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Single-pulse and repetitive transcranial magnetic stimulation (rTMS) are used in clinical
practice for diagnostic and therapeutic purposes. However, rTMS-based therapies that
lead to a significant and sustained reduction in neuropsychiatric symptoms remain
scarce. While it is generally accepted that the stimulation frequency plays a crucial
role in producing the therapeutic effects of rTMS, less attention has been dedicated
to determining the role of the electric field strength. Conventional threshold-based
intensity selection approaches, such as the resting motor threshold, produce variable
stimulation intensities and electric fields across participants and cortical regions.
Insufficient standardization of electric field strength may contribute to the variability
of rTMS effects and thus therapeutic success. Computational approaches that can
prospectively optimize the electric field and standardize it across patients and cortical
targets may overcome some of these limitations. Here, we discuss these approaches
and propose that electric field standardization will be instrumental for translational
science frameworks (e.g., multiscale modeling and basic science approaches) aimed
at deciphering the subcellular, cellular, and network mechanisms of rTMS. Advances in
understanding these mechanisms will be important for optimizing rTMS-based therapies
in psychiatry.

Keywords: non-invasive brain stimulation, repetitive transcranial magnetic stimulation, motor threshold, electric
field modeling, depression

INTRODUCTION

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation (NIBS) method
widely used in neuroscience research and clinical practice (Huang et al., 2017; Bergmann and
Hartwigsen, 2020). Based on the physical principle of electromagnetic induction, TMS produces
short (∼200–500 µs) but strong (>1.5 Tesla) magnetic fields that penetrate the intact skin and
skull of patients. Hence, TMS produces its major effects by inducing peak absolute electric fields
(∼100 mV/mm) in cortical brain regions (Paulus et al., 2013).

When applied repeatedly (i.e., =1 Hz), repetitive TMS (rTMS) induces lasting changes in
cortical excitability and plasticity, making rTMS a suitable tool for modulating complex brain
function in health and disease (Lefaucheur et al., 2014; Huang et al., 2017). Recent research has
demonstrated that rTMS is capable of inducing long-lasting plasticity of excitatory and inhibitory
neurotransmission in animal models (Gersner et al., 2011; Ma et al., 2013; Lenz et al., 2016, 2020;
Tang et al., 2017).
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TMS was first introduced in 1985 (Barker et al., 1985),
and the first rTMS study was performed in 1991 in epileptic
patients (Pascual-Leone et al., 1991). Four years later, the first
rTMS study in psychiatric patients suffering from depression
was published (George et al., 1995). Since then, rTMS
has been used to treat various neuropsychiatric conditions
associated with alterations in cortical excitability, including
movement disorders, Alzheimer’s disease, depression, anxiety
disorders, obsessive-compulsive disorders, and schizophrenia
(Lefaucheur et al., 2014).

Two rTMS protocols received approval from the U.S.
Food and Drug Administration (FDA) for the treatment
of pharmacoresistant depression; the 10 Hz rTMS protocol
in 2008 and the intermittent theta-burst stimulation (iTBS)
protocol in 2018 (Figure 1). Indeed, a previous meta-analysis
including 81 studies (n = 4,233) revealed significant short-term
antidepressant effects of rTMS (Brunoni et al., 2017). The
most recent meta-analysis including ten studies (six randomized
controlled trials, n = 294; four uncontrolled clinical trials,
n = 297) on iTBS to the dorsolateral prefrontal cortex (DLPFC)
vs. standard rTMS reported overall effect sizes for response
and remission rates of 0.38 and 0.20 in depressed patients,
respectively (Chu et al., 2020). Finally, a meta-analysis of eighteen
studies on the sustainability of rTMS effects in depression
showed sustained response rates of about 50% 3, 6, and
12 months after initial treatment (Senova et al., 2019). In sum,
these meta-analyses point to a significant efficacy and durability
of rTMS in the treatment of depression.

Still, the clinical relevance of rTMS for depression is
debated. Whereas short-term effects in treatment-resistant
depression have been repeatedly demonstrated, sustained
efficacy regarding clinically relevant outcomes has been
questioned (Lepping et al., 2014; Kedzior et al., 2015; Ontario,
2016; Papadimitropoulou et al., 2017). Moreover, a high placebo
response, technical difficulties in obtaining a double-blinded
sham response, and rather small sample sizes compared to large
psychopharmacological trials seem to hamper the validity of
several rTMS clinical trials (Razza et al., 2018). Apparently, a
more reliable and sustained clinical efficacy of rTMS—based on
reproducible neurophysiological effects—is urgently needed.

