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Abstract

We present a general methodology in order to build mathematical models of genetic regulatory networks. This approach is
based on the mass action law and on the Jacob and Monod operon model. The mathematical models are built symbolically
by the Mathematica software package GeneticNetworks. This package accepts as input the interaction graphs of the
transcriptional activators and repressors of a biological process and, as output, gives the mathematical model in the form of
a system of ordinary differential equations. All the relevant biological parameters are chosen automatically by the software.
Within this framework, we show that concentration dependent threshold effects in biology emerge from the catalytic
properties of genes and its associated conservation laws. We apply this methodology to the segment patterning in
Drosophila early development and we calibrate the genetic transcriptional network responsible for the patterning of the
gap gene proteins Hunchback and Knirps, along the antero-posterior axis of the Drosophila embryo. In this approach, the
zygotically produced proteins Hunchback and Knirps do not diffuse along the antero-posterior axis of the embryo of
Drosophila, developing a spatial pattern due to concentration dependent thresholds. This shows that patterning at the gap
genes stage can be explained by the concentration gradients along the embryo of the transcriptional regulators.
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Introduction

A genetic regulatory network is an ensemble of interactions in a

biological process involving proteins, genes and mRNAs. The

interactions between different proteins and genes can be done by

transcriptional activation and repression at the level of the

genes, by protein-protein interactions, and by protein-mRNA

interactions.

A genetic regulatory networks is described by a graph where

vertices represent genes, proteins, enzymes or other chemical

substances. The edges represent transformations, e. g., phosphor-

ylation and dephosphorylation, or activation and inhibitory

actions through transcription regulators.

More precisely, a genetic regulatory networks is described by a

double graph G~(V ,Ea,Er), where V is the set of vertices or nodes

of the graph and Ea and Er are two sets of ordered pairs of vertices of

the double graph. Each ordered pair of vertices defines the activation

or the repression mechanism of the first node over the second. In

classical graph theory, G~(V ,Ea) and G~(V ,Er) are two graphs

with a common set of vertices. For example, in Figure 1, we show the

graph of a genetic network associated with the production of the

proteins Bicoid (BCD), Hunchback (HB), Knirps (KNI) and Tailless

(TLL) in Drosophila early development, [1,2]. In this example, we have

V~fbcd,hb,BCD,HB,KNI,TLLg, Ea~f(bcd,BCD),(hb,HB),
(BCD,HB),(BCD,KNI)g and Er~f(HB,KNI),(KNI,HB),(TLL,
KNI)g.

The graph of Figure 1 has a clear biological meaning. It

expresses the fact that BCD is a transcriptional activator of both

HB and KNI, HB and KNI proteins both repress each other, and

TLL is a repressor of KNI. The vertices of the graph of Figure 1

can represent mRNAs, as in the case of hb and bcd, or proteins, as

in the case of BCD and TLL, or genes and proteins

simultaneously, as in the case of HB and KNI.

Here we propose a set of rules in order to construct the model

equations associated with a genetic regulatory networks described

by a double graph G~(V ,Ea,Er). This paper is an attempt to

delineate a methodological approach for the construction of

mathematical models of gene expression regulation from the

principles of chemical kinetics and chemical bound. In the

literature, it is often found examples of mathematical models of

biological systems described by different sets of equations and

characterized by different sets of parameters that are difficult to

interpret and to measure experimentally. Making qualitative

predictions with these different models has a limited predictable

value. For a review on the different approaches see, for example,

[3,4].

In the construction of models for generic regulatory networks,

we assume that models can be built with rate equations reflecting a

mean field view of the stochastic random motion occurring at the

molecular scale. This mean field approach, also called mass action

law, is derived from the probabilistic collision laws occurring at the

molecular scale. The models originated from this view are
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described by ordinary differential equations with polynomial

vector fields, [5–7].

One of the advantages of the mass action law approach is that

the mean field rate equations have a direct microscopic

interpretation, being associated with the collision mechanism that

are in the origin of every reactive process. For model refinement,

fluctuations can also be studied through the corresponding master

equation. From the experimental point of view, microbiology

techniques are strongly anchored in the mass action law or mean

field approach, [5,8].

For genetic regulatory networks described by graphs with a

large number of vertices, and a complex structure of edges, the

rate equations describing the evolution in time of concentrations

are in general difficult to build, and are critically dependent on the

assumptions done about the biological and the chemical

interactions involved. During the development of these complex

models, it is often necessary to test different graph configurations,

and to change parameters and initial conditions. Writing by hand

all this information is both time-consuming and error-prone.

In order to perform these tasks automatically, we have

developed two Mathematica software packages, Kinetics and

GeneticNetworks, that execute the symbolic computations associated

with the construction of the model equations for a genetic

regulatory network. The result of the analysis is in symbolic form,

and can be used in Mathematica, C or any other simulation software

for further numerical integration and graphical analysis. The

software packages GeneticNetworks and Kinetics are freely distributed,

[9].

