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Acidovorax avenae subsp. avenae is the causal agent of bacterial brown stripe disease in
rice. In this study, we characterized a novel horizontal transfer of a gene cluster, including
tetR, on the chromosome of A. avenae subsp. avenae RS-1 by genome-wide analysis.TetR
acted as a repressor in this gene cluster and the oxidative stress resistance was enhanced
in tetR-deletion mutant strain. Electrophoretic mobility shift assay demonstrated that TetR
regulator bound directly to the promoter of this gene cluster. Consistently, the results
of quantitative real-time PCR also showed alterations in expression of associated genes.
Moreover, the proteins affected byTetR under oxidative stress were revealed by comparing
proteomic profiles of wild-type and mutant strains via 1D SDS-PAGE and LC-MS/MS
analyses.Taken together, our results demonstrated that tetR gene in this novel gene cluster
contributed to cell survival under oxidative stress, and TetR protein played an important
regulatory role in growth kinetics, biofilm-forming capability, superoxide dismutase and
catalase activity, and oxide detoxicating ability.
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INTRODUCTION
Acidovorax avenae subsp. avenae, (formerly Pseudomonas ave-
nae) is a Gram-negative, rod-shaped causal bacterial agent, which
infects many economically important crops, including rice, maize,
millet, oats, sugarcane, and foxtail (Song et al., 2004). In rice, it
causes bacterial brown stripe (BBS) disease, which is a devastat-
ing rice disease in some areas in Asia, Africa, North America, and
Europe (Xie et al., 1998, 2011). Although this worldwide rice dis-
ease has caused significant yield and quality losses, currently little
is known about this bacterial pathogen, especially at the molecular
and cellular levels. Recently, the draft genome sequence of A. ave-
nae subsp. avenae RS-1 has been released (Xie et al., 2011). This
opens a new avenue to study this pathogen that will ultimately lead
to better control of this disease.

Comparative genomic analysis with closely related species has
revealed several novel horizontally transferred gene clusters in this
pathogen (Xie et al., 2011). Horizontal gene transfer (HGT) is a
progress in which an organism incorporates genetic material from
other organisms without vertical inheritance. This progress has
been considered as a major driving force in bacterial evolution
(Ochman et al., 2000). HGT can transfer not only one gene to the
recipient that enhances the niche adaption, but even an entire gene
cluster that may dramatically alter the metabolic repertoire of the
host, even creating functional novelties, including stress response
(Slade and Radman, 2011).

Bacterial cells are always exposed to various adverse conditions
and surroundings, which compel them to adapt to conditions far

from optimum. For example, oxidative stress occurs when reac-
tive oxygen species are naturally generated in aerobically growing
cells where incomplete reduction of molecular oxygen happens
during their normal metabolism. These toxic compounds induce
oxidative stress to the cell, damaging nucleic acids, and proteins
(Imlay, 2013). The reactive oxygen species include hydrogen per-
oxide (H2O2), superoxide radical (O2·), and hydroxyl radical
(HO·). Reactive oxygen species can also occur from a variety of
environmental sources, such as redox-cycling agents and ioniz-
ing radiation (Sies, 1997). Paraquat, one kind of redox-cycling
agents, can generate endogenous superoxide stress and react with
respiratory chain components in bacterial cells (Tu et al., 2012).
In most cases, survival in this unstable environment requires a
wide range of adaptive, effective feedbacks mediated or triggered
by regulatory proteins (Ramos et al., 2005). The TetR protein
family is a common class of transcriptional regulator found in
a diversity of bacteria. It has been reported that this protein fam-
ily can take function in various physiological processes, such as
biosynthesis of antibiotics and expression of enzymes implicated
in catabolic pathways, and multidrug resistance (MDR; August
et al., 1998; van der Geize et al., 2000; Cho et al., 2003; Rand
et al., 2006). However, only about 5% among them have been
fully characterized (Ramos et al., 2005; Hillerich and Westpheling,
2008), and fewer were reported in phytopathogens (Ramos et al.,
2005).

Whole genome sequencing of the A. avenae subsp. avenae RS-
1 strain has provided a general view of HGT, which may have
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enhanced its pathogenicity or survival ability. In this study, we
found a horizontally transferred gene cluster containing four genes
including the tetR gene and paraquat-inducible genes (pqiAA’B).
We investigated the role of TetR in regulating expression of this
gene cluster and found it negatively regulated its expression. We
also found TetR plays a role in cell growth rate, biofilm formation,
and oxidative stress survival.

MATERIALS AND METHODS
BACTERIA STRAINS, PLASMIDS, AND CULTURE CONDITIONS
Strains and plasmids used in this study were listed in Table 1.
A. avenae subsp. avenae strains were grown in Luria-Bertani
(LB) broth or LB with 1.5% (w/v) agar at 30◦C. LB agar
without sucrose and LB agar containing 10% (w/v) sucrose
were used for deletion mutagenesis (Li et al., 2011). The
bacterial optical density (OD600) was determined with a
spectrophotometer (Perkin Elmer Lambda35 UV/VIS). When
required, antibiotics were added at the following concentra-
tions: ampicillin (Amp), 100 μg ml−1; chloromycetin (Chl),
3.4 μg ml−1; kanamycin (Km), 50 μg ml−1; and rifampicin (Rif),
100 μg ml−1.

