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Precision prevention of advanced melanoma is fast becoming a realistic prospect,

with personalized, holistic risk stratification allowing patients to be directed to an

appropriate level of surveillance, ranging from skin self-examinations to regular total

body photography with sequential digital dermoscopic imaging. This approach aims

to address both underdiagnosis (a missed or delayed melanoma diagnosis) and

overdiagnosis (the diagnosis and treatment of indolent lesions that would not have

caused a problem). Holistic risk stratification considers several types of melanoma

risk factors: clinical phenotype, comprehensive imaging-based phenotype, familial and

polygenic risks. Artificial intelligence computer-aided diagnostics combines these risk

factors to produce a personalized risk score, and can also assist in assessing the digital

and molecular markers of individual lesions. However, to ensure uptake and efficient use

of AI systems, researchers will need to carefully consider how best to incorporate privacy

and standardization requirements, and above all address consumer trust concerns.
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INTRODUCTION

Clinician-led skin examinations with dermoscopy are the mainstay of melanoma detection,
with unaided (“naked-eye”) examinations alone now considered insufficient (1). Dermoscopy
requires some training to use effectively, but significantly improves the specificity of diagnosis
(2). Increasingly, high-risk patients are managed with total body photography and sequential
digital dermoscopic imaging, (3) allowing clinicians to monitor for changes in melanocytic naevi
(moles) over time; this is particularly useful for patients with many atypical naevi (commonly
called dysplastic naevi) (4). Clinician-led screening of high-risk patients is associated with earlier
detection and a better prognosis, but imprecise diagnosis continues to have a major impact on
patients and the health system (5).

Underdiagnosis, a missed or delayed melanoma diagnosis, leading to untreated or improperly
treated disease, is a familiar problem to clinicians. This is particularly undesirable in melanoma,
where a correct early diagnosis often allows successful treatment with a simple excision, while
advancedmelanoma treatment is expensive and associated with a poorer prognosis and undesirable
side effects of treatment (6, 7). Medico-legal fears also incline clinicians to excise rather than
monitor a suspicious lesion and patients often express a preference for an early excision (5, 8).
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Overdiagnosis is a less well-known but increasingly
recognized problem, defined as detecting true cancers that
are so slow-growing (indolent) that they would not cause a
problem in the patient’s lifetime (9). Overdiagnosis is a common
observation in many cancers such as thyroid cancer and breast
cancer (9) and, remarkably, it is estimated that up to 58% of
melanomas in Australia are overdiagnosed (10). These indolent
cancers are currently indistinguishable from melanomas with
invasive potential, so they are typically also excised for patient
and clinician peace of mind. These potentially avoidable
excisions add an extra burden to the health care system and
increase a patient’s risk of scarring, infection, and other adverse
events (5). In addition, the diagnosis of melanoma, even in-situ
melanoma, can incur psychological distress (11). The same
techniques that enable early detection of thin but potentially
invasive melanomas also appear to increase detection of indolent
melanomas. It is critical that we learn to distinguish melanoma
interventions that actually benefit patients long-term from those
that promote overdiagnosis (12), and to differentiate between
slow-growing and potentially invasive melanomas (13).

Precision prevention of advanced melanoma has been
proposed to address these problems. It consists of first
stratifying patients into an appropriate level of surveillance
with personalized risk scores, which combine demographic,
phenotypic and genetic risk factors, and then customizing
their screening requirements accordingly. By using a low-
intensity surveillance regimen for people identified to be at
low-risk, the likelihood of overdiagnosis is decreased. Low-
risk surveillance may consist of education to promote self-
skin examination, thereby bringing new or changing lesions to
primary care providers. In contrast, high and ultra-high risk
patients (those who have multiple risk factors or have already
had one or more melanomas, respectively) could potentially
benefit from more intensive surveillance by clinicians using
total body imaging and sequential digital dermoscopy that
can detect early changes of emerging melanomas, especially in
patients with multiple and/or atypical naevi, where a diagnosis
without photographic documentation may be difficult. For these
patients, it may also soon become possible to use a combination
of molecular and digital biomarkers, collected through non-
invasive or minimally-invasive techniques, to assess individual
lesions for their likelihood to be a true melanoma or an
aggressive melanoma.