The Kinetics package implements the mass action law in its

polynomial exact form, computing symbolically the associated rate

equations and conservation laws. The parameters generated

within Kinetics are chemical rate constants.

The package GeneticNetworks implements a particular model for

protein-gene regulation. This model for the protein-gene regula-

tion is based on the operon model of Jacob and Monod [10] in

prokaryotes, and its basic properties have been previously

introduced in [11]. The tools in the GeneticNetworks software

package implement a simplified view of the Molecular Biology

Dogma, [12], for protein encoding, translation and transcription,

and is consistent with the mass action law. For eukaryotes,

transcriptional regulation in is a much more complex issue,

involving many redundant binding sites dispersed along genomic

sequences. Therefore, in this case, the modeling approach

proposed here should be understood as a descriptive approxima-

tion to the not well understood eukaryotic regulation mechanisms.

In order to obtain a dimensional reduction on the number of

variables in the equations obtained by Kinetics and GeneticNetworks, it

is possible to construct, by a steady state approximation, Hill’s

function models, [4,8,13].

The advantages of using the Mathematica computing environ-

ment are (i) the possibility of obtaining an exact form for the model

equations; (ii) to perform, if necessary, further symbolic simplifi-

cations on the models; (iii) to modify the initial theoretical

assumptions of the model without having to re-introduce or choose

new parameter values; (iv) to make the numerical and graphical

analysis of models within the same computing environment; (v) to

use of a natural language without a deep knowledge of

programming; (vi) to use an easy interface for other programming

environments.

To build a model of given genetic regulatory network, the only

necessary input to GeneticNetworks is the activation and inhibition

relationship between genes, mRNAs and proteins. This input is

given in the form of the two order pairs of vertices Ea and Er of the

network graph. Then, the generation of model equations is done

with the GeneticNetworks commands. The model equations can be

analysed within the Mathematica environment or introduced in

other programming environments as COPASI, [14], and Potters-

Whell, [15], for simulation and parameter estimation. These

programs are powerful general propose tools in order to

numerically simulate solutions of ordinary differential equation

and to simulate stochastic models for system biology. At the time of

writing this paper, in the site of the Systems Biology Markup

Language, http://sbml.org, there were more than 180 registered

systems biology simulation programs.

This paper is organized as follows. In the Methods subsection,

we briefly review the mass action law of chemical kinetics and we

introduce the collision graphs associated with the mass action law.

We derive the basic mass action rate equations. A special emphasis

is done on mass action conservation laws, an important feature

that is in the very foundations of threshold effects in biology. In

other approaches, threshold do not result as emergent phenom-

ena, but must be imposed through ad hoc regulatory functions (see

for example [3] or [4, pp. 237]). We describe the mechanism of

genetic regulation based on the Jacob and Monod operon model,

[10], and we introduce the modeling assumptions for the

construction of the mathematical models of genetic networks

described by double graphs. Finally, we give an overview of the

GeneticNetworks software package.

In the Results section, we show three different applications of

the quantitative approach developed here. In the first application,

we show, with a very simple example of auto-regulation, that the

conservation law constant is a bifurcation parameter for the

regulation model, inducing a concentration dependent threshold

effect in the model for the production of proteins. This solves the

problem of the introduction of ad hoc threshold effects in biological

simulations, [16]. In the second application, we give a genetic

regulatory network inducing a localized spiky pattern along a

spatial domain. In this case, the spatial spiky patterns appears

without the necessity of other transport mechanisms, as diffusion

or advection, but is a consequence of the concentration dependent

threshold effect. In the third example, we analyze the experimental

data associated with the KNI and HB inhibitory cross regulation

in Drosophila early development, described by the double graph of

Figure 1, and we calibrate this model with the experimental data,

without the need of a diffusion hypothesis for the zygotically

produced proteins HB and KNI. In the final section, we

summarize and discuss the main biological conclusions of the

paper.

Figure 1. Graph describing the genetic network associated
with the production of proteins Bicoid (BCD), Hunchback (HB),
Knirps (KNI) and Tailless (TLL) in Drosophila early development.
mRNAs hunchback and bicoid are represented by hb and bcd
respectively. Arrows represent activations and are listed in the set of
ordered pairs Ea . Lines with perpendicular endings represent repres-
sions and are listed in the set Er .
doi:10.1371/journal.pone.0010743.g001
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Methods

The mass action law framework of chemical kinetics
In general, an ensemble of chemical reactions is represented by

the following collision diagram,

ni1A1z � � �znimAm ?
ri

mi1A1z � � �zmimAm ð1Þ

where i~1, . . . ,n. The Aj , for j~1, . . . ,m, represent chemical

substances, as for example, Aj~H2O. The constants nij and mij

are the stoichiometric coefficients, in general, non-negative

integers, and the constants ri are the rate constants. If

nij~mijw0, the corresponding substance Aj is a catalyst and, if

mijwnijw0, Aj is an autocatalyst. In the diagram (1), there are

m chemical substances and n rate constants or chemical

reactions.

