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Myelodysplastic syndromes (MDS) are a heterogeneous group of malignant disorders of
hematopoietic stem and progenitor cells (HSPC), mainly characterized by ineffective
hematopoiesis leading to peripheral cytopenias and progressive bone marrow failure.
While clonal dominance is nearly universal at diagnosis, most genetic mutations identified
in patients with MDS do not provide a conspicuous advantage to the malignant cells. In
this context, malignant cells alter their adjacent bone marrow microenvironment (BME)
and rely on cell extrinsic factors to maintain clonal dominance. The profoundly disturbed
BME favors the myelodysplastic cells and, most importantly is detrimental to normal
hematopoietic cells. Thus, the MDS microenvironment not only contributes to the
observed cytopenias seen in these patients but could also negatively impact the
engraftment of normal, allogeneic HSPCs in patients with MDS undergoing bone
marrow transplant. Therefore, successful therapies in MDS should not only target the
malignant cells but also reprogram their bone marrow microenvironment. Here, we will
provide a synopsis of how drugs currently used or on the verge of being approved for the
treatment of MDS may achieve this goal.

Keywords: myelodyslastic syndromes, microenvironment, azacytidine, lenalidomide, luspatercept, rigosertib, all-
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INTRODUCTION

Myelodysplastic syndromes (MDS) are a heterogeneous group of malignant disorders of
hematopoietic stem and progenitor cells (HSPCs), mainly characterized by ineffective
hematopoiesis leading to peripheral cytopenias and progressive bone-marrow failure. Moreover,
these are also associated with a high risk of progression to acute myeloid leukemia (AML). MDS is
the most commonly diagnosed myeloid malignancy in the United States (DeZern, 2015). The
median age at diagnosis is 72 years old. These patients are fragile and suffer from multiple
comorbidities. Therefore, they are often ineligible for bone marrow transplantation, the only
curative therapeutic option in MDS. The 3-year overall survival rate of 35–45% (Rollison et al.,
2008) highlights the need for novel therapies in patients with MDS.

Numerous genetic events have been implicated in the pathogenesis of MDS. These mutations
range from large chromosomal abnormalities such as deletions/additions (i.e. del(5q), del(7q)) to
specific gene mutations affecting various biological processes including: spliceosome (i.e. SF3B1,
SRSF2); transcription factors (i.e. RUNX1, ETV6); or DNA/chromatin epigenetic changes (i.e.
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TET2, DNMT3a, ASXL1). While clonal dominance is nearly
universal in MDS at diagnosis, these mutations don't provide a
conspicuous advantage to the malignant cells. In most cases, the
malignant clone continues to coexist alongside normal
hematopoietic stem cells, which are somehow inhibited (Calvi
et al., 2019). These observations led to the hypothesis that MDS
cells get an extrinsic support, from the mesenchymal stromal
cells (MSCs) in the bone marrow microenvironment (BME). The
interaction between the mutant clone and BME plays an
important role in disease homeostasis. Since the main causes of
death in MDS are cytopenia-related complications (infections,
hemorrhage), restoring the function of residual normal
hematopoiesis is a major goal in the treatment of MDS.
THE BONE MARROW
MICROENVIRONMENT IN MDS

Research in MDS has been hindered by lack of available models.
More so, as MDS cells are difficult to study ex vivo due to very
high rate of apoptosis. Support from BME proved to be essential
to maintain some MDS cells ex vivo. However, the mechanisms
through which this support is provided is currently not fully
understood. To this end, bone marrow derived MSCs from patients
with MDS (MDS-MSCs), and not from normal individuals, are
uniquely effective in maintaining the MDS clones (Medyouf et al.,
2014). This observation led to the hypothesis that the BME
contributes to MDS pathogenesis, homeostasis, and even response
to treatment.

Regarding pathogenesis, several studies have shown that MDS
and other myeloproliferative neoplasms (MPNs) can be initiated
by modifications in the BME. The deletion of various genes such
as Dicer1, Sipa1, Retinoblastoma protein (Rb), and Retinoic Acid
Receptor gamma (RARy), as well as the activation of the Hedgehog
pathway through the knockout of PTCH2, have been reported to
lead to the development of MDS or MPNs in mice (Walkley et al.,
2007a; Walkley et al., 2007b; Raaijmakers et al., 2010; Klein et al.,
2016;Xiao et al., 2018).However, these specificmutations are found
only in selected cases of MDS patients and their involvement in
human pathogenesis is yet to be clarified.