RISK STRATIFICATION

Several types of risk can be assessed to approximate a patient’s
risk of developing melanoma: clinical phenotype, comprehensive
imaging phenotype of sub-clinical factors (“deep image-based
phenotype”), familial and polygenic risks. For best results,
however, these assessments can be combined to produce a more
nuanced, personalized holistic risk score (Figure 1). Clinical risk
comprises readily-observable data such as age, sex, pigmentation
traits of hair, eye and skin color, number of naevi, personal and
family melanoma history. This kind of data is commonly used
by clinicians in ad-hoc assessments of melanoma risk. However,

deep image-based phenotyping, polygenic and familial genetic
risk are newer approaches that are slowly being integrated in
clinical use. In addition, the particular risk profile of each patient
may direct clinicians to be on the lookout for particular types of
melanoma, such as lentigo maligna melanoma in older patients
with severe chronic UV damage, many solar lentigines and a
history of basal or squamous cell carcinomas (14), or amelanotic
lesions in patients with mutations in the albinism pathway (15).

Clinical Phenotype
Clinical phenotype, already used in an ad-hoc way by many
clinicians to assess patients’ melanoma risk, is an important
inclusion in a holistic risk score. Age, sex, pigmentation
traits of hair, eye and skin color, and number of large naevi
are well-known melanoma risk markers. Non-melanoma skin
cancers, as well as multi-cancer syndromes such as Li-Fraumeni
syndrome (16) further add to risk estimates. Finally, prior
and ongoing medical treatment, such as immunosuppressive
treatment or PUVA, while relatively rare compared to other
clinical phenotype markers, may also be included, although their
link with basal and squamous cell carcinomas are much stronger
than melanoma (17, 18).

Deep Image-Based Phenotype
Deep image-based phenotyping is the concept of creating
an automated and objective assessment of phenotypic
melanoma risk factors directly from total body imaging.
Such measures include constitutional and facultative skin
color, naevus phenotype, freckling phenotype and UV damage
phenotype; these sub-clinical factors are known melanoma
risk indicators (19).

It is well known that those with fairer skin tones are at higher
risk of developing melanoma; however in those with darker skin
tones, melanoma is often diagnosed later and has higher rates
of mortality (20). While skin color is a continuous measure, it
is often categorized for ease of assessment. The Fitzpatrick skin
type is commonly used and is calculated based on pigmentation
traits and self-report of the skin’s reaction to the sun. While
easy to calculate, it relies on the subjective assessment of the
individual and/or healthcare provider and is a poorer proxy in
those with darker skin tones (21). The individual topography
angle (ITA) maps color onto a 2-dimentional space using the
CIE L∗a∗b∗, with gold standard measures achieved using a
spectrophotometer or colorimeter. However, such measures can
also be extracted directly from digital images, (22). eliminating
the need for specialist equipment and removing subjectivity.

A high total body naevus count has long been known to be a
strong melanoma risk factor. A lack of adoption of a standard
protocol for counting naevi has resulted in little consistency
across studies, with variations in who counts them (clinicians,
researchers) and the size counted (>2mm, >3mm, >5mm)
(23, 24). In addition naevus counts are time-consuming and
therefore studies often rely on self-report, which tends to have
low agreement with experts, and can lead to misclassification of
risk (25). As part of the deep image-based phenotype, automated
objective naevus counts can be obtained using convolutional
neural networks applied to 3D total body photography (26).
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FIGURE 1 | The elements of precision melanoma risk scores for risk stratification and precision prevention of advanced melanoma.

UV exposure is the primary environmental risk factor, but
quantifying an individual’s chronic exposure level has been
difficult, largely relying on self-report as to time in the sun and
protective strategies used. We have shown that photo-numeric
scales can be accurately used to grade sun damage across all body
sites (27), and we are currently automating this process with
convolutional neural networks. Freckling is also a well-known
risk factor, (28). indicating UV exposure interacting with defects
in pigmentation genes such as MC1R. Similar to the methods
applied to assess UV damage, an automated measure of freckling
density is also being developed by our group.

Familial Melanoma Genetics and Polygenic
Risk Scores
Twin studies have estimated melanoma heritability to be 55%
(29), and first-degree relatives of an affected individual have a
two-fold increased risk of developing melanoma in their lifetime
(30). Approximately 10% of melanoma is familial, but only 20%
of melanoma-prone families will carry a mutation in a known
melanoma gene (31). In 90% of positive cases, the mutation
occurs in CDKN2A, with mutations being more rarely identified
in CDK4, BAP1, BRCA1, BRCA2, MITF, PTEN, TERT, POT1,
POLE, TERF2IP, ACD, RB1 and TP53. (16, 31–34). Individuals
with mutations in CDKN2A have a 52% average lifetime risk
of developing melanoma, with an increased risk of developing
multiple melanomas, and a higher probability of being diagnosed
at an earlier age (35) CDKN2A mutation carriers’ lifetime
melanoma risk is further increased if they also carry common
red hair color variants in MC1R (36). Recent systematic reviews
have found that CDKN2A testing is associated with minimal,
if any distress (37) and some positive impacts on primary and
secondary preventative behaviors (38).