Under the hypothesis of homogeneity of the solution where

reactions occur, the mass action law asserts that the time evolution

of the concentrations of the chemical substances is described by

the system of ordinary differential equations,

dAj

dt
~
Xn

i~1

ri(mij{nij)A
ni1
1 � � �A

nim
m ð2Þ

where j~1, . . . ,m, and we use the same symbol to represent both

the chemical substance and its concentration. The rate equations

(2) are derived under the following assumptions: (i) chemical

reactions, when they occur, are due to elastic collisions between

the reactants, (ii) homogeneity of the reacting substances in the

solution, and (iii) thermal equilibrium of the solution. All the

kinetics aspects related with the dependence of the velocity of the

reactions on the temperature or pressure are contained in the rate

constants ri. For details see [5].

At the atomic and molecular scale, chemical reactions between

molecules can occur only if molecules collide or approach each

other to small distances where bounding forces become meaning-

ful. These chemical bounding forces are of electrical or quantum

origin, and at distances larger than the mean free path they

become less important when compared with the kinetics associated

with the molecular motion. As chemical reactions only occur if the

chemical substances involved collide, the vector fields associated

with the right hand side of (2) are in general quadratic,

representing binary collisions. Higher order polynomial vector

fields are possible but, at the microscopic level, they are associated

to triple or higher order collisions, a situations that occurs with a

very low probability. Therefore, we will restrict our examples to

models with two-body collisions.

The equations (2) can also be written in the matrix form,

dA

dt
~Cv(A) ð3Þ

where C is a n|m matrix, AT~(A1, . . . ,Am), and,

v(A)~

r1(m1j{n1j)A
n11
1 � � �A

n1m
m

..

.

rn(mnj{nnj)A
nn1
1 � � �Annm

m

0
BB@

1
CCA

In general, n=m, and the equations in system (2) are not all

independent. Let us denote by r the rank of the matrix C. The

dimension of the null space of C relates with its rank by,

dim (Null(C))zr~m (number of rows of C). Let v1, . . . ,vm{r be a

basis of the null space of C, then, Cvk~0, for k~1, . . . m{r. So,

by (3), we have,

dA

dt
:vk~

d

dt
(A:vk)~(Cv):vk~v:(Cvk)~0 ð4Þ

Hence, associated with the differential equations (2), we have the

conservation laws,

A:vk~cons ð5Þ

where, k~1, . . . m{r.

The Mathematica software package Kinetics calculates the rate

equations (2) describing the time evolution of the concentrations of

the substances involved in the reactions described by the collision

diagram (1). The package calculates also the corresponding

conservations laws (5).

The input of the package is the ensemble of chemical reactions,

and the output of the package is the set of differential equations

derived by the mass action law. Then, the output can be later

analyzed and studied by the analytical and numerical tools in the

software package Mathematica. In order to avoid long development

times, the names of the rate constants are chosen automatically by

the program.

The package Kinetics has the usual help commands, and we

provide the Mathematica notebook KineticsTest.nb with several self-

explanatory examples and computations, [9].

For example, let us describe now a simple protein production

model with Kinetics. The Molecular Biology Dogma asserts that

genes are the templates for protein production, and the standard

mechanism for protein production can be represented by the

collision diagrams,

GenezPolymerase?
r1

GenezPolymerasezmRNA

mRNA?
r2

mRNAzProtein

mRNA?
r3

Protein?
r4

ð6Þ

Using the symbols G, Pol, R and P to represent gene, polymerase,

mRNA and protein concentrations, respectively, the collision

equations (6) are the input for Kinetics, with the syntax,

input~fGzPol?GzPolzmRNA,mRNA?

mRNAzP,mRNA?W1,P?W2g

where W1 and W2 are waist products.

For the collision mechanism (6), the rate equations for the

protein concentration, and calculated by the package Kinetics, are,

G’~0

Pol’~0

R’~r1G:Pol{r3R

P’~r2R{r4P

ð7Þ

and the rate constants have been chosen automatically by the

software package. In this model, genes, polymerase and

mRNAs are catalysts, and these equations have the exact

solutions,

Genetic Regulatory Network
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G(t) ~ G(0)

Pol(t) ~ Pol(0)

R(t) ~ R(0)e{r3tz
r1G(0)Pol(0)

r3
(1{e{r3t)

P(t) ~ G(0)Pol(0)
r1r2

r3r4

z P(0)z
R(0)r2r4{r1r2G(0)Pol(0)

r4(r3{r4)