While it is generally accepted that the stimulation frequency
plays the dominant role in producing the therapeutic effects
of rTMS, less attention has been dedicated to the role of
electric field strength. In this perspective article, we discuss
the use of computational modeling to standardize the stimulus
intensities by closely matching electric field characteristics in a
given cortical target across the study sample. Such an approach
could be instrumental for developing suitable translational
research frameworks for obtaining insights into the biological
and therapeutic mechanisms of rTMS effects in the treatment of
neuropsychiatric disorders.

MOTOR THRESHOLD-BASED INTENSITY
SELECTION FOR rTMS

In human rTMS-studies, the vast majority of studies use the
motor threshold (MT) approach for intensity selection (Turi

et al., 2020). This approach adjusts the intensity of TMS by
recording the amplitude of motor evoked potentials (MEPs)
elicited from the target muscle while stimulating its motor
cortical representation (Figure 1A). In research and clinical
settings, typical intensities range between 80–120% of the MT
for the stimulation of brain regions other than the motor cortex
(e.g., the prefrontal cortex; Turi et al., 2020). For example, the
FDA-approved 10 Hz and iTBS protocols (Figure 1B) both use
120% of the resting MT intensity for the stimulation of the
prefrontal cortex (Blumberger et al., 2018).

One limitation of the MT approach is that the properties of
the electric fields, both in the motor cortex and therapeutically
targeted brain regions, remain undefined. Moreover, the
physiological mechanisms of inducing MEPs by TMS are not
completely understood in humans. For example, a crucial
question pertains to the mechanisms of TMS activation of layer
V pyramidal neurons (Di Lazzaro and Ziemann, 2013). These
neurons form the corticospinal tracts, driving the activation
of motor neurons in the spinal cord and subsequent muscle
activation. It is currently unclear whether layer V pyramidal
neurons are depolarized directly by TMS or indirectly via the
stimulation of axons terminating onto layer V pyramidal neurons
(Di Lazzaro and Ziemann, 2013). Likewise, the role of (in)direct
activation of interneurons during TMS remains unclear.

MT intensities can vary substantially across participants,
and studies frequently fail to report the stimulation intensity
translated into physical parameters, such as percent of the
maximum device output (Turi et al., 2020). In this context, it
is important to note that the amplitude of MEPs is susceptible
to attentional and voluntary mechanisms (Bell et al., 2018;
Ruddy et al., 2018). Participants can be trained to significantly
decrease or increase the amplitude of their MEPs voluntarily
(Ruddy et al., 2018). Thus, intensities corresponding to a given
MT are expected to yield distinct electric field strengths in
different participants or even in the same participants under
certain conditions.

Finally, the stimulation intensities estimated with the MT
approach may vary substantially between studies depending
on the type of the threshold (e.g., active or resting) and the
exact procedure used for detecting the MT (e.g., visual vs.
electrophysiological MEP detection). Hence, this conventional
intensity selection approach cannot adequately standardize
the electric field properties across participants and cortical
regions. Thus, a remaining open question is whether the
MT-based intensity selection approach can explain, at least in
part, the considerable inter- and intra-individual variability of
rTMS-induced aftereffects.

STANDARDIZATION OF STIMULUS
PARAMETERS IN BASIC SCIENCE
EXPERIMENTS

From a translational point of view, the stimulation intensity
expressed as a given percentage of the MT (e.g., 120% resting
MT), is not informative for basic science experiments aimed
at deciphering the mechanisms of rTMS-based therapies. A
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FIGURE 1 | Single-pulse transcranial magnetic stimulation (TMS) and clinically approved stimulation protocols. (A) Visualization of TMS of the motor cortex while
recording motor evoked potentials (MEP) of the target muscle. The intensity of TMS is adjusted by recording the amplitude of MEPs elicited from the target muscle
while stimulating its motor cortical representation (see Vlachos et al., 2017). (B) Schematic illustration of stimulation parameters of the 10 Hz and intermittent
theta-burst stimulation (iTBS) repetitive TMS (rTMS) protocols. Both protocols use stimulation intensities at 120% of the motor threshold.

major advantage of carrying out rTMS experiments in suitable
animal models both in vivo and in vitro is the ability to readily
standardize electric fields (and other stimulation parameters)
across experiments. For example, in our in vitro experimental
procedures, all stimulation parameters are kept constant, and the
same target volume is stimulated in every experiment, i.e., brain
tissue cultures in a standard 35 mm Petri dish filled with artificial
cerebrospinal fluid (see Müller-Dahlhaus and Vlachos, 2013).
Due to the standardized Petri dish volume, coil-to-tissue culture
distance, and tissue culture size, this approach yields closely-
matched electric fields in our laboratory.