Bidirectional crosstalk between the MDS clone and their
surrounding milieu not only maintains the malignant clone but
also reshapes the BME (Figure 1). As a result, MSCs from patients
with MDS are reprogramed to promote maintenance of the
malignant clone at the expense of normal hematopoiesis (Geyh
et al., 2013). To this end, MSCs derived from patients with MDS
(MDS-MSCs) display morphological changes ex vivo (Ferrer et al.,
2013; Falconi et al., 2016), impaired growth capacity, increased
senescence, decreased osteogenic differentiation, and overall
decreased survival (Geyh et al., 2013). The mechanisms
responsible for these alterations are only partly characterized. For
instance, over secretionof alarmins, such as S100A9andS100A8, by
theMDS cells activates the inflammasome in theMSCs (Chen et al.,
2016) leading to aberrant activation of variousmolecular programs
resulting in higher secretion of cytokines such as interferons and
Frontiers in Pharmacology | www.frontiersin.org 2
IL32 (Figure 2) (Kim et al., 2015; Zhang et al., 2016). Also, the
secretion of extracellular vesicles containingmiR-7977, by theMDS
cells, was shown to reduce the hematopoietic supporting capacity of
MSCs. This was achieved through the reduction of several
hematopoietic growth factors such as Jagged-1, stem cell factor,
and angiopoietin-1 (Horiguchi et al., 2016). In addition, several in
vitro studies suggest thatMDS-MSCs have impaired PI3K/AKT and
Wnt/ß-catenin signaling (Pavlaki et al., 2014; Falconi et al., 2016)
which may explain their abnormal proliferation, self-renewal, and
osteogenic differentiation (Figure 2) (Boland et al., 2004; Glass et al.,
2005). To this end, high endogenous erythropoietin levels often seen
in MDS patients may downregulate Wnt pathway and impair
osteogenic differentiation of MDS-MSCs (Balaian et al., 2018). In
this context, the wide use of erythropoietin and erythropoiesis-
stimulating agents may inadvertently impact the BME in patients
with MDS. On the other hand, in murine models of MDS, Wnt/ß-
catenin pathway is hyperactive in MSCs (Kode et al., 2014; Bhagat
et al., 2017) and is capable of disease initiation through
overexpression of Notch-ligand, Jagged1 (Kode et al., 2014). It is
currently unknown whether or not activation of Wnt/ß-catenin
pathway plays distinct roles in disease initiation vs. maintenance or
if the observed differences are due to unique features of the models
used (mousevs.human).Nevertheless,MDS-MSCshave low levels of
Wntpathwayantagonists (FRZBandSFRP1) likelydue to theirhyper
methylation explaining the upregulated Wnt/ß-catenin signaling
(Figure 1) (Bhagat et al., 2017). While disrupted methylation
profiles in the MDS hematopoietic clones are well characterized,
MDS-MSCs also display numerous differentially methylated genes
explaining their cellular phenotype and transcriptional regulation
(Figure 2) (Geyh et al., 2013). Among such genes, human Hh-
interacting protein gene (HHIP) was shown to be hyper methylated
in MDS-MSCs (Kobune et al., 2012). Low expression of HHIP and
theassociatedactivationof theHedgehogpathway inMDS-MSCsare
important for the survival of theMDSclone (Figure1). Suchcomplex
changes in MDS-MSCs make them more suitable to support the
MDS clone perhaps at the expense of normal hematopoiesis. To this
end,MDS-MSCscreate an inflammatorymilieu that is detrimental to
healthy HSPCs (Muto et al., 2020). On the other hand,MDS-HSPCs
gain competitive advantage in this inflammatory environment by
activating their non-canonicalNF-kBpathway viaTraf6. In addition,
the SDF-1CXCR4 axis is also dysregulated in MDS. Studies have
found correlations between higher levels of SDF-1 in low-gradeMDS
and increased apoptosis of hematopoietic cells, and higher levels of
CXCR4 and increased bone-marrow angiogenesis in high-grade
MDS (Zhang et al., 2012).