� �
e{r4t

z
R(0)r2r3{r1r2G(0)Pol(0)

r3(r4{r3)
e{r3t

ð8Þ

To simplify the model equations of protein production and

maintaining the catalytic properties of genes, in the following,

instead of the collision mechanism (6), we use the simplified or

reduced kinetic mechanism,

Gene?
s1

GenezProtein

Protein?
s2

ð9Þ

To the reactions (9) correspond the rate equations,

G’~0

P’~s1G{s2P
ð10Þ

The rate equations (10) have the solutions,

G(t)~G(0)

P(t)~G(0)
s1

s2
z(P(0){G(0)

s1

s2
)e{s2t ð11Þ

Comparing the protein solutions in (11) and (8), we conclude that

the steady state of the protein in both models is unique and is

proportional to the gene concentration. The proportionality constant

is different for both models, depending on the rates of the reactions

involved. The steady state G(0)
s1

s2
of model (9) has a direct biological

meaning: s1 is the rate of protein production and s2 is the rate of

protein degradation, and G(0) is the initial gene concentration.

In the following, and in order to simplify the description of the

transcriptional regulation of genes, we will adopt the mechanism

(9) to describe the associated protein production.

In both rate equations (10) and (7), the concentration of gene is

constant along time, and therefore the gene concentration is a

conservation law. In the following, we will show that the linear

conservation laws of the form (5), will have an important role in

the determination of steady states and in bifurcations associated

with threshold effects.

A mass action framework to describe genetic regulatory
networks based on the protein-gene interaction

In the previous section, we have described a basic model model

for the production of proteins, in the framework of the mass action

law. Based on this framework, we generalize this view in order to

include the case of transcriptional regulation of genes by proteins.

In order to keep general the approach presented here and to

maintain the biological reality of model parameters, we make the

following basic modeling assumptions:

1) In order to describe quantitatively the protein production

(concentration) within the Molecular Biology Dogma, we only

consider genes and proteins. Intermediate substances in the

regulatory mechanism like catalysts, polymerases and mRNAs

are not considered. A model of protein production has been

presented and analyzed at the end of the previous section.

2) The regulation of protein production by the template gene is

based on the Jacob and Monod operon model, [10].

Namely, every gene has associated a certain number of

binding sites where transcription factors can bind —

activators or repressors, Figure 2. The regulation of

activations and repressions occurs only through the binding

sites. For a given double graph of interactions, the number

of binding sites of a gene is determined by the number of

edges that end up in the corresponding graph node.

3) Transcription factors are the proteins associated with the

vertices that activate or inhibit the production of other

proteins. The vertex of a graph represent a transcription

factor only if it is the initial point of a edge of activation or

inhibition. If a vertex has incoming and outgoing edges of

any type, this vertex represents symbolically a protein and a

gene with several binding states.

4) Each transcription factor has its own binding site in the gene

strand, or each gene has only one binding site for all the

regulators. Both cases are treated separately in the model. We

assume that when at least one activator is bound to a gene, the

transcription is activated with a particular production rate for

each combinatorial possibility of all the remaining binding sites.

For example, in the double graph of the biological mechanism

of Figure 1, we have the following chemical substances,

bcd, hb mRNAs

BCD, HB, KNI, TLL proteins

HB0
0, HBBCD

0 , HB0
KNI , HBBCD

KNI operons

KNI0
0,0, KNIBCD

0,0 , KNI0
HB,0, KNIBCD

HB,0 operons

KNI0
0,TLL, KNIBCD

0,TLL, KNI0
HB,TLL, KNIBCD

HB,TLL operons

ð12Þ

The description of the time evolution of protein concentrations of

the mechanisms of Figure 1 involves one rate equation for each

substance in (12), except eventually for bcd and hb. As proteins are

produced from a gene template, the symbol associated to each

vertex of the graph represents a protein. The operon states are

represented by the same symbol with superscripts and lowerscripts.

The superscripts positions indicate the binding or unbinding of

transcriptional activators. The lowerscripts positions indicate the

binding or unbinding of transcriptional repressors. In the

GeneticNetworks software package, bcd, hb, BCD, HB, KNI and

TLL are the names of the vertices of the regulation graphs, but the

operon variables in (12) are generated by the software.

The model associated with a given double graph contains the

rate equations for the proteins and the operons in its different

Figure 2. Jacob and Monod operon model for the regulation of
protein production. The transcription is regulated by the activators
and the repressors binding to the binding sites of the gene.
doi:10.1371/journal.pone.0010743.g002
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states. We also assume by default that proteins always degrade and

genes are autocatalytic substances that never degrade. The first

assumption implies that protein concentrations remain bounded in

time, and the second assumption implies the existence of a

conservation law for the concentration of the operon states. Using

the symbolic tools of Mathematica, other assumptions can be

introduced at this stage of model construction.

The GeneticNetworks software package
GeneticNetworks is a software package that generates the rate

equations for the concentrations of genes and proteins in a

regulatory network, [9]. The starting point is the double graph of

activations and repressions, G~(V ,Ea,Er). The inputs for

GeneticNetworks are two strings, activation and repression, that describe

the transcriptional activations and repressions of proteins on genes.