PLANT MATERIAL AND INOCULATION FOR BACTERIAL VIRULENCE
ASSAY
The cultivar of rice plant used in this study was ZheYou#1
(susceptible to A. avenae subsp. avenae). Experiments were per-
formed in greenhouse. For inoculating plants, strains were grown
in LB broth for 48 h, diluted in ddH2O, and adjusted to OD600 of
0.6 (1 × 108 CFU ml−1; Liu et al., 2012). Leaf-clip inoculation was
carried out on 6 weeks-old rice plants. Lesion length was measured
at 14 days post-inoculation (Yu et al., 2011).

PHYLOGENETIC ANALYSIS
Each gene of interest was compared against sequences in the
NCBI nr database using BLASTp (Altschul et al., 1997) fol-
lowed by extracting the sequence of each specie with high-
est similarity for further study. We considered two genes as
homologs when E-value <10−5 and when the alignment sim-
ilarity was higher than 40% with more than 80% coverage
(Nogueira et al., 2009). ClustalW was used for sequences align-
ment (Thompson et al., 1994), and the conserved region of each
alignment was trimmed with Gblocks (Castresana, 2000) under
stringent settings described previously (Ciccarelli et al., 2006).

Table 1 | Strains and plasmids used in this study.

Strain or plasmid Relevant characteristicsa Source or reference

Strains

Acidovorax avenae subsp. avenae

RS-1 RifR; The pathogen of bacterial brown stripe of rice, isolated from the diseased rice from Zhejiang

province in China

Lab collection

RS-tetR RifR, RS-1 in-frame deletion mutation defective in tetR This study

RS-tetR-comp RifR, AmpR, ChlR; RS-tetR complemented with pRADK-tetR This study

Escherichia coli

DH5α F− �80d lacZ�M15�(lacZYA-argF ) U169 recA1 endA1, hsdR17 (rk−, mk
+) phoA supE44λ− thi-1

gyrA96 relA1

This study

S17-1(λ pir) λ Lysogenic S17-1 derivative producing π protein for replication of plasmids carrying oriR6K ;

recAprohsdRRP4-2-Tc::Mu-Km::Tn7 λ− pir

Simon et al. (1983)

BL21(DE3) F− ompT hsdS20(rb−, mb
−) gal Novagen

Plasmids

pGEM-T AmpR; cloning vector Promega

pKMS1 KmR; R6K-based suicide vector; requires the pir -encoded π protein for replication Li et al. (2011), Zou et al. (2011)

pRADK AmpR, ChlR; broad host expression vector Gao et al. (2005)

pGEM-T-tetR AmpR; pGEM-T with a 726 bp fragment of tetR (including the entire open reading frame) from

strain RS-1

This study

pKMS-tetR KmR; pKMS1 containing the tetR1 (250 bp) and tetR2 (186 bp) DNA fragment of gene tetR from

strain RS-1; used to create mutant RS-tetR

This study

pRADK-tetR AmpR, ChlR; pRADK plasmid containing the tetR gene from strain RS-1, excised from

pGEM-T-tetR; utilize to complement

This study

pGEX6P-1 pBR322 origin, lacI, GST-tag, KmR, expression vector Novagen

pGEX6P-tetR pGEX6P-1 expression TetR, GST-tagged, KmR This study

aAmpR, Chl R, KmR, Rif R, indicate ampicillin-, chloromycetin-, kanamycin-, rifampicin-resistant, respectively.
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Maximum Likelihood (Fang et al., 1999) phylogenies were eval-
uated and built by PhyML (Guindon and Gascuel, 2003) using
a JTT model and a gamma distribution with eight rate cate-
gories. We performed 1,000 bootstraps to gain branch support
values.

CONSTRUCTION OF tetR-DEFECTIVE DELETION MUTANT AND
COMPLEMENTATION
To investigate the role of tetR in A. avenae subsp. avenae, an
in-frame deletion mutation by double cross-over events of this
gene (RS_1091) was constructed as described previously using
the suicide vector pKMS1 (Li et al., 2011; Zou et al., 2011) by
homologous recombination on the background of wild-type strain
RS-1. Briefly, two fragments flanking the start and stop codons of
target gene, tetR1 (250 bp) and tetR2 (186 bp), were amplified from
the wide-type genomic DNA (gDNA) with primer pairs tetR1-
F/tetR1-R and tetR2-F/tetR2-R (Table S1), respectively. The two
fragments were digested with BamHI and HindIII and ligated into
the vector pKMS1 at the corresponding sites, resulting in pKMS-
tetR. This recombinant plasmid was transferred into Escherichia
coli S17-1 λ pir (Simon et al., 1983) and then introduced into A.
avenae subsp. avenae by filter mating (Smith and Guild, 1980). The
single colonies that emerged on LB plates containing kanamycin
and rifampicin at 30◦C for 2 days were then transferred to LB
broth medium followed by incubating at 30◦C and 200 rpm for
16 h. Afterward, the bacterial culture was plated to LB agar con-
taining 10% (w/v) sucrose for the second cross-over through sacB
and sucrose-positive selection. After sucrose resistant colonies
were patched onto LB and LB plus kanamycin plates, respec-
tively, individual colony that grew normally on LB plates, but did
not grow on LB containing kanamycin, was considered potential
deletion mutants where double exchange homologous recombi-
nation events occurred at the two tetR fragments, resulting in a
267 bp deletion. One of the mutants, named RS-tetR, was subse-
quently verified by PCR and sequencing before using for further
study.