Though melanoma risks are significant in familial melanoma
cases, they account for a relatively small portion of individuals
diagnosed with melanoma annually. A meta-analysis of genome-
wide association studies comparing hundreds of thousands of
individuals with and without a personal history of melanoma
has found 68 single nucleotide polymorphisms (SNPs) in 54
locations across the genome implicated in melanoma risk (39).
Each of these SNPs is associated with an individual risk ratio
or odds ratio. These weighted risks can be summed to generate
a single, cumulative disease-specific polygenic risk score (PRS).
These have been created for multiple cancers, cardiovascular
disease and mental illnesses with the goals of population risk
stratification, risk refinement in high-risk families and informing
clinical management (40). Early studies in diverse disease groups
show that communication of this risk information is not
associated with undue psychological sequelae or adverse health
behaviors (41). In keeping with familial melanoma testing, initial
studies communicating melanoma PRS in the general population
show no impact on psychological distress and a positive
improvement in some primary preventative behaviors (42).

INDIVIDUAL LESION ASSESSMENT

Digital Markers
Since the seminal paper was published on the topic (43),
Convolutional Neural Networks (CNNs) have been applied to
individual dermoscopic lesion images, with research showing
that automated algorithms can, inmost cases, classify lesions with
higher accuracy than dermatologists (44). Human-computer
collaboration has been shown to further improve accuracy
(45). Several commercial software offer dermoscopic lesion
classification and also provide a malignancy risk score.
Automated algorithms are now being extended to closer

Frontiers in Medicine | www.frontiersin.org 3 January 2022 | Volume 8 | Article 818096

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Lee et al. Future of Melanoma Precision Prevention

represent the clinical environment, incorporating within-patient
context by providing the algorithm multiple images per
timepoint (46). It is now possible for automated algorithms
to incorporate longitudinal series of dermoscopic images, with
initial results indicating the algorithm is able to detect melanoma
earlier than clinicians while still avoiding overdiagnosis (47).
Additionally, such techniques are being applied to clinical images
to identify suspicious naevi (48). Image processing methods
are also being used by software such as Canfield Scientific
Inc (Parsippany, NJ, USA) VAM module, which can identify
individual lesions from 3D total body photography, and provide
lesion metrics such as diameter, hue and asymmetry (26).
Additionally, through image processing and markerless tracking
technology, lesions can be tracked over time to monitor changes
in color, size and shape.

Spatial Transcriptomics and Molecular
Profiling
Techniques for molecular analysis of DNA and RNA have rapidly
evolved in the past few years, leading to efforts to develop a
refined and integrated molecular signature that could reliably
detect melanoma using a minimally-invasive technique, such as
a micro-biopsy or tape-stripping device (49). This aims to allow
analysis of suspicious melanocytic lesions without requiring a full
sized biopsy, particularly useful for patients with high numbers of
atypical lesions that meet the criteria for excision. Each specimen
would be analyzed for precise hallmarks of melanoma, and the
lesion would only be excised if a positive signal was identified.

Current testing for BRAF, NRAS, HRAS and cKIT mutation
have been recognized as useful clinical markers for advanced
melanoma therapy decision-making, but the prevalence of these
mutations in benign melanocytic lesions makes them impractical
for early detection purposes (50). Gene expression profiling
(GEP), using a panel of genes known to be differentially
expressed between benign and malignant melanocytic lesions,
may become a useful technique here; however commercially
available GEP panels require further evaluation against standard-
of-care clinicopathologic risk markers to verify that they
add value over the current clinical, genetic and phenotypic
risk profile (51).

With the advances of deep sequencing technologies, it is now
routine to survey the whole genome and transcriptome from
a fresh tissue biopsy. These powerful tools have fast tacked
the discovery of drug targets for cancer treatment (52), tumor
mutational load for prediction of immunotherapy outcome (53),
and importantly the discovery of novel and interacting signaling
pathways to greater understand cancer progression (54).

While previously these analyses were conducted on all cells
present in the tissue (“bulk” sequencing analysis), single-cell
technologies are now available which permit discrete molecular
profiling of each cell type present in the tissue biopsy (55). These
tools combined with the deep sequencing technologies have
enabled precise gene expression analysis, thus allowing cell-type
(or cell state, e.g., malignant) specific profiles to be discovered to
empower progression biomarker discovery (56).