In the graph, the same symbol is used to denote both a gene and

the corresponding produced protein. As we have seen in (12), the

set of variables for the regulation model is constructed with the

vertex symbols.

For example, using as input for GeneticNetworks the interaction

strings,

activation ~ fA?Bg
repression ~ fR?Bg

ð13Þ

the double graph of the genetic network (13) is shown in Figure 3.

In this case, the double graph G~(V ,Ea,Er) is characterized by

the sets, V~fA,B,Rg, Ea~f(A,B)g and Er~f(R,B)g.
In the interaction mechanism (13), protein A activates gene B,

and protein R represses gene B. Therefore, the variables of the

mechanism (13) are,

A, B, R proteins

B0
0, BA

0 ,B0
R, BA

R operons
ð14Þ

The following functions are defined in the GeneticNetworks

package:

N NetworkGraph, ManipulateGraph

N Reactions, ReactionsOneSite, ReactionGraph

N SubstanceNames, SubstanceVariables, SubstanceInitialConditions

N ParameterNames, ParameterInput

N Equations

N ConservationLaws

With these functions, we calculate the model equations

associated with the input strings (13), calculate automatically the

number of variables of the model, define all the relevant

parameters and calculate the rate equations. For example, to the

genetic regulatory network (13), the GeneticNetworks package builds

the mass action law type collision diagrams,

AzB0
0 /?

ba

b{a

BA
0

RzB0
0 /?

br

b{r

B0
R

RzBA
0 /?

br

b{r

BA
R

AzB0
R ?/

ba

b{a
BA

R

BA
0 ?

pA
0

� �
B

BA
0 zB

BA
R ?

pA
R

� �
B

BA
RzB

B?
dB

ð15Þ

To these collision diagrams, we have the mass action law rate

equations,

A’ ~ {baA:B0
Rzb{aBA

R{baA:B0
0zb{aBA

0

B’ ~ pA
R

� �
B

BA
Rz pA

0

� �
B

BA
0 {dBB

R’ ~ {brR:B
A
0 zb{rB

A
R{brR:B

0
0zb{rB

0
R

B0
0

� �’
~ {baA:B0

0zb{aBA
0 {brRB0

0zb{rB
0
R

BA
0

� �’
~ baA:B0

0{b{aBA
0 {brR:B

A
0 zb{rB

A
R

B0
R

� �’
~ {baA:B0

Rzb{aBA
RzbrR:B

0
0{b{rB

0
R

BA
R

� �’
~ baA:B0

R{b{aBA
RzbrR:B

A
0 {b{rB

A
R

ð16Þ

and the conservation law,

B0
0(t)zBA

0 (t)zB0
R(t)zBA

R(t)~B0
0(0)zBA

0 (0)zB0
R(0)zBA

R(0) ð17Þ

From the conservation law (17), we can eliminate one of the

equations in (16). In this genetic network, we have assumed that

the protein concentrations of A and R are constant along time.

The rate equations (16) define a mass action law based model

for the genetic regulatory network of Figure 3.

In the implementation of GeneticNetworks, we have two possible

modeling choices. In one choice, each different regulator has its own

binding site, and the model diagrams (15) have been constructed with

this assumption. For the second choice, we consider that there is only

one binding site in the operon where all the regulators bind. In this

case, the collision diagrams associated with the genetic network (13)

and calculated in the GeneticNetworks package are,

AzB0 /?
ba

b{a

BA

RzB0 /?
br

b{r

BR

BA ?
pB

BAzB

B?
dB

ð18Þ

Figure 3. Double graph associated with the input strings (13)
for the GeneticNetworks software package.
doi:10.1371/journal.pone.0010743.g003
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By the mass action law, the ReactionsOneSite command leads to the

rate equations,

A’ ~ b{aBA{baA:B0

B’ ~ pBBA{dBB

R’ ~ b{rBR{brB0:R

B0ð Þ’ ~ {baA:B0zb{aBA{brB0:Rzb{rBR

BAð Þ’ ~ baA:B0{b{aBA

BRð Þ’ ~ brB0:R{b{rBR

ð19Þ

The equations (19) have the conservation law,

B0(t)zBA(t)zBR(t)~B0(0)zBA(0)zBR(0) ð20Þ

The two models (15) and (18) for the genetic network (13) are

different and these two choices are implemented in the GeneticNet-

works package. For the dynamical analysis of a particular case of

the distinction between the two models (15) and (18), see [11].

Below, we will show with a specific example that these two

different regulation choices lead to qualitatively and quantitatively

similar results.

Results

An emerging concentration threshold in the dynamics of
a self-activating protein

As an application of the rules describing a genetic regulatory

network just introduced, we discuss now the basic role of the

conservation laws in the occurrence of threshold effects in

regulation mechanisms. We study the case of a self-activating

protein, where the produced protein activates its own production,

Figure 4.