In order to complement the RS-tetR strain, the 1062 bp
fragment containing full-length of tetR gene and 300 bp of its
upstream region was amplified by PCR. The primers were designed
based on RS-1 genome and listed in Table S1. The PCR prod-
uct was cloned into pGEM-T Easy vector, verified by sequencing,
and then cloned into pRADK (Gao et al., 2005). Complementa-
tion vector was introduced into mutant cells by electroporation
and complementary strain was selected by resistance to Chl
and Amp.

GROWTH CURVE AND SURVIVAL ASSAYS
In order to monitor the growth rate, the growth curve
assays were performed as described by Tu et al. (2012) with
minor modification. 1 ml overnight culture, which was grown
at 30◦C with 200 rpm agitation in LB broth, was added
into 99 ml fresh LB broth to OD600 of 0.05. The con-
centration of commercial 30% H2O2 (10 mol L−1) solution
and 100 mmol L−1 paraquat (N,N′-dimethyl-4,4′-bipyridinium
dichloride, C12H14Cl2N2, 257.16 g mol−1) solution (2.57 g solid
paraquat diluted with 100 ml ddH2O) were used. The reactive
oxygen compound (H2O2 or paraquat) was added at mid-log

phase (OD600=0.3) to the indicated final concentrations. After
comparing with the untreated bacterial growth curve, the sensi-
tivity and tolerance of cells to the reagents was determined. This
experiment was repeated three times independently.

PROTEIN PURIFICATION AND LC-MS/MS ANALYSIS
Protein extraction was performed as described by Tu et al. (2012)
with some modifications. Briefly, 2 ml overnight grown cells were
added to 100 ml fresh LB broth to continue growing at 30◦C with
200 rpm agitation. Paraquat or H2O2 was added to cells at mid-log
phase (OD600=0.3) to the indicated concentration that perturbed
the growth without causing cell death according to the survival
assay (40/60 mM H2O2 or 0.4/0.8 mM paraquat, RS-1/RS-tetR).
Cells were harvested by centrifugation (5,000 g, 10 min, 4◦C) after
exposure to the oxidative compounds for 60 min. Then the cells
were treated with lysozyme (1 mg/mL) in the phosphate buffer
(pH 8.0), disrupted by ultrasound, and centrifuged at 12,000 g
for 15 min at 4◦C in a Sorvall centrifuge to remove cell debris.
A second-time centrifugation step (20,000 g, 30 min, 4◦C) was
required by by Sorvall centrifuge (Sorvall WX100, Thermo Scien-
tific, USA). The protein content was quantified using the enhanced
BCA Protein Assay Kit (Beyotime, China).

Protein extracts were subject to 1D SDS-PAGE gel composed of
5% acrylamide for stacking gel and 10% for running gel (Schäg-
ger and Von Jagow, 1987) with a mini-gel apparatus (VE-180
vertical electrophoresis bath, Tanon, China). Subsequently, the
separated protein bands in the SDS-PAGE gel were visualized by
silver staining.

The peptides released from trypsin digestion for LC-MS/MS
analyzing were prepared in two biological replicates. LC was per-
formed using a Dionex Ultimate 3000 nano-LC system. Firstly, the
tryptic peptides were acidified by 2% acetonitrile with 0.025% tri-
fluoroacetic acid before loading onto the Dionex Acclaim PepMap
100, C18 trap column (20 mm × 100 μm, 5 μm, 100 Å) at the flow
rate of 10 μl min−1. Then, the Dionex Acclaim PepMap 100, C18
analytical column (150 mm × 75 μm, 3 μm, 100 Å) were applied
to divide the enriched tryptic peptides by gradient elution. The
Bruker amaZon electron transfer reaction (ETD) ion trap system
coupled with nano source expanded the capability to identify the
trapped tryptic peptides under 300–1400 m/z and 50–2200 m/z
scan range for MS and MS/MS, respectively.

The MASCOT LC-MS/MS ion search algorithm (Matrix Sci-
ences) was applied to evaluate the LC/MS spectra and sequence
similarity of resulting peptides to A. avenae subsp. avenae RS-
1 was compared with Acidovorax species accessible on NCBI. To
further identify the proteins, the cross correlation scores (X corr;
Lin et al., 2007) of singly-, doubly- and triply-charged peptides
were fixed greater than 1.8, 2.5 and 3.5, respectively. Then, a list
of peptide sequences with the highest X corr values was identified.
The hydrophobic nature of proteins was accessed through evaluat-
ing the grand average of hydropathicity (GRAVY) score of peptides
by ProtParam ExPASy. Furthermore, proteins were annotated by
RAST automatic pipeline to analyze their function.

ENZYME ASSAYS FOR SOD AND CATALASE
After protein purification as mentioned above, 1–2.5 μg pro-
tein was used to measure superoxide dismutase (SOD) or
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catalase activities. Precisely, SOD activity was determined with
a SOD assay Kit-WST (Beyotime, China). The Catalase Assay
Kit (Beyotime, China) was used to detect catalase activity.
Briefly, for SOD activity assay, the samples were treated by
WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-
disulfophenyl)- 2H-tetrazolium, monosodium salt] and incubated
at 37◦C for 30 min. Afterward, the absorption maximum at
450 nm was measured by Thermo Multiskan EX Micro plate Pho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA). SOD
activity was calculated by standard curve according to the instruc-
tion of manufacturer in kit. For catalase assay, the samples were
treated with 10 μl of 250 mM H2O2 and incubated 5 min at
room temperature, and the remaining H2O2 (not decomposed by
catalase) was coupled with a substrate to generate N-4-antipyryl-
3-chloro-5-sulfonate-p-benzoquinonemonoimine, which has an
absorption maximum at 520 nm and was quantified spec-
trophotometrically. Catalase activity was then calculated by
standard curve according to the instruction of manufacturer
in kit. These experiments were repeated three times indepen-
dently.

