s41467-019-12817-y
https://doi.org/10.1038/s41467-019-12817-y


9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19691  | https://doi.org/10.1038/s41598-020-76745-4

www.nature.com/scientificreports/

	13.	 Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563. https​
://doi.org/10.1126/scien​ce.12316​75 (2013).

	14.	 Kong, X., Stark, A., Du, J., McGuinness, L. P. & Jelezko, F. Towards chemical structure resolution with nanoscale nuclear magnetic 
resonance spectroscopy. Phys. Rev. Appl. 4, 024004. https​://doi.org/10.1103/PhysR​evApp​lied.4.02400​4 (2015).

	15.	 Pham, L. M. et al. Nmr technique for determining the depth of shallow nitrogen-vacancy centers in diamond. Phys. Rev. B 93, 
045425. https​://doi.org/10.1103/PhysR​evB.93.04542​5 (2016).

	16.	 Aslam, N. et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 357, 67–71. https​://doi.org/10.1126/scien​
ce.aam86​97 (2017).

	17.	 Cohen, D. et al. Utilising nv based quantum sensing for velocimetry at the nanoscale. Sci. Rep. 10, 5298. https​://doi.org/10.1038/
s4159​8-020-61095​-y (2020).

	18.	 Pugatch, R., Bhattacharyya, D., Amir, A., Sagi, Y. & Davidson, N. Anomalous symmetry breaking in classical two-dimensional 
diffusion of coherent atoms. Phys. Rev. A 89, 033807. https​://doi.org/10.1103/PhysR​evA.89.03380​7 (2014).

	19.	 Tsang, M., Nair, R. & Lu, X.-M. Quantum theory of superresolution for two incoherent optical point sources. Phys. Rev. X 6, 031033. 
https​://doi.org/10.1103/PhysR​evX.6.03103​3 (2016).

	20.	 Staudacher, T. et al. Probing molecular dynamics at the nanoscale via an individual paramagnetic centre. Nat. Commun. 6, 8527. 
https​://doi.org/10.1038/ncomm​s9527​ (2015).

	21.	 Romach, Y. et al. Spectroscopy of surface-induced noise using shallow spins in diamond. Phys. Rev. Lett. 114, 017601. https​://doi.
org/10.1103/PhysR​evLet​t.114.01760​1 (2015).

Acknowledgements
This project was supported by funding from the European Union Horizon 2020 Research and innovation Pro-
gramme ERC grant QRES under grant agreement No 770929. and the collaborative European project ASTERIQS. 
S.O.C.is supported by the Fundación Ramón Areces postdoctoral fellowship (XXXI edition of grants for Post-
graduate Studies in Life and Matter Sciences in Foreign Universities and Research Centers 2019/2020). J.P. is 
grateful for financial support from MCIU (SPAIN), including FEDER (Grant Nos. PGC2018-097328-B-100) 
together with Fundación Séneca (Murcia, Spain) (Project No. 19882/GERM/15).

Author contributions
A.Re. conceived the idea. A.Ro. and S.O.C. performed the analytical and numerical analysis. R.N. provided the 
molecular dynamics simulations. A.Ro. and S.O.C. wrote the manuscript, which was revised, commented, and 
appropriately updated by all of the authors.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-76745​-4.

Correspondence and requests for materials should be addressed to S.O.-C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1126/science.1231675
https://doi.org/10.1126/science.1231675
https://doi.org/10.1103/PhysRevApplied.4.024004
https://doi.org/10.1103/PhysRevB.93.045425
https://doi.org/10.1126/science.aam8697
https://doi.org/10.1126/science.aam8697
https://doi.org/10.1038/s41598-020-61095-y
https://doi.org/10.1038/s41598-020-61095-y
https://doi.org/10.1103/PhysRevA.89.033807
https://doi.org/10.1103/PhysRevX.6.031033
https://doi.org/10.1038/ncomms9527
https://doi.org/10.1103/PhysRevLett.114.017601
https://doi.org/10.1103/PhysRevLett.114.017601
https://doi.org/10.1038/s41598-020-76745-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Correlated noise in Brownian motion allows for super resolution
	Results
	FI analysis. 
	Correlation spectroscopy. 
	Qdynesynchronized measurements. 
	Power spectrum measurements. 

	Nano-NMR signal analysis. 
	Resolution. 
	Scaling analysis. 


	Discussion
	Methods
	Noise model for diffusing particles. 
	Numerical calculations. 

	References
	Acknowledgements