Themechanisms bywhich the corruptMDS-MSCs signal to the
MDS clone are diverse and only beginning to be explored. For
instance, MDS-MSCs release high quantities of small extracellular
vesicles (sEVs) loadedwithmiR-486-5p (Meunier et al., 2020). This
miR-486-5p can not only promote leukemogenesis and is
overexpressed in leukemic cells of Down syndrome patients
(Shaham et al., 2015) but also may induce oxidative stress and
apoptosis of normal HSPC and senescence in MSCs (Kim et al.,
2012). Higher secretion of sEVs containingmiR10a andmiR15a by
MDS-MSCs increase the viability and clonogenicity ofMDSHSPCs
(Muntión et al., 2016).
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Lastly, MDS-MSCs secrete high levels of TGFß1 (Zhao et al.,
2012), a cytokine profoundly immunosuppressant for B, T, and
NK cells and immunostimulating for regulatory T cells (Treg)
(Cagliani et al., 2017). Thus, the high levels of TGFß1 seen in
patients with high risk MDS (Zhao et al., 2012) promote a
immunosuppressive microenvironment with reduced CD4+ T-
cell population, CD8 T-cell exhaustion, a significant decrease in
NK activating receptors, and an increase of non-cytotoxic NK-
cells (CD56bright) (Figure 1) (Montes et al., 2019).

In spite of recent advances in our understanding of clonal
architecture and mutational landscape in MDS, overall prognosis
of these patients remains poor. More so, therapeutic responses are
transient at best without the use of bone marrow transplantation.
Frontiers in Pharmacology | www.frontiersin.org 3
This may be explained by the functional heterogeneity within the
MDS clone. For instance, some MDS cells may be protected from
therapy by the MDS-MSCs and be responsible for disease relapse
(Figure 1). To this end, BMMSCs express high levels of cytidine-
deaminase (CDA), an enzyme that metabolizes azacitidine and
decitabine, two essential drugs in the treatment of MDS (Alonso
et al., 2015; Su et al., 2019). Thus, the pharmacokinetics of these
drugs may be altered in the BME. On the other hand, molecular
changes induced in the MDS clone need to be reinforced by
reprogramming the BME in order to be sustained. To this end,
abnormal methylation patterns observed in MDS-MSCs for
instance may also be amenable to correction by the current
therapeutic tools used in these patients.
FIGURE 1 | Cartoon representation of molecular crosstalk between mesenchymal bone marrow microenvironment and the myelodysplastic hematopoietic cells.
HSC, hematopoietic stem cell; MSC, mesenchymal stem cell; Treg, T regulatory cells; HMA, hypomethylating agents; LEN, lenalidomide; LUS, luspatercept; RIG,
rigosertib; ATRA, all-trans retinoic acid; CAPN1, calcium-dependent protease calpain1; CDA, cytidine deaminase; CDC25C, Cell Division Cycle 25C gene; CSNK1A1,
casein-kinase 1A1; GPR68, G Protein-Coupled Receptor 68 gene; IKZF1, IKAROS Family Zinc Finger 1 gene; PI3K, Phosphatidylinositol-3 Kinase; PPA2, Inorganic
Pyrophosphatase gene; RARg, Retinoic Acid Receptor Gamma; SHH, Sonic Hedgehog ligand; TGFb, transforming growth factor beta; TLR8, Toll-Like Receptor 8.
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Here, we will provide a synopsis of how drugs currently used
or on the verge of being approved for treatment of MDS may
impact not only the mutant hematopoietic cells but also the
surrounding microenvironment.
CURRENT THERAPIES

Hypomethylating Agents
Epigenetic therapy with 5-azacitidine (5-Aza) or decitabine
represents a stepping stone in the treatment of MDS and
remains the only FDA approved option for high-risk disease.