BIOFILM FORMATION ASSAY
Biofilm formation assays were performed using the crystal vio-
let (CV) assay method (Peeters et al., 2008). Bacteria were grown
overnight with approximately 200 rpm agitation and diluted at
1:50 into fresh LB media. 100 μl of 108 CFU ml−1 mutant or
wild-type bacterial suspension was added to one well of 96-well
microtitre plate with sterile ddH2O serving as blanks. Cells were
allowed to form biofilm at 30◦C for 48 h without agitation. After
the planktonic organisms were removed and each well in the plate
was rinsed and air-dried, 125 μl of 0.1% (w/v) CV solution was
used to stain biofilm and 150 μl of 33% acetic acid was added
to release the bond CV. The optical density was measured at
590 nm using a Thermo Multiskan EX Micro plate Photometer
(Thermo Fisher Scientific, Waltham, MA, USA). This experi-
ment was repeated three times independently with 12 replicates
each.

RNA EXTRACTION AND REAL-TIME PCR
The bacterial culture (OD600=1.0) was utilized for RNA extrac-
tion after exposure to the oxidative stressor (40/60 mM H2O2

or 0.4/0.8 mM paraquat, RS-1/RS-tetR) for 10 min. Bacterial
total RNA was extracted from RS-1 and RS-tetR strain respec-
tively as described by the manual of RNeasy Protect Bacteria Mini
Kit (QIAGEN) and then used for generating first strand comple-
mentary DNA (cDNA) as described in the protocol of the Takara
PrimeScript RT reagent Kit with gDNA Eraser (Takara). Briefly,
1 ml of bacterial cells were mixed with 2 ml of RNAprotect Bac-
teria Reagent before incubating for 5 min at room temperature.
A pellet was obtained after centrifugation and was then treated
by TE buffer (10 mM Tris·Cl, 1 mM EDTA; pH 8.0) containing
1 mg/ml lysozyme at room temperature for 5 min. After detecting
the RNA quantity by agarose gel electrophoresis and the quality by
Nanodrop ND1000 spectrophotometer V 3.5.2 (NanoDrop Tech-
nologies, Wilmington, DE, USA), 1 μg of the resulting total RNA
was used at 42◦C for 2 min to eliminate gDNA by gDNA Eraser
and buffer before obtaining cDNA. Then the reverse transcription

reaction was accomplished by incubating at 37◦C for 15 min and
then 85◦C for 5 s in the presence of random RT primers. An ABI
PRISM 7500 Real-Time PCR System and SYBR green fluorescence
chemistry (SYBR Green I Master Kit, Roche Diagnostics) were
employed to perform quantitative real-time RT-PCR amplification
and analysis. Real-time PCR amplification was generated with 30 s
of initial denaturation at 95◦C, followed by 40 cycles of 5 s at 95◦C,
30 s at 60◦C for amplification. The reference genes (16S rRNA of
both RS-1 and RS-tetR) were used to normalize the measurements
between samples. Data analyses were based on change-in-cycling-
threshold method (2−��Ct; Livak and Schmittgen, 2001). RNA
extraction was carried out with two replicates per strain and qPCR
was performed with three replicates.

EXPRESSION AND PURIFICATION OF THE TetR PROTEIN
The tetR gene was PCR-amplified from A. avenae subsp. avenae
RS-1 genome with primers that introduced a BamHI site overlap-
ping the translation initiation codon and a SalI site downstream of
the stop codon, respectively (Table S1). A 763 bp tetR-containing
DNA fragment was cut with BamHI and SalI and subcloned
into the pGEX6P-1 expression vector (Novagen, USA) with the
same restriction enzymes, yielding pGEX6P-tetR. Subsequently,
pGEX6P-tetR was transformed into E. coli BL21(DE3) and was
grown in LB medium containing 100 μg ml−1 ampicillin at 30◦C
to OD600=0.5. Afterward, the culture was grown for an additional
3 h after isopropylthiogalactoside (IPTG) was added to a final
concentration of 1 mM. The cells were then harvested by centrifu-
gation at 8,000 g, 4◦C for 10 min, and the pellet was resuspended in
10 ml of lysis buffer (70 mM HEPES, 20 mM imidazole, 650 mM
NaCl, 0.5 mM β-mercaptoethanol, 10% glycerol, pH 8; Balhana
et al., 2013). Cells were disrupted on ice by ultrasonic treatment
for 20 min with 8 s rest period every 16 s and the supernatant
was recovered by removing the cellular debris through centrifu-
gation (12,000 g, 20 min, 4◦C). Subsequently, TetR protein with
GST-tag was separated and eluted by GST-Tag Bind resin (Sangon
Biotech, China) followed by the manufacturer and the purity was
confirmed by SDS-PAGE. The concentration of the purified pro-
tein was determined using the enhanced BCA Protein Assay Kit
(Beyotime, China).

