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Abstract

One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and
molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share
some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of
small molecule protein-protein interaction inhibitors (SMPPIIs). We have developed a method that can be used to evaluate
the similarity of electrostatic potentials between small molecules and known protein ligands. This method was
implemented in a software called EleKit. Analyses of all available (at the time of research) SMPPII structures indicate that
SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true
for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the
design of new SMPPIIs.
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Introduction

With the advent of the ‘omics’ era, it has become clear that most

proteins do not act in solitude but depend on Protein-Protein

Interactions (PPIs) to exert their biological function. It has been

estimated that the number of PPIs in humans ranges from

,130,000 [1] to ,650,000 [2] and these PPIs are crucial for the

regulation of many biological processes. PPIs are often involved in

processes associated with diseases, therefore targeting PPIs with

small molecule PPI inhibitors (SMPPIIs) opens a pipeline for the

development of novel drug classes against a variety of diseases.

While many small molecule drugs targeting enzymes, nuclear

receptors, ion channels and G-protein coupled receptors have

been developed, the number of reported successes in the discovery

of SMPPIIs remains fairly low. As a matter of fact, PPIs were once

thought to be high hanging fruits for drug discovery [3]. PPIs were

even considered to be undruggable, mostly because of their

relative flat but extensive interfaces [4]. Though initially thought

to be undruggable, an increasing number of SMPPIIs have been

reported in recent years [5]. However, the number of deposited

3D SMPPII receptor complex structures remain far more limited

than the number of reported successful cases. This hinders the

understanding of their mechanism of action and chemical space

properties [6]. Commonly used methods for screening are

computational docking [7] and pharmacophore-based screening

[8]. It was observed that the crucial interactions between a protein

ligand and its protein receptor are often similar to those between

the SMPPII and the protein receptor [9,10]. Thus, the PPI

interface can be used to create a pharmacophore query to screen

for small molecule ligands [11,12].

Another approach is to exploit the principle of electrostatic

complementarity in molecular recognition. Next to steric comple-

mentarity, electrostatics are one of the main driving forces

involved in molecular recognition [13]. Despite the complex

biophysical nature of the electrostatic potential, calculations for

macromolecular systems are nowadays tractable [14,15].

Electrostatics are known to play a key role in protein-DNA [16],

protein-protein [17] and protein-substrate [13] recognitions.

Given the importance of electrostatics for the molecular recogni-

tion event, electrostatics have been used to study protein similarity

[18–20] and the nature of protein-protein interactions [17,21–24].

More specifically, the electrostatic complementarity between

protein-protein interfaces has long been a subject of investigation

[22,23]. Using the correlation of electrostatic potentials as a

quantitative measure, the electrostatic complementarity between

PPI interfaces has been demonstrated [17,24]. Other studies

focused on the conservation of the electrostatic potentials through

evolution [25] and its role in molecular association kinetics [26].

It is generally accepted that there is a high degree of

complementarity in shape and electrostatics between a ligand

and its receptor. This implies that molecules with similar shape

and electrostatic properties may bind to the same receptor. This

principle has been used to identify small molecule inhibitors

similar to natural substrates or known inhibitors by screening for

compounds with similar shape, volume and electrostatics [27–30].
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An SMPPII cannot occupy the same shape and volume as its

much bigger protein-ligand counterpart. However, it can still be

assumed that there is some local electrostatic potential similarity

between an SMPPII and a ligand protein, since they recognize the

same binding site on the receptor. A recent example of the

usefulness of taking electrostatic potential similarity into account

while designing an SMPPII can be found in the work of Cavalluzo

et al. [31], where an SMPPII was designed de novo by including

electrostatic similarity. This success has motivated our effort to

systematically investigate the complementarity in electrostatic

potential between small molecules and protein ligands binding to

the same protein receptor, and its potential use to assist in the

rational design of SMPPIIs. For this purpose, a tool named EleKit

was developed.