Indeed, the effects of 10 Hz repetitive magnetic stimulation
on synaptic plasticity in vitro are robust and highly reproducible
(Vlachos et al., 2012; Lenz et al., 2015, 2016, 2020). It is
important to emphasize, however, that in vitro preparations
are not comparable to the complex in vivo situation and
do not allow for a straightforward translation to treating the
diseased human brain. Nevertheless, careful standardization of
stimulus parameters—specifically, electric field strength and
direction—seems mandatory for a systematic assessment of
factors that may affect the outcome of a given (standardized)
therapeutic rTMS protocol in suitable animal models (De Risio
et al., 2020) as well as human rTMS studies.

IMPORTANCE OF ELECTRIC FIELD
STRENGTH STANDARDIZATION IN
CLINICAL SETTINGS

The relevance of careful standardization of electric fields is
also supported by studies using transcranial electric stimulation

(tES; Antal et al., 2017); another clinically employed NIBS
method. The two most frequent tES approaches use either direct
(i.e., constant) or alternating (i.e., oscillating) currents for brain
stimulation between two or more electrodes that are attached to
the skin of the skull.

Studies using tES congruently suggest that the stimulation
intensity can have a significant impact on the physiological
aftereffects of the intervention. For example, Batsikadze et al.
(2013) have shown distinct aftereffects of transcranial direct
current stimulation (tDCS) applied at 1 and 2 mA intensities.
The corticospinal excitability in humans was decreased by
1 mA cathodal tDCS, whereas 2 mA increased excitability
(Batsikadze et al., 2013).

Similarly, Moliadze et al. (2012) demonstrated opposing
effects of 140 Hz transcranial alternating current stimulation
(tACS) at different intensities. While 0.6 mA decreased the level
of corticospinal excitability, 1 mA increased it (corresponding
to less than 0.2 mV/mm change in the absolute electric field
in the motor cortex). These studies suggest that small changes
in the electric field strength play a crucial role in inducing the
physiological aftereffects of tES.

The electric fields induced by TMS in the human cortex
are several-fold stronger than the electric fields achieved with
tES or magnetic stimulation of the rodent brain in vivo and
in vitro. Therefore, a systematic analysis of the dose-response
effects—the role of the electric field strength in rTMS-induced
(therapeutic) aftereffects—seems urgently needed. In this
context, computational modeling has the potential to provide
a translational framework for the physical input parameters of
TMS, such as electric field properties, and neural responses in
the human cortex and in suitable animal models.
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FIGURE 2 | Electric field modeling of in vitro tissue culture and in the mouse and human brain. (A) First, we estimated the electric field in the tissue culture produced
by the figure-of-eight TMS coil at 50% of the maximum stimulator output (MSO). Then, we calculated the robust maximum (i.e., 99.9th percentile) of the electric field
distribution in the tissue culture and optimized the stimulation intensities to reproduce the same robust maximum in the gray matter volume compartment. Due to the
large difference between the brain volumes, the stimulator intensity (expressed in MSO%) is substantially weaker for the mouse and human brain. The spatial
distribution of the electric field intensities is more homogenous in the tissue culture with simplified geometry compared to the mouse and human brain. The mesh file
for the mouse brain was obtained from Alekseichuk et al. (2019). (B) The choice of simulation parameters influences the characteristics of the electric field and the
outcome of the optimization.

COMPUTATIONAL MODELING FOR
ESTIMATING ELECTRIC FIELDS AND
PROSPECTIVE ELECTRIC FIELD
OPTIMIZATION

In recent years, sophisticated computer models have been
developed to numerically calculate the induced electric fields
in whole-brain volume conductor models (Figure 2). There
are several, free toolboxes available for NIBS (Thielscher et al.,
2015; Huang et al., 2019). These toolboxes can generate
anatomically realistic, multi-compartment head models
derived from structural magnetic resonance imaging data
of the participants. The three-dimensional head models are
generated by finite element or boundary element methods
(Saturnino et al., 2019).

Electric field modeling seems to be particularly relevant when
determining the stimulation intensity in cortical brain regions,
such as DLPFC, that do not produce readily detectable responses,
unlike the motor (e.g., MEPs) or visual (e.g., phosphenes)
systems. In these cases, computational modeling can be used
to adapt and standardize the stimulation intensities based on
a prospective electric field optimization approach (Balderston
et al., 2020; Beynel et al., 2020; Zmeykina et al., 2020).