5-Azacitidine and decitabine work as hypomethylating drugs
and are related molecules with similar structures and
overlapping effects. They both incorporate into the DNA of
cells resulting in depletion of intracellular methyltransferases
(DNMTs) and reversal of altered methylation patterns of MDS
cells. As such, it takes four to six cycles of therapy to reach full
clinical responses to azanucleotides in MDS. More often than not
the responses correlate with improvement of cytopenias but no
significant changes in the clonal architecture suggesting some
correction of the differentiation profile for the MDS clone rather
than elimination of the malignant cells. To this end, treatment
with azanucleotides resembles classical differentiation therapy seen
with all-trans retinoic acid (ATRA) in acute promyelocytic leukemia
(APL) (Stresemann and Lyko, 2008; Gnyszka et al., 2013). In general,
30–50% of patients show clinical benefit from treatment with
azanucleotides but their response is short lived. It is currently
unknown why only some patients benefit from treatment and even
Frontiers in Pharmacology | www.frontiersin.org 4
in those that respond, why the malignant clone is not completely
eliminated (Diesch et al., 2016; Ball et al., 2017). A plausible
explanation is that these drugs have a blunted effect on the highly
quiescentMDSstemcells since epigenetic changesneeddividing cells
to take effect (Suarez and Gore, 2013). Also, since stroma cells in the
bone marrow expresses CDA (Alonso et al., 2015), the enzyme that
inactivates 5-Aza, perhaps impaired pharmacokinetics in bone
marrow niches may play a role (Figure 1). To this end, cell cultures
that express high levels of CDA are less sensitive to 5-Aza (Mahfouz
et al., 2013). However, a study conducted on a small cohort of patient
samples, showed that high levels ofCDAafter treatment,might be an
indicator of responsiveness (Murakami et al., 2019). Nevertheless,
CDA is necessary for the transformation of HMAs to uridine, an
activator of the toll-like receptor 8 (TLR8)withpotential implications
for the impaired myeloid differentiation seen in MDS (Figure 1)
(Ignatz-Hoover et al., 2015;Miyake et al., 2017; Furusho et al., 2019).
Some suggest that the degree of myeloid differentiation of the MDS
clone prior to treatment with azanucleotides is a better indicator for
response to therapy than the previously proposed abnormal
methylation of endogenous retro-elements (Kazachenka et al.,
2019). While cell intrinsic properties of the MDS clone can
certainly dictate the differentiation state of these cells, an altered
BME is bound to play an essential role. Since MDS-MSCs have
different methylation patterns compared to their healthy
counterparts (Geyh et al., 2013), it begs the question if HMA-
induced changes in the BME contribute to the clinical responses
observed. To this end, 5-Aza enhances the ability to support normal
hematopoiesis in MDS-MSCs, while decreasing their support for
MDS HSPCs (Wenk et al., 2018; Poon et al., 2019). During disease
homeostasis, MDS-induced impairment ofMSCs' functions appears
FIGURE 2 | STRING analysis of molecular pathways altered in bone marrow microenvironment of patients with MDS compared to healthy individuals.
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reversible by 5-Aza but only up to a certain point in disease
progression (Poon et al., 2019). 5-Aza restored the hematopoiesis-
supporting capacity of most primary MDS-MSCs samples derived
from low grade MDS but not those from advanced-stage disease
(Poon et al., 2019). However, treatment with 5-Aza is capable to
enhance hematopoiesis-supporting properties of healthy MSCs as
well, suggesting that the effect is not specific toMDS-induced changes
(Wenk et al., 2018). It is currently unknownwhatmolecular program
induced by azanucleotides rescue MSC function. RNA-seq data
suggests that treatment with 5-Aza optimizes interferon signaling
and extracellularmatrix homeostasis, including collagen type IV and
VI with major implications for HSC anchorage, self-renewal, and
differentiation (Essers et al., 2009; Gattazzo et al., 2014; Wenk et al.,
2018). In addition, treatment of MDS-MSCs with 5-Aza reverses
aberrant methylation patterns of these cells resulting in rescue of
frequently altered signaling pathways such as over activation of
betab-catenin and the downregulation of HHIP (Figure 1)
(Kobune et al., 2012; Bhagat et al., 2017).