Methods

To compute the partial charges and electrostatic potentials,

EleKit builds upon PDB2PQR [32] and APBS [15]. EleKit

requires two sets of complex structures in order to calculate the

electrostatic similarity between a protein ligand and a small

molecule ligand: (i) the PPI complex of the protein-ligand (LP) with

the protein-receptor (RP) and (ii) a small molecule ligand (LSM) in

its predicted or experimentally determined conformation on the

protein-receptor (RP).

The EleKit method is shown schematically in figure 1. First, the

electrostatic potentials around and are computed using APBS

(parameters listed in table 1) and stored in 3D grids. Since only the

area where and intersect is most likely to be relevant for molecular

recognition, a bit mask is created on the electrostatic potential

grids (figure 2). The goal of this mask is to take into account only

those points in space that are not only in the solvent region around

and but also near the interface atoms of RP. To create this mask, a

distance cutoff is needed. This distance is used when dilating (a

morphological mathematical operation) the molecular surface.

Based on the hydrogen bond length (,2.5Å) and the facts that

enough points are needed for correlation and that the local

similarity is our focus, a cutoff value ranging from 1.4 Å to 3.5 Å

seems reasonable. All experiments reported in this study were

Figure 1. Overview of EleKit applied to PDB codes 2B4J (1A)
and 3LPU (1B). The ligand protein (LP) is shown as a green surface in 1A

and 2A. The ligand small molecule (LSM) is shown as a smaller green
surface in 1B and 2B. The receptor protein (RP) is shown as a gray
cartoon in 1A and 1B. and are placed on (1A and 1B). The electrostatic
potentials of and are calculated and stored in distinct grids (2A and 2B).
Then, a mask is created to select the solvent region near the interface
(3A and 3B). Finally, the similarity between electrostatic potentials of and
over this region is calculated using the Spearman rank correlation
coefficient (4A and 4B).
doi:10.1371/journal.pone.0075762.g001

Table 1. APBS commands used for a protein.

read

mol pqr ligandprotein.pqr

end

elec

mg-auto

dime 161 193 161

cglen 105.5210 127.4643 91.1458

fglen 82.0712 94.9790 73.6152

cgcent -6.603267 -6.904766 -18.393622

fgcent -6.603267 -6.904766 -18.393622

mol 1

lpbe

bcfl sdh

pdie 2.0000

sdie 78.5400

srfm smol

chgm spl2

sdens 10.00

srad 1.40

swin 0.30

temp 298.15

calcenergy no

calcforce no

write smol dx ligandprotein.ms

write pot dx ligandprotein

end

quit

For a small molecule, the input and output file names would differ. Parameters
were determined with pdb2pqr.py. Grid-related parameters vary upon each
case (dime, cglen, fglen, cgcent and fgcent).
doi:10.1371/journal.pone.0075762.t001
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performed with an intermediate cutoff value of 2.0 Å. Using 3.0 Å

or 4.0 Å would have very little impact on the results (data not

shown). Finally, the similarity between electrostatic potentials of

and is assessed by correlating values at the grid points within the

mask using the Spearman rank-order correlation coefficient (r).

Additional similarity scores (Carbo index [33], Hodgkin index

[34], Pearson’s r and a Tanimoto score) are also calculated.

EleKit is written in OCaml [35] (http://biocaml.org) and

computations are parallelized by the Parmap library [36].

Experiments were run on Linux computing nodes with 2.4GHz

Intel Xeon processors. EleKit takes between ten seconds to two

minutes per ligand molecule and can parallelize the computation

of several ligands when run on a multi-core machine. EleKit is

released as open source and available from the authors’ website

http://www.riken.jp/zhangiru/software.html.

Results and Discussion

The EleKit method was applied to analyze previously reported

cases of SMPPIIs, for which accurate structures of the PPI as well

as the SMPPII receptor complex are available in the PDB (table 2).

Additionally, the SMPPIIs are required to bind in the PPI

interface, allowing for a substantial overlap between the protein

ligand and the SMPPII and thus excluding allosteric inhibition

mechanisms.