ELECTROPHORETIC MOBILITY SHIFT ASSAYS (EMSA)
A 292 bp fragment comprising the intergenic region between
tetR and pqiA’ was PCR amplified from A. avenae subsp. ave-
nae RS-1 gDNA and the 3′-end of the fragment was labeled by
biotin to be used as probe, according to the procedures of elec-
trophoretic mobility shift assay (EMSA) Probe Biotin Labeling
Kit (Beyotime, China). A 150 bp DNA fragment from the down-
stream of pqiB gene was worked as non-specific DNA control.
Binding reactions were carried out by incubating varying con-
centrations of protein with 0.05 pmol of labeled probe in a total
reaction volume of 20 μl. The EMSA were performed using a
Light-Shift chemiluminescence EMSA kit (Beyotime, China) fol-
lowing the manufacturer’s instructions and the membrane was
washed and detected following chemiluminescent method using
Streptavidin-HRP conjugates and BeyoECL Plus reagents. ECL
signals were captured and visualized by exposing the membrane
to HyperfilmTM (GE Healthcare).
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STATISTICAL ANALYSES
When needed, the data of quantitative assays were analyzed by
SPSS 16.0 (SPSS Inc., Chicago, IL, USA) using an analysis of
variance test and the mean values were compared with the least
significant differences test.

Clusters of Orthologous Groups (COGs) enrichment analysis
was carried out based on the Hypergeometric Test,

P =
n∑

i=x

(M
i

)(N−M
n−i

)
(N

n

)

In which, N means the number of genes in the RS-1 genome, M
means the number of genes filling into one COG category in the
RS-1 genome, n means the number of differential proteins in tetR
mutant LC-MS/MS result and I means the number of genes filling
into one COG category in tetR mutant LC-MS/MS result. P < 0.01
was used as the cutoff to define the significance.

RESULTS
THE SYNTENY AND ORIGIN OF GENE CLUSTER
Horizontal gene transfer is an important mechanism driving the
evolution of microbial genomes (Gogarten and Townsend, 2005).
By comparing with A. avenae subsp. avenae ATCC 19860 and A.
citrulli AAC00-1, two most closely related genomes deposited in
public database, we found that the upstream and downstream
regions of this cluster were highly conserved (Figure 1), indicat-
ing a novel gene cluster in RS-1. This cluster encodes four genes
including pqiAA’B and tetR gene. The tetR gene is located upstream
from the paraquat-inducible genes (pqiAA’B) in tandem. In the
phylogenetic trees generated using the four genes in this cluster,

RS-1 always grouped together with different bacterial species, with
Pseudomonas as the out-group (Figure S1). These gene trees were
highly incongruent with the bacterial species tree. Based on these
results, we hypothesize that this gene cluster may be horizontally
transferred from a Pseudomonas ancestor.

In previous reports, TetR family members are particularly
abundant in microbes and play important roles in bacterial adapt-
ability or fitness when they are exposed to adverse environmental
challenges, such as oxidative stress conditions (Ramos et al., 2005).
Thus, in order to understand the role of the TetR protein in RS-1,
we decided to investigate its molecular function by deleting tetR
gene in RS-1 strain (Figure S2).

THE tetR MUTANT SHOWED DECREASED BACTERIAL GROWTH RATE
AND INCREASED TOLERANCE TO OXIDATIVE STRESS
The growth rate of the tetR mutant strain RS-tetR decreased signif-
icantly compared with the wild-type as well as the complemented
strain RS-tetR-comp (Figure S3). Wild-type and RS-tetR-comp
strains entered the log phase 1 h after the culture started and the
OD600 reached up to 2.2 while the RS-tetR strain entered the log
phase much later and its OD600 only reached 1.7.

In order to investigate the tolerance capability of A. avenae
subsp. avenae strains to oxidative stress, we carried out a compar-
ative analysis of the growth kinetics under different concentrations
of paraquat or H2O2. Generally, paraquat or H2O2 strongly inhib-
ited the growth of both mutant and wild-type strains. Importantly,
the mutant strain showed higher resistance than wild-type strain
to these reactive oxygen reagents (H2O2 or paraquat) when added
at mid-log phase (OD600=0.3; as the arrow shown in Figure S4).
Six different concentrations of paraquat (0.0–1.0 mM) or H2O2

FIGURE 1 | Alignment of Acidovorax avenae subsp. avenae RS-1, ATCC

19860 and A. citrulli AAC00-1 chromosomes. One cluster was found in
RS-1 containing four genes including tetR and pqiAA’B. Sequences from
this cluster with upstream and downstream sequences were aligned with

A. avenae subsp. avenae ATCC 19860 and A. citrulli AAC00-1. The
single-headed arrows represent the position and orientation of the gene
in genome. The deleted site of the tetR gene was shown by inverted
triangle.
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FIGURE 2 | Survival assays of RS-1, RS-tetR and RS-tetR -comp,

respectively. The mutant strain grew well on the LB plates containing
paraquat or H2O2, while the growth of wild-type and complementary

cells were inhibited. (A) Growth on LB plate without oxidative reagent;
(B,C) Growth on LB plate with 0.8 mM paraquat and 60 mM H2O2,
respectively.

(0–100 mM) were used to test their effects. At 0.4 mM paraquat
or 40 mM H2O2, RS-1 and RS-tetR-comp were completely inhib-
ited, showing no further growth (Figures S4A,B,E,F), whereas the
RS-tetR was little affected and continued to grow. At 0.8 mM of
paraquat or 60 mM of H2O2, growth of RS-tetR strain was inhib-
ited (Figures S4C,D), whereas RS-1 and RS-tetR-comp cells started
to die. Moreover, the results from LB plate assay were consistent
with those of growth curves. The RS-tetR grew well on LB plates
containing 0.8 mM paraquat or 60 mM H2O2, while RS-1 and
RS-tetR-comp was inhibited (Figure 2). These data suggest that
TetR is involved in negative regulation of cell growth and adaption
under oxidative stress.