Finally, treatment with decitabine ex vivo can reset the
immunosuppressive phenotype of MDS-MSCs, resulting in
decreased expression of PDL1 and optimization of the immune
milieu in the BM of patients with MDS (Pang et al., 2019). To
this end, decitabine decreases T cell differentiation towards
Tregs, a population known to be expanded in high risk MDS
(Kordasti et al., 2007; Zhao et al., 2012).

Thus, azanucleotides-induced changes of BME may not only
negatively impact theMDS clone but also rescue the residual normal
hematopoiesis. AnurturingBMEcouldhelp in engraftment of donor
HSCs and promote hematopoietic reconstitution in the settings of
allogeneic bone marrow transplant (alloBMT). Treatment with 5-
Aza prior to or post alloBMTmay prove beneficial for patients with
MDS and remains an area of active research.

Lenalidomide
Lenalidomide is a derivative of thalidomide that, in addition to its
well documented efficacy in the treatment of multiple myeloma, has
also proven activity in patients with low risk MDS (LR-MDS) and
5q31-5q32 deletion (List et al., 2006). Treatment with lenalidomide
of patients with transfusion dependent LR-MDS with 5q- results in
improved transfusion requirements and even cytogenetic complete
remission (CR) in some cases. The putative mechanisms of action
take into account the unique sensitivity of 5q- MDS cells to
lenalidomide and explore the role of haploinsufficiency of various
genes in this process. As such, three main haploinsufficient
mechanisms have been proposed: a) CDC25C and PPA2 resulting
in subsequent modulation of MDM2-TP53 pathway and cell cycle
arrest (Wei et al., 2009); b) casein- kinase-1a1 (CSNK1A1) with
resultant TP53 induction and clonal arrest (Schneider et al., 2014);
and c) activation of calcium dependent protease calpain (CAPN1)
due to not only overexpression of GPR68 (as a consequence of
degradation of IKAROS1) but also haploinsufficiency of calpastatin,
an otherwise inhibitor of the pathway (Fang et al., 2016) (Figure 1).
Recently, emphasis was placed on the ubiquitination and
degradation of CSNK1A1, an inhibitor of TP53, and also part of
the ß- catenin destruction-complex (Elyada et al., 2011; Knippschild
et al., 2014). Heterozygous loss of this gene, as seen in 5q- MDS
leads to an increase in ß-catenin levels and thus, stem cell expansion.
Frontiers in Pharmacology | www.frontiersin.org 5
Interestingly, complete loss of this protein induces apoptosis as a
result of TP53 activation (Schneider et al., 2014) and thus, exposes a
vulnerability of 5q- MDS cells to treatment with lenalidomide.
However, more recent findings show that this vulnerability emerges
only in MDS cells that previously undergo megakaryocytic
differentiation driven by a RUNX1-GATA2 complex. This
complex is enabled by the lenalidomide-induced ubiquitination
and degradation of Ikaros protein IKZF1(Martinez-Høyer
et al., 2020).

Nevertheless, lenalidomide was found to have clinical activity
in some patients with LR-MDS without 5q- and even some
patients with HR-MDS. While some of these effects can be
explained by lenalidomide-dependent improved erythropoietin
signaling in MDS cells (Basiorka et al., 2016), broader effects of
this drug on the immune and mesenchymal BME are also likely
to play a role. To this end, lenalidomide increased CD28
signaling, resulting in augmented T cell costimulation and
increased secretion of interferon gamma and IL2 (Figure 1)
(Stirling, 2001; LeBlanc et al., 2004; Wu et al., 2008). In addition,
treatment with lenalidomide results in decreased production of pro-
inflammatory cytokines (TNF-a, IL-1, IL-6, IL-12) and increased
levels of anti-inflammatory cytokines such as IL10. Altered cytokine
milieu may not only be detrimental to the MDS clone but also
promote thewellbeing of residual normal hematopoiesis (Kotla et al.,
2009; Stahl and Zeidan, 2017). Regarding the impact of lenalidomide
on theBME, treatmentwith lenalidomidedecreases levels ofCXCL12
production from normal as well as MDS-MSCs (Figure 1) (Ferrer
et al., 2013). Since levels of CXCL12 are already low in MDS BME,
further reductionmaybedetrimental to theMDSclonebut couldalso
explain some of the cytopenias associatedwith this drug. In addition,
lenalidomide like thalidomide is a powerful antiangiogenic agent. In
MDS, the bone marrow niche is characterized by increased
neoangiogenesis. Lenalidomide reduces marrow vascular density
and this histologic effect correlates with decreased disease
progression (Stahl and Zeidan, 2017).