The approach used in EleKit to perform comparison of

electrostatic potentials resembles what has been done previously

on proteins [18–21]. Analysis of Electrostatic Similarities of

Proteins (AESOP) [20], the method of Dlugosz et al. [19] and

Protein Interaction Property Similarity Analysis (PIPSA) [18,37]

also use APBS as their electrostatic computation engine. PIPSA

can also use University of Houston Brownian Dynamics [38]

(UHBD). While EleKit relies on the Spearman rank-order

correlation coefficient (as McCoy et al. [17]), PIPSA uses the

Hodgkin index [34] to numerically assess the similarity of

electrostatic potentials. AESOP uses the Average Normalized

Difference [39]. The method of Dlugosz et al. [19] approximates

the electrostatic potential with spherical harmonics and uses a

similarity index specifically designed to compare the obtained

rotation-invariant descriptors. EleKit, similarly to several other

methods [18,19,37], uses boolean masks to select a region over

which electrostatic potentials are compared. All methods vary in

the way masks are constructed.

Analysis with EleKit
Electrostatic similarity analysis for these different SMPPII-

related structures indicate that several exhibit correlation. In

general, correlation between electrostatic potentials of SMPPIIs

and electrostatic potentials of the respective ligand proteins are

observed (table 2). This is especially true for the SMPPIIs targeting

the HDM2:p53, HIV-1 Integrase:LEDGF/p75, Integrin:Fibrino-

gen, IL2:IL2R and XIAP:smac interactions. The highest similarity

between a protein ligand and a small molecule ligand can be

observed in the HIV-1 Integrase:LEDGF/p75 and the Integri-

n:Fibrinogen interactions and their respective inhibitors. In these

cases, r is on average ,0.52 and ,0.73 respectively (table 2). The

origin of these classes of SMPPIIs can be traced back to

pharmacophore based discovery of lead compounds designed to

mimic the interactions observed at the PPI interface [40,41].

For the inhibitors of the HDM2:p53 interaction, the majority of

the inhibitors exhibit electrostatic potential similarity. However, a

few show low correlations (rv0:2) and in one case even some anti-

correlation (r&{0:15). Interestingly, the Tanimoto score shows

similarity in all HDM2:p53 cases. The electrostatic potentials

between inhibitors and protein ligands in ZipA:FtsZ and

VHL:HIF1 still correlate although less strongly than in other

cases. These inhibitors are observed to be less active when tested.

For inhibitors targeting the XIAP:smac interaction, which

originated from peptidomimetic design, some compounds exhibit

lower similarity than expected. This can be explained by the

divergence of conformations of the receptor protein, since the

XIAP:smac complex was solved by NMR while the structures of

Figure 2. Overview of the bit-mask construction in EleKit. (1) a near-or-inside mask of RP is created, (2) a near-but-not-inside mask of LP is
created, (3) a near-but-not-inside mask of LSM is created, (4) the logical conjunction of the three masks is used to select points to correlate from the
electrostatic potentials of LP and LSM.
doi:10.1371/journal.pone.0075762.g002
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XIAP bound to inhibitors were solved by X-ray crystallography.

The PPI complex solved by NMR spectroscopy are more difficult

to superpose onto the crystal structure conformation obtained for

the SMPPII complex. The inhibitors of the IL2:IL2R interaction

are well known for binding to the IL2R interface by causing a

rotameric change of a phenyl alanine creating a binding pocket

[42]. In this case, the PPI interface is only partially covered in a

hydrophobic area caused by the induced fit. However, the

observed similarity between the ligand protein and the inhibitor

mainly originates from the mimicry of the arginine guanidinium

group, which is not influenced by conformational changes or

induced fit.

There are no significant electrostatic correlations found in the

cases of the inhibitors of the Bcl2 family of proteins, the TNFa
trimerization and the HPV polymerase. A careful analysis of the

structures of these molecules revealed that the SMPPII in these

cases is bound after a major reorganization of the receptor protein

surface at the PPI interface. For the SMPPIIs bound to the Bcl2

Table 2. Analysis of SMPPII electrostatic mimicry.

