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Abstract. The epithelial‑to‑mesenchymal transition (EMT) 
has been reported to serve vital roles in regulating the progress 
of cancer metastasis. In addition, lipid rafts enriched in sphin-
golipids and cholesterol serve important roles in physiological 
and biochemical processes as a signaling platform. The present 
study explored the effects of hydroxypropyl‑β‑cyclodextrin 
(HP‑β‑CD), a cholesterol‑depleting agent of lipid rafts, on the 
transforming growth factor (TGF)‑β/Smad signaling pathway 
and endoplasmic reticulum (ER) stress in mediating EMT in 
MDA‑MB‑231 breast cancer cells. HP‑β‑CD treatment inhib-
ited TGF‑β1‑induced EMT, based on increased expression of 
E‑cadherin and decreased expression of vimentin. HP‑β‑CD 
reduced the expression of the TGF receptor TβRI and 
blocked the phosphorylation of Smad2. In addition, HP‑β‑CD 
increased the expression of ER stress‑related proteins (binding 
immunoglobulin protein and activating transcription factor 6), 
but TGF‑β1 could reverse these changes. Sodium 4‑phenyl-
butyrate, an inhibitor of ER stress, suppressed these effects 
of HP‑β‑CD on EMT and TGF‑β/Smad signaling pathway 
inhibition in breast cancer cells. Thus, HP‑β‑CD can block the 
TGF‑β/Smad signaling pathway via diminishing the expres-
sion of TβRI which helps to activate ER stress and attenuate 
EMT in MDA‑MB‑231 cells, highlighting a potential target of 
lipid rafts for breast cancer treatment.

Introduction

Breast cancer (BC) has a high mortality rate, which is largely 
due to development of metastases (1). The epithelial‑to‑mesen-
chymal transition (EMT) serves a central role in metastasis 
formation, and is thus an important treatment target  (2,3). 
Many signaling pathways are known to regulate the process 
of EMT (4). Among these pathways, the transforming growth 
factor (TGF)‑β‑dependent pathway has received relatively 
more research attention given its greater potency in inducing 
EMT (5). TGF‑β1 binds to its receptors TβRI and TβRII, 
resulting in the phosphorylation of TβRII, which then acti-
vates TβRI to stimulate receptor‑associated Smad 2/3 in the 
cytoplasm. Thereafter, phosphorylated Smad 2/3 (activated 
Smad 2/3) can form a stable complex with Smad4 and then 
regulate the transcription of target genes (6,7).

Lipid rafts are rich in sphingolipids and cholesterol, 
and serve numerous roles in physiological and biochemical 
processes as a signaling platform (8‑10). The signal transduc-
tion of TGF‑β receptors are depended on the lipid rafts (11,12) 
and we recently reported that increasing the content of 
sphingomyelin, a type of sphingolipid, in lipid rafts inhibited 
the process of EMT in breast cancer cells by suppressing the 
TGF‑β/Smad signaling pathway (13). However, the effect of 
cholesterol, another important component of lipid rafts (14), 
on the EMT and its underlying mechanism remain to be eluci-
dated. Therefore, the present study sought to explore the effects 
of the change in cholesterol in lipid rafts in the development of 
EMT regulated by the TGF‑β/Smad signaling pathway. Toward 
accomplish this, hydroxypropyl‑β‑cyclodextrin (HP‑β‑CD) 
was used for in vitro treatment of MDA‑MB‑231  cells to 
deplete cholesterol in lipid rafts (15).

The endoplasmic reticulum (ER) is the main site of protein 
folding, calcium homeostasis, and thus also participates in 
regulating various intracellular signaling pathways (16). When 
the integrity of the ER is disturbed by adverse conditions, 
misfolded proteins will accumulate in the ER, giving rise to 
misfolded protein response, or ER stress, which is associated 
with many cellular biological functions, including EMT (17,18). 
In addition, a definite association has demonstrated that the 
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TGF‑β/Smad signaling pathway can regulate ER stress in 
lung cancer cells (19), podocytes (20) and even breast cancer 
cells  (21). Therefore, it was hypothesized that HP‑β‑CD 
could regulate ER stress via TGF‑β/Smad signaling pathway 
to influence EMT in MDA‑MB‑231 cells. To examine this 
hypothesis, the cells were treated with or without HP‑β‑CD 
and then stimulated with TGF‑β1 or the ER stress inhibitor 
sodium 4‑phenylbutyrate (4‑PBA) to explore the effect of 
cholesterol in lipid rafts on the TGF‑β/Smad pathway. These 
findings may provide novel insight into the mechanism of 
metastasis progression in breast cancer and in the meantime 
highlight new treatment targets.