While the immunomodulatory and anti-angiogenic
properties of lenalidomide are well recognized, their role in the
observed clinical benefit for patients with 5q- MDS or non 5q-
MDS remains to be further clarified.

Luspatercept
Anemia and RBC transfusion requirement is a major source of
morbidity in patients with MDS. In this aspect, MDS resemble
hemoglobinopathies such as b-thalassemia in that ineffective
erythropoiesis results not only in refractory anemia but also
accumulation of various erythroid precursors and disruption of
the BME. TGF-b signaling regulates terminal erythroidmaturation
and targeting this pathway either by using activin receptor traps
(luspatercept, sotatercept), TGF-bR1 tyrosine kinase inhibitor
(galunisertib) or targeting SMAD7 viamiR21 promised improved
erythropoiesis in patients with LR-MDS. Initially, FDA approved
the use of luspatercept only for the treatment of transfusion-
dependent ß-thalassemia. However, in early April 2020, the drug
was also approved in transfusion-dependent LR-MDS with ring
sideroblasts, after failure of treatment with erythropoiesis
stimulating agents. In this category of patients, treatment with
luspatercept resulted in more than a third of patients achieving
July 2020 | Volume 11 | Article 1044
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transfusion independence for 8 weeks or longer (Fenaux et al.,
2020). These results are consistent with previous clinical studies
showing that patients with >15% ring sideroblasts, or with SF3B1
mutations, aremost likely to benefit from this therapeutic approach
(Platzbecker et al., 2017). In contrastwithHMAs and lenalidomide,
luspatercept does not impact MDS clonal evolution but rather
rescues erythropoiesis in these patients.

MDS cells are characterized by hyperactivity of the TGF-ß
signaling, mostly due to SMAD2/3 dependent reduction of
SMAD7, a negative-feedback regulator of the pathway (Zhou
et al., 2011; Bhagat et al., 2013). A variety of ligands such as
activin A, activin B, GDF8, GDF11, and several BMPs can also
activate TGF-ß signaling and thus, regulate/dysregulate
erythroid maturation (Krolewski et al., 1992).

Luspatercept is a chimera between the extracellular domain of
activin receptor and human IgG1 Fc portion serving as a TGFb
ligand trap (Figure 1). Though initially thought to exert its
activity via inactivating GDF11, recent genetic studies called into
question this mechanism of action (Guerra et al., 2019). A
number of other TGFb ligands, including BMPs, activins, and
GDF8 may play role (Verma et al., 2020). Preventing signaling
downstream of these ligands can have a profound impact on the
BME. For instance, sotatercept improved hematocrit levels in
postmenopausal women, prevented osteoporosis and improved
osteolytic lesions in patients with multiple myeloma (Raje and
Vallet, 2010). These observations came to underscore the known
roles of TGFb ligands in MSCs osteogenic specification and
terminal differentiation. It is currently unknown the impact of
luspatercept on the MDS BME. That being said, TGF-ß1 secreted
by the MSCs contributes to the pro-inflammatory milieu present
in the BME of patients with MDS (Figure 1) (Cagliani et al.,
2017). Interestingly, levels of TGF-ß ligands are higher in high-
risk MDS compared to low-risk disease (Zhao et al., 2012) which
may explain the lack of clinical activity of single agent
luspatercept in high-risk MDS.
EMERGING THERAPIES IN MDS