The simplest self-activating genetic network is described by the

input tables,

activation ~ fA?Ag
repression ~ fg:

The reactions and the parameters involved in this activation can

be obtained by the GeneticNetworks command Reactions, followed

by the command ReactionGraph,

A0zA /?
aa

a{a

AA

AA ?
pA

AAzA

A?
dB

ð21Þ

where A0 and AA are the operon states and A is the corresponding

protein.

With the command Equations, we get the rate equations,

A’ ~ aaA:A0za{aAAzpAAA{dAA

(A0)’ ~ {aaA:A0za{aAA

(AA)’ ~ aaA:A0{a{aAA

ð22Þ

Finally, with the command ConservationLaws, we find,

A0(t)zAA(t)~A0(0)zAA(0)~c ð23Þ

where c is a constant.

Introducing (23) into (22), the independent set of rate equations

describing the process (21) is,

A’ ~ aaA:A0za{a(c{A0)zpA(c{A0){dAA

(A0)’ ~ {aaA:A0za{a(c{A0)
ð24Þ

We analyze now the steady state and the phase space structure

of the solutions of equations (24). Equations (24) have two steady

states with coordinates,

(A0
(1),A(1))~(c,0)

and,

(A0
(2),A(2))~

dAa{a

pAaa

,
cpAaa{dAa{a

dAaa

� �

As the coordinate of the two steady sates are dependent of c, by

(23), the steady state coordinates are dependent of the initial

concentrations of the operon.

Let J(i), i~1,2 be the Jacobian of equation (24) evaluated at the

fixed points. As,

det J(1)~{ det J(2)

and,

det J(1)v0ua{adAvcaapA

then, we have,

if a{adAvcaapA

(A0
(1),A(1)) is of saddle type

(A0
(2),A(2)) is a stable node

(
ð25Þ

if a{adAwcaapA

(A0
(1),A(1)) is a stable node

(A0
(2),A(2)) is of saddle type

(
ð26Þ

As, for cva{adA=aapA, A(2) is negative, the protein concentration

at the steady state of the rate equations (24) is zero (A(1)~0). For

cwa{adA=aapA, the protein concentration at equilibrium is

A(2)~
cpAaa{dAa{a

dAaa

. Therefore, the conservation law (23) tune

a bifurcation for c~a{adA=aapA (transcritical bifurcation),

implying the existence of a threshold effect tuned by the

conservation law parameter c.
Figure 4. Regulation graph describing a self-activating protein.
doi:10.1371/journal.pone.0010743.g004
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In Figure 5, we show the dependence of the protein steady state

on the total concentration of the gene. In this simple regulation

model, where both protein and gene concentrations are modeled,

the steady state of the protein depends on the initial concentration

of the corresponding operon states. On the other hand, the initial

concentration of the operon states induce a bifurcation from a

quiescent state to a non zero steady state. This is a threshold effect

that emerges from the dynamics (24). As the steady state protein

concentration depend on c, the ‘‘after threshold’’ concentration

values depends continuously on the operon initial concentration c.

In the following, we will see that in networks with more than one

node, the steady state depends also on the concentration of other

transcriptional regulators, and these concentration dependent

thresholds can be in the origin of spatial patterning.

Spatial distribution and steady states
We have focused on genetic regulatory models without

specifying a spatial localization. In genetic networks describing

some biological process, the initial concentration of proteins can

significantly vary across tissues. For example, in some develop-

mental processes, proteins show a non-uniform concentration

along embryos, with very sharp slopes, playing a basic role in the

establishment of body plans of organisms. A well known case is the

Drosophila segmentation, where variations on protein concentra-

tions across the embryo induces protein patterning, [17–19]. One

of such genetic regulatory networks is the one represented in

Figure 1, [2].

To show that patterning can be explained by the non

homogeneity of initial conditions of regulators across tissues, we

analyze a genetic regulatory network for the production of a

protein B, regulated by one activator A and two repressor proteins

R and S, Figure 6. To simplify our analysis, we take the

competitive case, where the activator and the repressors bind to

the same binding site of the operon of protein B.

To simplify further, we assume that the spatial distribution of

the proteins A, R and S are constant in time. Under these

conditions and with the regulation model developed in the

package GeneticNetworks, we obtain the system of linear rate

equations,

B’ ~ pBBA{dBB

(BA)’ ~ baAB0{b{aBA

(BR)’ ~ brRB0{b{rBR

(BS)’ ~ bsSB0{b{sBS

ð27Þ

where the derivative is in order to time, B~B(x,t), B0~B0(x,t),
BA~BA(x,t), BR~BR(x,t), BS~BS(x,t), A~A(x), R~R(x)
and S~S(x). These concentration variables are defined in a

spatial one-dimensional bounded region of the real line (x[I5R).