After the preparation of the individual head model, several
crucial simulation parametersmust be considered for prospective
electric field optimization (Figure 2B). To begin with, one needs
to define the cortical target of the stimulation using one of the
several approaches. These include; to define locations relative
to the motor cortical representation of a given hand muscle
(e.g., the 5 cm rule; Fitzgerald et al., 2009) or a probabilistic
map of structural MRI (e.g., Montreal neuroimaging coordinates
transformed into subject space; Blumberger et al., 2018). Other
methods may use the location where phosphenes can be
induced (i.e., occipital lobe; Brückner and Kammer, 2016),
functional lesions (e.g., speech arrest; Pascual-Leone et al., 1991),
or locations corresponding to electroencephalogram (EEG)
electrodes (Zmeykina et al., 2020). Also, locations may be
determined by magnetoencephalogram/EEG source analysis or
fMRI functional localization at the single-subject or group level
(Beynel et al., 2020; Zhang et al., 2020).

The electric field optimization may focus on the cortical
surface or the volume compartment (Alekseichuk et al., 2019).
Similarly, one may calculate the electric field properties at the
entire compartment (e.g., gray matter volume) or on its subset,
also called the region of interest (ROI). For ROI-based electric
field analysis, one needs to specify its boundaries (e.g., it is
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surface and volume coordinates) and its shape (e.g., spherical,
following the cortical folding pattern, et cetera). The choice
of the ROI size will affect certain electric field properties.
For example, around the same cortical target, the mean or
median electric field strength will be weaker in larger ROIs (e.g.,
spherical ROI with 20 mm diameter) compared to a smaller
ROI that elements are closer to the coil (e.g., 5 mm diameter
spherical ROI).

Because the electric field is a complex, three-dimensional
vector field characterized by its amplitude and direction, the
characteristics of the electric field that will be considered in
the electric field optimization process need to be determined.
The electric field can be optimized for the absolute electric field
strength or its normal (radial) or tangential spatial component
for the cortical surface (Alekseichuk et al., 2019). Moreover,
there are several ways to characterize the distribution of the
electric field strength values in the ROIs, including calculating
the robust maximum (usually between the 98th and 99.9th
percentiles), mean, median, etc. values (Alekseichuk et al., 2019;
Zmeykina et al., 2020).

The resulting electric field characteristics strongly depend
on the coil center and its exact orientation. Therefore, a
common procedure is to perform grid simulations on a series of
predetermined coil locations while systematically manipulating
the coil’s rotation angle around the coil’s center axis at each
grid location. The outcome of this process is the most optimal
coil location, orientation, and device intensity that produces the
prospectively determined electric field characteristics in the ROI.

CONCLUSION AND OUTLOOK

Despite careful standardization of the electric field strength, it
is conceivable to assume that there is no single, universally
effective electric field strength value. Instead, different
electric field strengths likely induce different neural effects,
perhaps even concurrently in a given cortical target (Liu
et al., 2018). For example, weaker electric fields may
only induce immediate effects, such as temporal shifts
in neural spike timing, without inducing long-lasting
aftereffects (Zmeykina et al., 2020). Protocols with stronger
electric fields may reach the threshold for the induction of
plasticity of excitatory or inhibitory neurotransmission (see
Lenz and Vlachos, 2016).

Reverse translational approaches combining basic science
methods with computational modeling can facilitate the
identification of effective electric field strengths for different

neuronal mechanisms. For example, one interesting approach
may use standardized electric field values in a human neocortical
target that has been demonstrated to exert specific aftereffects
in an animal model. However, we have to concede that the
link between the rTMS-induced cellular aftereffects and their
therapeutic potentials in psychiatry remains unclear.

It is important to also emphasize that electric field estimation
can provide only approximate values of the de facto electric field
produced. Tissue segmentation inaccuracies, especially between
the skull and cerebrospinal fluid can have a substantial effect
on the estimated values. Computational modeling toolboxes
require additional validation of the induced electric field for
TMS. Therefore, one should interpret the exact electric field
values with caution.

In summary, we propose that a more careful standardization
of electric field strength in rTMS is instrumental for
the optimization of current rTMS-based therapies in
neuropsychiatric phenotypes. Prospective electric field
simulations have the potential to provide a translational
framework across distinct scales and experimental settings.
Multiscale neuronal modeling of realistic rodent and human
neurons provides a promising tool in rapidly screening distinct
stimulus intensities, orientations, frequencies, and pulse
numbers that can be validated in a translational approach
for the optimization of rTMS-based therapies in psychiatry
(Shirinpour et al., 2020).
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