Rigosertib
Rigosertib is a multi-kinase inhibitor with promising activity in a
number of malignancies including MDS. Preclinical and early
phase clinical trials showed encouraging activity of this drug in
patients with MDS that failed hypomethylating agents. Some of
these patients achieved partial/complete marrow responses with
acceptable hematologic toxicity (cytopenias) and no other
significant adverse events (Navada et al., 2018). Thus, this
therapeutic approach is now tested in a phase III clinical trial.
Initially thought to act as a polo-like kinase 1 (PLK1) inhibitor
(Gumireddy et al., 2005), rigosertib is also a powerful
phosphatidylinositol 3-kinase (PI3K) (Prasad et al., 2009) and
RAS inhibitor (Athuluri-Divakar et al., 2016). Most recently, a
CRISPRi-based chemical genetic screen revealed that rigosertib
may also act as a microtubule-destabilizing agent binding the
same tubulin-site as colchicine (Jost et al., 2017). Rigosertib
induces mitotic arrest and subsequent apoptosis in MDS cells
(Hyoda et al., 2015). Although in vitro studies showed promising
Frontiers in Pharmacology | www.frontiersin.org 6
activity in AML and MDS cells (Sloand et al., 2007; Olnes et al.,
2012; Hyoda et al., 2015), most clinical trials showed no
significant improvement in overall survival, and limited
hematological improvement (Garcia-Manero et al., 2016).
Rigosertib does not impair normal HSPCs functions in vitro
(Xu et al., 2014) but in vivo, it was shown to remodel the bone
architecture of young mice due to increased osteoclast numbers.
In this model, rigosertib treatment resulted in decreased mass,
thickness and numbers of trabecular bone leading to
pancytopenia. More so, rigosertib altered the biomechanical
properties of MSCs and reduced hematopoiesis-supporting
properties of MDS-MSCs (Balaian et al., 2019). In addition, the
downregulation of the PI3K/Akt pathway activity, one of the main
targets of thedrug, is associatedwithdysfunctionof the stromal cells
(Falconi et al., 2016) and thus, further impairment of normal
hematopoiesis. Since hyper activation of Wnt/ß-catenin signaling
in MSCs leads to rapid development of MDS and AML the
proposed inhibitory effects of rigosertib may correct the altered
BME in patients with MDS. Rigosertib can rescue Akt, ß-catenin,
and GSK3a/ß signaling pathways commonly dysregulated in MDS
cells (Figure 1) (Xu et al., 2014) but it is unclear if these effects hold
true in vivo in patients with MDS treated with this drug (Stoddart
et al., 2017). Even less is known about the biological effects of
rigosertib on these pathways in MDS-MSCs. Most intriguing, the
newly described role of rigosertib in microtubule assembly may
have significant implications for hematopoiesis–MSCs interactions
given the recent reports that mitochondria can be transferred
between MSCs and malignant cells via tunneling nanotubules.
Inhibition of microtubule assembly, as seen during treatment
with vincristine, and potentially rigosertib can destabilize
tunneling nanotubules with profound impact on the survival and
metabolicprofileofmalignant cells (Moschoiet al., 2016; Forte et al.,
2019). To what extent this mechanism plays a role in the biological
activity of rigosertib remains to be evaluated.
IS THERE A ROLE FOR ATRA IN MDS?

Multi lineage cytopenias is the hallmark of MDS and yet bone
marrow cellularity is typically increased in these patients.
Abnormal myeloid and erythroid elements in various stages of
differentiation dominate the histology of patients with MDS.
Lack of final maturation of these cells is the root for most
mortality and morbidity in MDS. Therapeutic interventions to
promote final maturation of the dysplastic cells have been met
with some success in the case of erythroid maturation and
improvement in RBC transfusion needs in response to
erythropoietin stimulating agents (ESA) [for a review on the
topic see (Park et al., 2019)].