The following conservation law holds,

B0(x,t)zBA(x,t)zBR(x,t)zBS(x,t)~c(x)

where c(x) is a constant, depending eventually of the spatial

independent coordinate x. The system of rate equations (27) has

one steady state with coordinates,

�BB~
pB

�BBA

dB

, �BBA~
cAbab{rb{s

D

�BBR~
cRb{abrb{s

D
, �BBS~

cSb{ab{rbs

D

where,

D~b{ab{rb{szAbab{rb{szRb{abrb{szSb{ab{rbs

Choosing ba~br~bs, and b{a~b{r~b{s, the steady state

concentration of the protein B, is,

�BB(x)~
c(x)A(x)pB

(1zA(x)zR(x)zS(x))dB

ð28Þ

In Figure 7, we show the steady state concentration (28) of

protein B, as a function of a spatial coordinate, x[I~½0,1�. We

have considered the initial distributions A(x)~0:8,

R(x)~83e{7x, S(x)~83e{7(1{x), c(x)~100, and the parameter

value pB=dB~1. In this case, due to the inhibitory regulation of

the repressor proteins R and S, the steady distribution of protein B
is spiky. We have analyzed the same genetic network of Figure 6

with a model with different binding sites for each regulator. The

final result is similar with the one shown in Figure 7. This shows

that the two model approaches in GeneticNetworks, with one binding

site and with several binding sites in the operon, give similar

qualitative results. When, the calibration and validation of models

is not a problem, we can use the simplest one binding site

regulation model in order to describe a given genetic regulatory

Figure 5. Dependence of the protein steady state on the total
concentration of the gene. Below the bifurcation or threshold
c~a{adA=aapA , the equilibrium value of protein concentration Aeq is
zero, while above it takes the value Aeq~(pAcaa{dAa{a)=(dAaa). The
parameters are: aa~1:0, a{a~0:1, pA~0:2 and dA~0:1.
doi:10.1371/journal.pone.0010743.g005

Figure 6. Genetic regulatory network for the production of
protein B with one activator A and two repressors R and S.
doi:10.1371/journal.pone.0010743.g006
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network. The one-regulator site framework leads to simpler

mathematical models.

The solution (28) shows that steady states can depend on the

initial conditions of the regulators (A(x), R(x) and S(x)) and on

the initial conditions of the catalytic agents (c(x)), showing that

spatial patterning can be a direct consequence of the non

homogeneity of initial conditions.

In this model, we have considered that the concentrations of A,

R and S are constants, implying that the model equations (27)

describe a system where A, R and S have a fast recovery time.

This situation only occurs in thermodynamically open systems, as

is the case of biological systems.

Cross-regulation in Drosophila
In Drosophila early development, some proteins as Bicoid (BCD)

and Hunchback (HB) are translated from mRNA of maternal

origin. Early in the first developmental stages of Drosophila, at

cleavage stage 13, BCD and HB proteins form a stable

concentration gradient along the antero-posterior axis of the

Drosophila embryo. In Figure 8, we show the data for these protein

gradients, taken from the FlyEx database, [20,21, http://

flyex.ams.sunysb.edu/flyex/]. These stable gradients have are

established by diffusion processes occurring in the syncytial

blastoderm of the embryo, [17–19,22]. At a latter stage, in the

14th cleavage stage, other proteins as Knirps (KNI) show segments

characterized by spiky concentration patterns along the antero-

posterior axis of the embryo, [1,2,23–26].

We show now that the patterning of HB and KNI proteins as

observed at late cleavage stage 14 of the embryo of Drosophila is due

to the concentration gradients of proteins at an early develop-

mental stage. This results follows from the concentration

dependent threshold effect, just described previously, without

assuming diffusion for KNI and for zygotically produced HB. For

that, we have taken the genetic regulatory network of Figure 1,

describing the genetic regulation of HB and KNI, and we have

used the package GeneticNetworks to describe the production of

proteins Hunchback and Knirps during the cleavage cycles 14 of

the developing embryo of Drosophila.

Hunchback and Knirps proteins are both activated by the

maternally produced protein Bicoid, Figure 1, and they mutually

repress each other. The protein Knirps is also repressed by the

protein Tailless. Therefore, the genetic regulatory network model

obtained with the package GeneticNetworks should lead to the

experimental profiles of HB and KNI, as observed at cleavage

cycle 14. As the model obtained with the GeneticNetworks package is

a system of ordinary differential equations that depend on initial

data, we have assumed that, at the end of cleavage cycle 13 and

beginning of the 14th, the proteins BCD, TLL and HB of

maternal origin have a non homogeneous distribution along the

embryo, as shown in Figure 8.

In Figure 9, we show the experimental profiles of HB and KNI

proteins at cleavage cycle 14, as well as a fit of the experimental

data obtained with the model built with the software package

GeneticNetworks. The model equations is a system of 14 ordinary

differential equations for the proteins and corresponding operon

states, and have 23 free parameters. In the ordinary differential

equations of the model, we have considered that time is also a free

parameter. The protein profiles shown in Figure 9 are out of

equilibrium patterns, obtained with the integration time t~7:80 s.