PPI target SMPPI complex #points r r t2

(observations)

HDM2:p53 1rv1 5515 0.275 0.263 0.816

(1ycr) 1t4e (g) 5281 0.433 0.355 0.757

1ttv 4862 -0.152 -0.123 0.588

3jkz 4384 0.200 0.018 0.566

3lbj (g) 5159 0.353 0.190 0.611

3lbk (g) 4681 0.316 0.209 0.883

3lbl 4129 0.131 -0.015 0.672

3tu1 (g) 4492 0.589 0.329 0.764

4dij 4758 0.239 0.111 0.619

IL2:IL2R 1m48 (g) 3186 0.315 0.276 0.658

(1z92) 1m49 (g) 3523 0.758 0.654 0.737

1py2 3231 -0.011 0.095 0.583

1pw6 (g) 4119 0.653 0.574 0.678

1qvn 3819 0.093 0.098 0.626

Integrase:LEDGF/p75 3lpt (g) 3653 0.468 0.437 0.205

(2b4j) 3lpu (g) 3489 0.460 0.464 0.220

4dmn (g) 3880 0.471 0.534 0.229

4e1m (g) 3612 0.609 0.601 0.228

4e1n (g) 3486 0.615 0.591 0.267

Integrin:Fibrinogen 2vdm (g) 6471 0.731 0.751 0.617

(2vdo) 2vc2 (g) 6469 0.736 0.720 0.614

VHL:HIF1 (1lqb) 3zrc (g) 4135 0.123 0.127 0.062

XIAP:smac 2i3i (g) 5979 0.535 0.501 0.650

(1g3f) 1tft (g) 5853 0.377 0.409 0.525

3eyl (g) 4377 0.321 0.375 0.506

2jk7 (g) 5446 0.464 0.447 0.631

3clx 5570 0.055 0.127 0.431

3cm7 6005 0.227 0.229 0.534

3hl5 6044 0.263 0.302 0.484

3mup (g) 6028 0.480 0.404 0.671

3g76 (g) 5008 0.396 0.391 0.371

3oz1 5340 0.191 0.184 0.580

ZipA:FtsZ 1s1s (wi) 4320 0.150 -0.061 0.704

(1f47) 1y2f (wi, g) 3878 0.365 0.173 0.604

1y2g (wi) 3809 -0.318 -0.147 0.335

1s1j (wi, g) 2691 0.331 0.088 0.465

r: Spearman rank correlation coefficient; r: Pearson linear correlation coefficient; t2: a Tanimoto score (positive or negative electrostatic potential); observations: g =
good (rw0:3), wi = weak inhibitor (potency ,100 mM in the literature).
doi:10.1371/journal.pone.0075762.t002
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family proteins, there is a major induced fit not only involving side

chain atoms, but also including a rearrangement of a single helix,

in order to comfortably fit the SMPPII inside the same cleft that

was originally occupied by a full and more bulky a-helical protein

ligand. The inhibitors of the TNFa and HPV polymerase bind in a

pocket at the PPI interface created by the assumption of different

side chain orientations with more open conformations. Further-

more, the SMPPIIs that break the E1:E2 interaction of the HPV

polymerase act as a dimer. In these cases, the SMPPIIs do not act

by mimicking and competing with the ligand protein and no

similarity of electrostatic potentials is observed.

EleKit is able to assess electrostatic potential similarity by a

variety of measures including r, r and a Tanimoto score (table 2).

Overall, relying on r over r is preferred as it is more robust and

does not suffer from uncertainties in interpreting the significance

of the observed correlations [43]. The Tanimoto score, which is

based on binning the electrostatic potential values as positive or

negative does not seem to work in cases where the overall charge

of the protein ligand is significantly different from that of the small

molecule. An example is the case of the inhibitors of the

Integrase:LEDGF/p75 interaction, where the protein ligand has

a high positive net charge while the SMPPII has one negatively

charged group. The Tanimoto scores are significantly affected and

tend to be low. This problem is not observed when using

correlation scores. The local shape similarity between the protein

ligand and an SMPPII in EleKit is reflected by the number of

electrostatic potential grid points being correlated. The more

locally similar in shape a ligand protein is to a given SMPPI, the

more grid-points will remain in the final mask.