Vitamin A plays an essential role in hematopoiesis. The
impairment of vitamin A pathway, due to abnormal retinoic acid
receptor alpha signaling, results in a block inmyeloiddifferentiation
and development ofAPL (Evans, 2005). In this case, treatment with
high levels of ATRA, the active compound of vitaminA, overcomes
this differentiation block and promotes final maturation of the
malignant cells with emergence of neutrophils. Thus, a similar
approach was attempted in MDS. To this end, ATRA induces G0/
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G1 cell cycle arrest of MDS cell lines in vitro via downregulation of
CDK4, CDK6, cyclinD3, and cyclinD1 (Huang et al., 2004).
Similarly, 4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), a
synthetic retinoid, inhibits proliferation and promotes apoptosis of
MDS cells in vitro, likely via upregulation of TP53 (Du et al., 2018).
While single agent ATRA had only minimal effect in patients with
MDS, co-administration with recombinant erythropoietin was
effective in 40% of patients with LR-MDS and low erythropoietin
levels (Itzyksonet al., 2009).TreatmentwithATRAhasbeen tried in
combinationwith valproic acid, vitaminE, vitaminD, interferon-a,
and other therapeutic interventions but unfortunately showed
discouraging results in MDS (Hofmann et al., 1999; Cortes, 2005;
Giagounidis et al., 2005; Zhang et al., 2006).Most recently, impaired
local pharmacokinetics of ATRA in the BME has been proposed to
account for the observed discrepancy between in vitro sensitivity of
MDS cells toATRAand relative lack of clinical efficacy (Hernandez
et al., 2020). To this end, ATRA is oxidized and inactivated by
CYP26, a member of cytochrome P450 enzymes. Though initially
known to control systemic ATRA levels via their hepatic function,
CYP26 enzymes were recently shown to be expressed by BMMSCs
(Ghiaur et al., 2013; Su et al., 2015; Alonso et al., 2016; Hernandez
et al., 2020).More so, stromalCYP26 is essential tomaintainnormal
andmalignant stem cell activity (Ghiaur et al., 2013; Su et al., 2015;
Alonso et al., 2017). Interestingly, treatment with ATRA directly
upregulates stromal CYP26 (Hernandez et al., 2020) and thus,
results in hyper-protective niches in the BME (Figure 1). Inhibition
of stromal CYP26 was able to sensitize malignant cells to retinoid
induced differentiation in the presence of BME (Su et al., 2015).
Similarly two synthetic CYP26 resistant retinoids (IRX195183 and
Tamibarotene) can bypass stromal protection and induce myeloid
differentiation in some AML and multiple myeloma cells (Alonso
et al., 2016; Hernandez et al., 2020). These novel retinoids have
shown biological activity in preliminary results from two ongoing
clinical trials that also enrolled patients with MDS. The full clinical
impactof these tools remains tobe seen,particularly in combination
therapies with ESA or other MDS targeting agents.
CONCLUSION

MDS is a complex disease with great heterogeneity and poorly
understood pathogenesis. Although progression to AML is a feared
Frontiers in Pharmacology | www.frontiersin.org 7
complication, most of morbidity and mortality stems from multi
lineage cytopenias and subsequent infections, bleeding
complications, and long term toxicities from frequent transfusions.
It is only beginning to be explored how the malignant stem cells out
compete their healthy counterparts. The role of bone marrow
microenvironment in this process is becoming front and center. By
now, it is clear thatMDS-MSCsareprofoundlyalteredandcontribute
tomaintaining thedysplasticclonewhile suppressingresidualnormal
hematopoiesis. The exact mechanisms by which abnormal MDS-
MSCs contribute todiseasehomeostasis areonlynowbeing explored.

This is an exciting time in our understanding of MDS.
Innovative preclinical models coupled with wide use of next
generation sequencing in patients with MDS led to rapid
development of new therapeutic tools. A multitude of drugs are
in various stages of clinical development. We are now testing
APR246 for TP53 mutant disease, IDH inhibitors for IDH
mutant disease, as well as CDK9 and Bcl2 inhibitors. These drugs
have already shown activity in subtypes of AML and are bound to
change our understanding of MDS. Other approaches, such as
immune checkpoint inhibitors, Hypoxia-inducible factor prolyl
hydroxylase inhibitor, Hedgehog inhibitors, and splicing
modulators are testing new biological concepts. Nevertheless,
while we are zooming in on the biological effects of these drugs
on the malignant clone, one should not loose site that MDS is a
disorder inwhich the entire bonemarrow (hematopoietic and non-
hematopoietic) is profoundly perturb. Thus, a system biology
approach to not only the pathophysiology of the disease but also
to understanding the response or lack thereof to these new agents
holdspromise tobetter the clinical outcomes forpatientswithMDS.
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