These equations and the fitted parameter values are presented in

Text S1.

To fit the experimental data with the mathematical model, we

have assumed that the initial protein concentrations of BCD and

TLL are constant over time, and we have also assumed that each

regulator has its own binding site. To find the numerical values of

the model parameters in order to calibrate the model, we have

used an optimization technique based on a genetic evolutionary

algorithm, minimizing a sum of chi square functions, [23,27].

The fitted curves in Figure 9 show a very good agreement with

the experimental data. HB fits well in the embryo length range

½5%,80%�, and KNI fits well in the embryo length range

½20%,100%�. The quality of the fits has been measured by the

penalized chi square test. For the two fits in Figure 9, we have

obtained the reduced chi square values x2
HB~0:57 and

x2
KNI~0:68. This calibration of the genetic regulatory network

Figure 7. Steady states of proteins B, R and S for the genetic
regulatory network of Figure 6. The steady state of protein B
shows a spiky profile, resulting from the inhibitory action of proteins R
and S. In this model, we have considered that the concentrations of R
and S are constant in time and non-homogeneous in space. The
activator protein A has been considered constant along the spatial
region.
doi:10.1371/journal.pone.0010743.g007

Figure 8. Concentration of protein Hunchback (HB) at the end
of cleavage cycle 13, and of Bicoid (BCD) and Tailless (TLL)
proteins at the cleavage cycle 14, along the antero-posterior
axis of the embryo of Drosophila. The embryo length has been
scaled from 0 to 100, and the units in the vertical axis are proportional
to protein concentration. The data has been taken from the FlyEx
database. The continuous curves represent the fitted mean distribution
of the concentration of proteins calculated from the data of 954
embryos. These curves are the initial conditions for a model obtained
with the software package GeneticNetworks for the production of the
proteins KNI and zygotically produced HB, during cleavage cycle 14.
doi:10.1371/journal.pone.0010743.g008
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of Figure 1 suggests that the anterior and posterior regions of the

embryo are under the control of additional regulators. This same

conclusion has been obtained in [25], but within a different

regulation model. On the other hand, this mass action law model

without diffusion at the level of gap genes is simpler than other full

diffusion models, and is consistent with the reverse engineering

methodology described in [26].

Discussion

We have presented a software tool to build mathematical

models of genetic regulatory networks. The input of the package is

the graph containing the list of transcriptional activators and

repressors of the network. The software implements an approach

based on the mass action law and on the operon regulation model

in prokaryotes. We have also assumed in general that genes are

catalytic substances presented in any genetically controlled

biological process. For eukaryotic organisms, the modeling

approach proposed here should be understood as a descriptive

approximation to the not well understood eukaryotic regulation

mechanisms.

Within this approach, the usual threshold concept in biology

emerges as a bifurcation phenomenon of the model equations.

These bifurcations are tuned by the conservation law constants of

the equations, resulting from the catalytic role of genes. This

corroborates the view that threshold effects should be anchored on

bifurcation phenomena, [16].

Another consequence of the modeling approach presented here

is that positional information in developmental processes can be

described by the non-homogeneity in the spatial distribution of the

concentration of regulators, and is not necessarily associated with

other physical processes of transport or diffusion. Other models for

Drosophila development include a balance between protein

diffusion and degradation, [2,28–30]. Recently, some criticism to

the diffusion-degradation hypothesis for proteins, [31], suggest that

it is important to search for other mechanisms of pattern

formation, [22,32,33]. The results presented here show that other

mechanisms of spatial patterning are possible.

In conclusion, we have calibrated a genetic regulatory network

for the production of Hunchback and KNI during the 14th

cleavage stage of the embryo of Drosophila, without assuming the

hypothesis of protein diffusion for KNI and zygotically produced

HB, and we have presented evidence that gap gene protein

segments are out of equilibrium patterns. The genetic regulatory

network of Figure 1 describes well the gap gene protein

concentration of HB in the embryo length region ½5%,80%�, as

well as the gap gene protein concentration of KNI in the embryo

length region ½20%,100%�. The out of equilibrium pattern

hypothesis has been suggested in [28] in the framework of a

model assuming that the HB and KNI proteins diffuse along the

antero-posterior axis of the embryo of Drosophila. In [30],

patterning at the gap gene stage is associated with the existence

of attractors in an high dimensional phase-space, implying that

gap gene patterns are obtained as steady state patterns. The

necessity of concentration dependent thresholds in the gap-gene

Drosophila patterning has been discussed in [24], and modeled

through a Hill type response function with diffusion. Here, with

mass action law approach, gap-gene patterns emerge from the

concentration dependent thresholds that result from the catalytic

role of genes in organisms.

Supporting Information

Text S1 Ordinary differential equation model describing the

genetic regulatory network of Figure 1.

Found at: doi:10.1371/journal.pone.0010743.s001 (0.06 MB

PDF)
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