Application of EleKit
To test the utility of EleKit for the post-filtering of results from

virtual screening such as docking, four different cases where strong

electrostatic similarities between SMPIIs and protein ligands have

been observed were selected for further analysis. In each case, a set

of 100 diverse decoy compounds that bear similar chemical

properties as the active SMPPII were extracted from the

purchasable subset of the ZINC database [44] using the procedure

described by Huang et al. [45,46] to create the Directory of Useful

Decoys (DUD).

To position these decoy compounds inside the receptor protein,

as if it were a virtual screening experiment, molecular docking was

performed using the Molecular Operating Environment (MOE)

with the London dG score [47,48]. The receptor protein structure

was extracted from the coordinates of the respective PPI complex

structure and optimized using the Protonate3D functionality from

MOE [47]. Similarly, the active compounds were also docked

inside their respective receptor structures. For each compound, the

top scoring docked pose was retained and the electrostatic

potential similarity with the ligand protein was calculated.

Figure 3. Distribution of Spearman scores (r) for active ligands among decoys. EleKit Spearman scores for a population of ligand decoys
are shown as a blue histogram. The active ligands at their best docked pose in terms of RMSD to the crystallized active ligand are shown as orange
arrows and the crystallized active ligands as green arrows. The dotted line is a Gaussian fitted to the decoys’ histogram.
doi:10.1371/journal.pone.0075762.g003
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As expected, EleKit scores (based on a ligand protein and a

ligand small molecule pair) are uncorrelated to docking scores

(based on a ligand small molecule protein complex). The

Spearman correlation between docking scores and EleKit scores

fall in the range [20.1;0.1] in every case (data not shown). In all

four cases, the Spearman rank correlation coefficient for the

decoys follows a Gaussian distribution (figure 3). The mean of the

distribution is situated at r&0:0 with an exception for HIV-1

Integrase:LEDGF/p75 (r&0:17). In this case, the active SMPPIIs

are all mainly hydrophobic in nature except for one acid

functional group, thus all decoys also bear a similar group. During

the placement of those decoys into the hydrophobic pocket, this

functional group has a high likelihood of adopting a similar

arrangement to the active compounds, creating a higher

correlating tendency and shifting the mean r. This distribution

is independent from the scoring function as revealed by the low R2

values for the correlation between London dG and r. The highest

observed value was R2&0:006 for the decoys of the Integrin:Fi-

brinogen interaction.

When SMPPIIs in their experimentally determined binding

modes and with their best docked conformations are considered, a

positive r is always observed (figure 3). Only in the case of

HDM2:p53, one of the nine active molecules has a negative r.

Furthermore, in the cases of the Integrin:Fibrinogen and

Integrase:LEDGF/p75, their r values reside on the even higher

end of the distribution. In general, a cut-off value of at least r~0

can be suggested as it would rightfully discard approximately half

of the decoys. Such filtering using r would only remove one

inhibitor of the HDM2:p53 interaction, based on experimentally

determined poses. However, the electrostatic similarity for docking

results is influenced by the correctness of the predicted binding

mode. In the Integrase case, the docking algorithm was unable to

identify the correct binding mode within it’s top solution for two

compounds (the two orange arrows nearest to r~0 in the

Integrase plot of figure 3). For one of these compounds, this can be

explained by the small size of the molecule (PDB: 3lpt) and its lack

of an important hydrophobic group, which leaves a huge

hydrophobic cavity in the protein receptor unoccupied. However,

the docking algorithm forced this small inhibitor to fill the

unoccupied hydrophobic cavity resulting in a wrong predicted

binding mode for this inhibitor. The second compound (PDB:

4e1n) has a significantly larger substituent group and would

require a minor induced fit to bind correctly. The conformational

difference of the receptor protein between its ligand protein and

ligand small molecule bound forms can be problematic. In the case

of the XIAP:smac inhibitors, this conformational difference exists

since the structure of the PPI complex was determined using NMR

spectroscopy and the structures of the SMPII complexes were

determined by X-ray crystallography. The hydrophobic nature of

the receptor protein can be a challenge. In the HDM2:p53

interaction, only a limited number of polar interactions that might

Figure 4. EleKit Spearman scores (r) versus RMSD to crystal structure for computationally docked poses of known active ligands.
Each green arrow indicates the Spearman score for the known active ligand as seen in the crystal structure. The green dotted line was obtained using

gnuplot’s fit command (x2
red(Integrase)^0:15, x2

red(Integrin)^0:06, x2
red(XIAP)^0:06, x2

red(HDM2)^0:16).
doi:10.1371/journal.pone.0075762.g004
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help orienting the molecules in the right binding mode are present

in the pocket.