DIFFERENCE IN BIOFILM FORMATION, BUT NO DIFFERENCE IN
BACTERIAL VIRULENCE
The morphological appearance and thickness of biofilm showed
obvious differences after 48 h of adhesion at 30◦C without
agitation. Particularly, RS-tetR strain formed a thicker biofilm
compared with RS-1 and RS-tetR-comp strains. When quantified,
RS-tetR yielded readings twice as high as RS-1 and RS-tetR-comp
(Figure 3). The quantitative data confirmed that the mutant strain
exhibited significantly (P < 0.05) higher biofilm-forming capabil-
ity compared to the other two strains. However, the virulence
did not show significant difference comparing among wild-type,
mutant and complementation strains by observation of symp-
toms and analysis of lesion lengths 14 days post-inoculation
(Figure S5).

INCREASED ACTIVITIES OF SOD AND CATALASE IN tetR MUTANT
CELLS WITH OXIDATIVE STRESS
Superoxide dismutase and catalase in cytoplasm of bacterial cells
play a pivotal role in protection against superoxide and peroxide
stress (Henriques et al., 1998; Inaoka et al., 1999). They are highly
efficient enzymes and likely to be transiently induced (Hassett and
Cohen, 1989). Our results in Figure 4 showed that their enzyme
activities were increased in response to oxidative stress compared

to the untreated control (Figure 4). More importantly, the RS-
tetR mutant strain showed markedly higher levels of catalase and
SOD activities compared to wild-type and complemented strains
(Figure 4). The quantitative analysis of SOD activity showed that
the absence of TetR led to ∼2.3-fold increase in enzyme activ-
ity in paraquat treatment and ∼2.2-fold in the H2O2 treatment.
The quantitative catalase activity analysis yielded similar results:
deletion of tetR resulted in ∼2.7-fold and ∼2.1-fold increase in
H2O2-treated and paraquat-treated samples, respectively. These
results raised the question as to whether TetR can also influence
expression of genes encoding other oxidative stress detoxifying
enzymes, such as sodAB, katA, ahpCF and hemAXCDBL (Zuber,
2009). We therefore carried out LC-MS and quantitative PCR
analysis to address this issue.

FIGURE 3 | Biofilm quantification and optical density measurements

at 590 nm. Bacterial cells were placed in 96-well plate at 30◦C without
agitation. After 48 h, biofilm was formed and stained by 0.1% (w/v) crystal
violet solution before releasing by 33% acetic acid. Means ± SEM are
shown; n = 12. Different letters indicated significant differences (P < 0.05)
among treatments.
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FIGURE 4 |Total SOD (A) and catalase (B) activities in response to

superoxide and peroxide stress. Enzyme activities of different strains
were evaluated using cytoplasmic proteins after 60 min induction with
oxidative compounds (0.4/0.8 mM paraquat or 40/60 mM H2O2, RS-1 and
RS-tetR-comp/RS-tetR). Error bars indicated standard deviations from three
independent experiments.

IDENTIFICATION OF PROTEINS REGULATED BY TetR
In order to investigate how many proteins can be influenced by
TetR under oxidative conditions, we employed 1D SDS-PAGE to
compare cytoplasmic proteins of RS-1 and RS-tetR, prepared as
described in Section “Materials and Methods” (Figure 5). The
resultant protein bands were further digested and peptides were
then analyzed by LC-MS/MS subsequently.

The protein profiling data of LC-MS/MS from two biolog-
ical replicates revealed a non-redundant list of proteins, after
removing overlapping entries, with high (>98%) confidence. The
results clearly suggest differential expression of these newly iden-
tified cytoplasmic proteins between wild-type and tetR mutant
strains. In total, there are 111 proteins identified (Tables S2 and
S3). Specifically, 15 proteins were only identified in RS-1 while
96 proteins were identified only in RS-tetR. These proteins are
mainly associated with oxidative stress response, detoxification,
and biofilm-formation. COG enrichment suggested that there
were more proteins involved in energy production and conver-
sion, cell motility, post-translational modification in the RS-tetR
strain, compared to RS-1 (P < 0.01, hypergeometric distribu-
tion test); whereas the wild-type strain produced more proteins
involved in coenzyme transport and metabolism, amino acid
transport and metabolism, and cell division (Figure S6). Overall,
these results provide an explanation for the observed physiological
changes caused by TetR and support our main hypothesis that this
gene cluster plays a key role in bacterial survival under oxidative
stress.

FIGURE 5 | 1D SDS-PAGE of cytoplasmic proteins obtained from A.

avenae subsp. avenae cells. Lane 1–3, wild-type strain RS-1 under no
stress conditions, 0.4 mM paraquat and 40 mM H2O2 stress conditions,
respectively; Lane 4–6, mutant strain RS-tetR under 0.8 mM paraquat,
60 mM H2O2 stress conditions and no stress conditions, respectively.