Spatial profiling, including spatial transcriptomics, is another
emerging technology which will revolutionize our understanding
of lesion heterogeneity. These technologies allow for the
analysis of whole transcriptomes, spatially resolved to defined
regions of interest within histopathology tissue sections, allowing
a comparison of histopathologically-identifiable melanoma
structures and their molecular profiles (57, 58).

These cutting-edge tools currently determine the complete
molecular profile of the whole tissue from a complete excision or
punch biopsy. Their integration into microbiopsy, tape-stripping
or other minimally-invasive devices will be critical for delivering
individual lesion molecular assessment to the clinic.

CONSIDERATIONS FOR
IMPLEMENTATION

Consumer Trust in AI Computer-Aided
Diagnostics
Central to the acceptance and use of technology-aided
diagnostics is consumer and clinician trust. Technology-
aided diagnostics and teledermoscopy services bring many
benefits for consumers, such as convenience, reduced travel time,
fewer unnecessary referral for benign lesions, potential costs
savings, (59). and improved triage and management (60, 61),
but barriers to consumer trust and uptake include privacy and
confidentiality concerns, diagnostic confidence, and concerns
around inadequate patient-clinician interaction (61, 62). When
skin self-examination is conducted using teledermoscopy,
additional barriers include technological difficulties and the
challenge of conducting whole body skin self-examination. A
recent study of teledermoscopy consumers revealed modest
trust levels and decreased acceptance following experience with
using the technology, but also a willingness to use it again
in future (63).

Trust issues are likely to be exacerbated with the inclusion
of artificial intelligence (AI) in diagnostics, despite its potential
ability to increase diagnostic accuracy (45), due to the black-
box nature of many AI algorithims, which do not explicitly
show users how the algorithm came to its conclusion.
A recent representative study of over 6,000 people across
five western countries indicates only 37% of people are
willing to trust AI-enabled health diagnostic services (64).
The exact way AI technology should be used to support
the early diagnosis of melanoma is also not yet clear,
with some proposing that AI should triage lesions so that
the workload of clinicians would be reduced, while others
propose AI should provide a second opinion so that clinicians
could reassess lesions where the AI diagnosis differs from
their own (45, 65).

Standardization
Another barrier to technological uptake in the clinic,
particularly AI uptake, is lack of standardization (66).
Digital Image Communication in Medicine (DICOM) is
the standard in medical imaging (67). DICOM provides a
standardized way to encode and store medical images and
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their associated metadata, but more importantly DICOM
is an interoperability standard that facilitates the sharing
of medical images and associated data both within and
between organizations.

The first version of DICOM was published in 1985.
It has been evolving in some medical image-producing
specialities (e.g., radiology and cardiology) since then and
now enjoys ubiquitous use (68). However, it was not until
2020 that the first dermatology-specific extension to the
DICOM standard was published (69). Until recently, (68).
dermatology imaging largely consisted of clinical images
acquired on commercial, off-the-shelf cameras and smart devices.
The need for standardization and the adoption of DICOM
for dermatology has been driven by a number of factors
including the clinical use of advanced imaging modalities
(e.g., total body photography, confocal microscopy), the use
of sequential dermoscopic imaging, teledermatology, and the
potential of AI.

The adoption of standards for dermatology imaging
can improve AI workflows by encoding derived objects
(e.g., secondary images, visual explainability maps, AI
algorithm output) and the efficient curation of multi-
institutional datasets for machine learning training,
testing, and validation (70). The use of DICOM
for the management of dermatological images will
not guarantee effective clinical translation of AI in
dermatology but may address important technological and
implementation challenges (70).

Privacy
Addressing privacy in dermatology imaging is a further
very relevant implementation consideration. The use
of dermatological imaging and AI in dermatology is
currently impeded by lack of guidance for clinicians and
researchers on the acceptable use of the images. Further,
patients may not fully understand the possible privacy
consequences of interacting with these technologies.
There are dermatology-specific issues such as nudity in
total body photography and difficulty in de-identifying
data for secondary use due to the patient being visually
identifiable that are not addressed in existing health
privacy frameworks (68).

CONCLUSION

Precision prevention of advanced melanoma is fast becoming
a realistic prospect, with remaining obstacles well-defined and
under investigation by many researchers. A major challenge is
promoting consumer trust in these emerging technologies, along
with prioritizing privacy and standardizing image collection to
allow AI algorithms to work effectively. However, if we are able
to meet these challenges, risk stratification, using clinical and
subclinical, deep image-based phenotype, familial and polygenic
risk factors, combined with increasingly sophisticated assessment
of digital and molecular markers, promises to continue to
improve early melanoma detection and surveillance for those at
ultra-high risk while minimizing overdiagnosis.
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