An overall analysis of the docked conformation revealed that in

every case the docking algorithm was able to reproduce binding

modes of the active compounds in agreement with the crystallo-

graphically determined binding modes. In the four receptors

examined in details (Integrase, Integrin, XIAP, HDM2), compu-

tational docking was able to place the active ligands in binding

modes almost identical to those determined crystallographically

(RMSD less than 1 or 2 Å, figure 4). The higher r even

corresponds to binding modes that are closer in RMSD (Fconv

[49] was used to compute RMSD for small molecules) to the

experimentally determined poses. Similarly, the decoy compounds

were docked within the right binding pocket making similar

contacts with the receptor protein as the active compounds (figure

5), therefore validating the suitability of the docking simulations.

Despite the decoy compounds made similar contacts compared to

the binding modes of the active ligands, it is clear that the

electrostatic similarity of the decoy compounds with the ligand

protein has a normal distribution, with its mean r around 0. The

ligands presented similar chemical groups in similar places driven

by the complementarity of polar interactions in the pocket in a

majority of the cases. The sole exception is found in the case of the

HDM2/p53 that is hallmarked by a mainly apolar interface.

Nevertheless, the apolar functions of the decoys and active ligands

overlap in the binding mode.

The further away from the crystallographic pose the docked

ligand is, the lower the Spearman rank correlation becomes. As a

remark, the Receiver Operating Characteristic (ROC) analysis is

typically used to assess the predictive and enrichment power of a

method. But due to the lack of a significant number of active

SMPPIIs for which structural information is available for a single

target, this type of analysis could not be performed.

The development of EleKit was inspired by the computational

work on electrostatic complementarity at protein-protein interfac-

es by McCoy et al. [17]. But EleKit bears salient differences with

this former study. Whereas McCoy et al. studied the complemen-

tarity of protein-protein interfaces, EleKit measures the local

similarity between one ligand protein and small molecules

targeting the same receptor interface. McCoy et al. measured the

Figure 5. Analysis of docking poses. Comparison of binding modes predicted by docking for known active ligands and decoys to the reference
ligands binding mode as experimentally determined. The best poses based on RMSD to the crystal structure, the pose with best r (ligand and decoys)
and poses with r near zero (decoys) are shown. These binding modes indicate that the binding mode of the docked compounds are similar to the
binding observed in X-ray or NMR structures. Despite the decoy compounds have binding modes in which their (a)polar contacts are similar to those
of the active ligands, their electrostatic similarity with the ligand protein is different.
doi:10.1371/journal.pone.0075762.g005

Electrostatic Similarities for Inhibitor Design

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e75762



correlation of electrostatic potentials at molecular surface points

while EleKit works on a 3D volume in the solvent region near the

binding interface. There are some significant prior works that

compare electrostatic potentials and other molecular interaction

fields for proteins only [18–21,37,50].

EleKit was also inspired by the commercial tools EON [27–29]

and ElectroShape [30]. In effect, these tools can assess similarity of

electrostatic potentials. However, they work exclusively on small

molecules. Thus, they can identify compounds similar to a known

small molecule inhibitor, but this is not applicable when searching

for a first-in-class SMPPII [31].

Conclusions

We have developed a method (EleKit) to investigate the

similarity between protein ligands and their respective SMPPIIs.

Our analysis of available SMPPII structures indicates that in cases

where SMPPIIs bind without induced fit, there is similarity of

electrostatic potentials at the interacting interface between a

protein ligand and a small molecule inhibitor. This insight can be

applied to post-filter virtual screening results to remove unprom-

ising compounds and thus has some potential for the rational

design of novel SMPPIIs.
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