QUANTITATIVE PCR ANALYSIS OF THE tetR -REGULATED GENES
The LC-MS/MS study exhibited a comprehensive profile of pro-
teins whose coding genes are regulated by the TetR regulator under
oxidative stress. For further confirmation, we selected 11 genes
from the proteomic profile which were involved in oxidative stress
response or biofilm-formation, or encoded detoxifying enzymes.
We examined their gene expression with quantitative real-time
PCR. The results in Figure 6 showed different fold change in
gene expression regulated by tetR comparing mutant to wild-type
strain. As expected, the expression of pqiA’AB was significantly
up-regulated in the RS-tetR strain (6.2-, 6.5-, 7.8-fold, respec-
tively). Similar results were obtained for genes sodA, ahpF and
katA, which encode SOD, alkyl hydroperoxide reductase, and cata-
lase, respectively (Figure 6). Up-regulated expression in these
genes is expected to lead to increase in detoxifying enzyme activ-
ities, as shown in SOD and catalase activities assay (Figure 6).
Moreover, the increased detoxifying enzyme activity can also con-
tribute to the higher resistance to paraquat and H2O2. Flagella
are important for bacterial colonization and biofilm formation
(Conrad, 2012; Bogino et al., 2013; Ren et al., 2013). Quanti-
tative real-time PCR showed that the gene expression level of
fliL and flaB, two flagella-associated genes, was 1.4-fold and
1.8-fold higher in the absence of TetR. The clpAB gene fam-
ily plays a role in synthesis of stable and native proteins, which
are required for intracellular replication, stress tolerance, and
biofilm formation of bacteria, in the presence of ATP (Wawrzynow
et al., 2003; Frees et al., 2004). Thereby it was not surpris-
ing to see these genes up-regulated in the absence of the tetR
regulator.

TetR BINDS TO pqiA’ -tetR INTERGENIC REGION
To investigate whether the repression of the genes on the gene
cluster by TetR occurs via physical interaction between TetR and
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FIGURE 6 | Quantitative PCR analysis shown as fold change in

gene expression regulated by tetR. The data were quantified by
the change-in-cycling-threshold method (2−��Ct ) using the 16S rRNA
for normalization. Total RNA was extracted from RS-1 and RS-tetR

cells exposed to the oxidative compounds for 10 min. Error bars
indicated standard deviations from three independent experiments.
Different letters indicated significant differences (P < 0.05) among
treatments.

the promoter of the gene cluster, we performed EMSA using a
292 bp putative promoter fragment of the pqiA’-tetR intergenic
region from A. avenae subsp. avenae RS-1 (Figure 7A). We puri-
fied the TetR protein with GST tag (about 48 kDa) and confirmed
it by SDS-PAGE with silver staining (Figures S7A,B). After mix-
ing the biotin-labeled probe with TetR, a band with substantial
mobility shift corresponding to a TetR-DNA complex was detected
(Figure 7B, Lane 3–5). When TetR concentration was increased,
an increase in the shifted band was observed (Figure 7B, Lane
3–5). This result indicates that the binding of TetR to the DNA
fragment is concentration dependent. As a control, we showed
that there was no mobility shift of the probe when TetR was
not added (Figure 7B, Lane 2). In addition, a strong bind-
ing shift appeared when unlabeled non-specific DNA was added
(Figure 7B, Lane 1); while when unlabeled cold probe was added,
it abolished the binding, demonstrating the binding sensitivity
and specificity of TetR for this intergenic region (Figure 7B, Lane
6–7).

DISCUSSION
It is believed that pathogenic bacteria can acquire and integrate
foreign DNA into its chromosome. This process has been hypothe-
sized to give advantages to the pathogenic bacteria (Dobrindt et al.,
2004). A. avenae subsp. avenae, the phytopathogen causing BBS
disease, has developed several mechanisms to defend itself against
oxidative stress, including induction of protective enzymes against
peroxide/superoxide and adjustment of efflux pumps. HGT is an
efficient means to acquire foreign DNA, which helps to adjust cel-
lular responses to successfully survive environmental challenges,
such as oxidative stress.

Many methods have been developed to detect HGT including
GC content, codon usage and phylogenetic tree analyses (Eisen,
2000). In these, phylogenetic tree has proven to be the“golden stan-
dard” for HGT detection (Bansal et al., 2012). Our phylogenetic
tree analysis suggested that this gene cluster might be acquired

FIGURE 7 | Electrophoretic mobility shift assay ofTetR binding to the

pqiA’-tetR intergenic region. (A) The 292 bp DNA fragment comprising
the intergenic region between the tetR and pqiA’ genes was amplified by
PCR and used as probe in EMSAs. (B) Detection of protein–DNA
complexes by EMSA using 0.05 pmol labeled probe incubated with
increasing amount of GST-TetR protein (0 mg, Lane 2; 0.20 mg, Lane 3;
0.40 mg Lane 4; 0.60 mg, Lane 5). The 5 pmol unlabelled non-specific DNA,
0.05 and 5 pmol unlabeled specific DNA (cold competitor probe) was mixed
and incubated with 0.40 mg purified GST-TetR protein before adding labeled
specific probe in Lane 1, Lane 6 and Lane 7, respectively.

from a Pseudomonas ancestor as many Pseudomonas species clus-
tered with RS-1 (Figure S1). Consistent with this evidence, A.
avenae RS-1 and most Pseudomonas strains are both soil dwellers;
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many Pseudomonas strains are plant pathogenic bacteria (Sarkar
and Guttman, 2004). Thus, RS-1 may have gained these genes from
a Pseudomonas donor.

In most cases, TetR-like transcriptional factors are believed to
have two domains responsible for signal perception and DNA-
binding, respectively (Hillerich and Westpheling, 2008). Besides,
it was reported that the TetR protein regulates many genes and
pathways in bacteria that are involved in secondary metabolism,
MDR, and so on (Ramos et al., 2005; Hillerich and Westpheling,
2008). The deletion of the tetR gene in RS-1 rendered the bac-
terium more resistant to oxidative conditions, suggesting that it
normally functions to regulate the onset of anti-oxidative stress
response. Moreover, the LC-MS/MS results revealed that the TetR
can regulate expression of multi-proteins in RS-1.

Biofilm-forming capacity of bacteria is important for their
survival and infection on host cells. Therefore, studies on the
regulatory mechanisms governing biofilm formation are impor-
tant and could eventually lead to prevention of or therapy for
pathogen infections. Nevertheless, the regulation of biofilm for-
mation is too complex and multifactorial because of the varying
environmental factors, including osmolarity, temperature, anaer-
obiosis, and levels of iron, ethanol, glucose, nitrites, and citrate
(Prigent-Combaret et al., 1999; Schlag et al., 2007). In addition,
there are a number of endogenous proteins, for instance CsrA,
Crc, BfdR, and LuxR, which regulate biofilm-forming ability of
bacteria (O’Toole et al., 2000; Jackson et al., 2002; Huang et al.,
2013; HuiQiu et al., 2013). Here we reported that the tetR gene
in a gene cluster of A. avenae subsp. avenae also affected its
biofilm-forming ability. To access expression level of biofilm-
forming associated genes, we employed LC-MS/MS analysis and
real-time PCR study, and found activation of an array of flagel-
lar genes and clpAB genes in the absence of TetR (Tables S2 and
S3, Figure 6). On the other hand, the proteins down-regulated
(such as methylcrotonoyl-CoA carboxylase and MinC) in the tetR
mutant, mainly belong to bacterial catabolic pathways and reg-
ulator of cell division and growth (Tables S2 and S3; Höschle
et al., 2005; Aguilar et al., 2008; Bramkamp and van Baarle, 2009;
Lutkenhaus, 2009). In particular, the decreased minC gene expres-
sion can cause slower cell growth, which may help bacteria to
withstand arduous conditions. These results also provide evi-
dence supporting the role of TetR as a positive regulator of genes
promoting cell growth.

As a transcriptional regulator, the TetR protein binds to the
promoter of the gene cluster directly, as EMSA showed (Figure 7).
Mutation of the tetR gene resulted in activation of the pqiAA’B
genes, suggesting that TetR negatively controls the transcript levels
of pqiAA’B. This result is consistent with our observations that the
mutant displayed increased levels of resistance to paraquat and
H2O2.

With the exception of TetR regulator, there are some other
known regulators associated with oxidative stress regulation, such
as OxyR or PerR. Although similar properties make them function-
ally analogous with each other, genetic evidence revealed that they
have much difference on protein structures and functional mecha-
nisms. OxyR, a member of the LysR family, is a well-characterized
positive regulator of the adaptive response to H2O2 stress in E.
coli and in Salmonella enterica serovar typhimurium (Zheng et al.,

1998; Helmann, 2002), and a negative regulator of catalase expres-
sion in Neisseria gonorrhoeae (Tseng et al., 2003). Recently, more
researches have shifted to favor a model for OxyR activation. It was
believed a specific disulfide bond formation was required in the
oxidative activation of OxyR, rather than being chemically mod-
ified by individual cysteine (Cys) residues (Helmann, 2002; Lee
et al., 2004). PerR is a metal-dependent peroxide sensors that reg-
ulate inducible peroxide-defense genes, such as catalase gene katA,
alkyl hydroperoxide reductase gene ahpCF (Horsburgh et al., 2001;
Lee and Helmann, 2006). PerR is as well required for virulence and
iron storage proteins in Staphylococcus aureus (Horsburgh et al.,
2001). These features separate PerR functionally and mechanisti-
cally from TetR and OxyR regulators. Here, we did not find the
TetR controlling virulence in A. avenae subsp. avenae by observing
symptoms and analyzing lesion lengths 14 days post-inoculation
(Figure S5). Most of the fully identified and characterized TetR-
family repressors were associated with biosynthesis of antibiotics,
efflux pumps, and osmotic stress (Aramaki et al., 1993, 1995).
As a regulator of adaptive response to H2O2 stress, it was not
known whether paraquat or H2O2 was the direct modulator for
TetR protein activity. Future studies are required to cope with this
question.

It is well-known that there is a balance between different fac-
tors contributing to fitness in bacteria. The trade-off hypothesis
in pathogen evolution states that higher benefit in one aspect is
correlated to lower benefit in another aspect (Alizon et al., 2009).
Based on the trade-off hypothesis, there must be undesirable side
effects derived from over-expression of the TetR-regulated genes.
Our results showed that over-expression of the TetR-regulated
genes in the tetR mutant led to low cell growth rate under non-
oxidative stress conditions. In favorable growth conditions, fast
growth would be more important to bacteria than keeping its
defense heightened. TetR is a repressor in the operon to regulate
the pqiAA’B genes to achieve the balance between fast growth and
resistance to arduous surroundings. This feedback mechanism is
of high flexibility, which is important to bacterial adaptability.
TetR-like repressors, such as PrqR, Aur1R, EthR and CifR, with
similar mechanisms are also found in other bacteria (Babykin
et al., 2003; Engohang-Ndong et al., 2004; MacEachran et al., 2008;
Novakova et al., 2010). In Vibrio cholerae, HapR (another TetR
regulator) is found to play a positive role on detachment of V.
cholerae to the gastrointestinal epithelium as well as a negative
effect on biofilm formation (Silva et al., 2003). We still don’t know
exactly the positive role of the tetR gene. However, based on the
differential protein profiles between tetR mutant and wild-type
strain, we hypothesize that TetR also plays positive roles, including
promoting cell growth. More research is needed to reveal other
physiological roles of TetR.
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