Materials and methods

Cell culture and treatment. MDA‑MB‑231 cells (The Cell 
Bank of Type Culture Collection of the Chinese Academy 
of Sciences) were incubated in Dulbecco's modified Eagle's 
medium or RPMI‑1640 medium (Beijing Solarbio Science 
& Technology Co., Ltd.) with penicillin (100 U/ml), 10% 
FBS and streptomycin 100 µg/ml, and cultured at 37˚C in an 
atmosphere of 90% relative humidity and 5% CO2. HP‑β‑CD 
(BBI Life Sciences, Shanghai, China) was dissolved in phos-
phate‑buffered saline (PBS) then filtered with a syringe‑driven 
filter (Guangzhou Jet Bio‑Filtration Co., Ltd.). The cells were 
treated with HP‑β‑CD diluted to the desired concentrations 
with complete medium. To choose the optimal concentra-
tion and treatment time of HP‑β‑CD, a previous study was 
referred to and cells treated with different concentrations 
(0, 2.5, 5, 10 mmol/l) for 48 h (22). Then the expression of EMT 
markers vimentin and E‑cadherin was detected by western 
blotting. Cells were stimulated with 10 ng/ml TGF‑β1 (13) 
(cat. no. 10804‑HNAC; Sino Biological Inc.) dissolved in PBS 
for 48 h and the same amount of PBS was added to control 
group. For inhibition of ER stress, 5  mmol/l 4‑PBA  (23) 
(Shanghai Macklin Biochemical Co., Ltd.) was dissolved in 
DMSO and then diluted to the desired concentrations with 
complete medium; DMSO (<0.1%) was then added to the 
culture medium.

MTT assay. Untreated MDA‑MB‑231 cells were seeded on 
96‑well plates and incubated. When the cells reached 50% 
confluence, different concentrations (0, 2.5, 5, 10 mmol/l) 
of HP‑β‑CD were added to the medium. After 48 h, 20 µl 
MTT (5 mg/ml; cat. no. M8180; Beijing Solarbio Science & 
Technology Co., Ltd.) was added to each plate and after 4 h, 
the medium containing MTT was removed from 96‑well plates 
and 200 µl DMSO was added to dissolve the formazan. Finally, 
the absorbance was measured at a wavelength of 490 nm; the 
experiment was performed in triplicate.

Wound healing assay. MDA‑MB‑231 cells were seeded on 
12‑well plates and incubated for 48 h at 37˚C. When the cells 
reached 90% confluence, a straight line was drawn by a sterile 
200 µl pipette tip perpendicular to a sterilized ruler in the 
middle of each well. The cells were then treated with 5 mmol/l 
HP‑β‑CD followed by 10 ng/ml TGF‑β1 or 5 mmol/l 4‑PBA 
in serum‑free medium; untreated cells served as the control 
group. This time point was taken as 0 h, and then images of 
wound closure were acquired with a phase contrast inverted 

microscope after 48 h (Olympus IX71; Olympus Corporation; 
magnification, x4).

Transwell invasion assay. The effects of HP‑β‑CD on the 
invasive ability of the breast cancer cells were evaluated 
with a Transwell assay (24 wells; cat. no. 353097; Corning 
Life Sciences). In brief, 2x105 cells cultured with 10% fetal 
calf serum‑containing medium (cat. no. TBD11HT; Tianjin 
Haoyang Biological Products Technology Co., Ltd.) were 
plated in the top chamber of a Transwell plate pre‑coated with 
Matrigel for 6 h at 37˚C (cat. no. 356234; Corning Inc.) for 24 h. 
Then serum‑free medium was filled in the upper chamber, 
along with HP‑β‑CD alone or in combination with TGF‑β1 
or 4‑PBA. After 48 h, cells that did not emerge from the pores 
were removed by dabbing lightly with cotton swabs. Those 
cells that had migrated to the lower chamber were fixed in 4% 
paraformaldehyde for 30 min at room temperature and then 
stained with 1% crystal violet for 5 min at room temperature 
(Beijing Solarbio Science & Technology Co., Ltd.). The number 
of invading cells was counted under the same microscope as 
above (magnification, x4).

Western blot analysis. Western blotting was used to assess 
the changes of biomarkers in the process of apoptosis, 
EMT, TGF‑β/Smad signaling pathway and ER stress. 
Following treatment of the cells as described above, 
2x106 cells were washed with pre‑cooled PBS, and the 
total proteins were extracted with Protein Extraction 
Reagent (cat.  no.  WLA019b; Wanleibio Co., Ltd.). The 
60 µg proteins were separated on 10‑12% SDS‑PAGE gels 
and then transferred on to a polyvinylidene dif luoride 
membrane. After blocking with 10% skimmed milk for 
2 h at room temperature, the membranes were incubated 
overnight at 4˚C with constant agitation and the following 
antibodies: B‑cell lymphoma 2 (Bcl‑2; cat. no. BS‑0032R; 
Polyclonal; 1:1,000; BIOSS), Bcl‑2‑associated X protein 
(Bax; cat. no. 60267‑1‑Ig; Monoclonal; 1:2,000; ProteinTech 
Group, Inc., Chicago, IL, USA), vimentin antibody 
(cat.  no.  60330‑1‑Ig; Monoclonal; 1:4,000; ProteinTech 
Group, Inc.), E‑cadherin antibody (cat.  no.  20874‑1‑AP; 
Polyclonal; 1:4,000; ProteinTech Group, Inc.), phosphory-
lated‑Smad2 antibody (cat. no. AF3450; 1:2,000; Polyclonal; 
Affinity Biosciences), Smad2 antibody (cat. no. WL02286; 
1:2,000; Polyclonal; Wanleibio Co., Ltd.), TβRI antibody 
(cat. no. AF5347; 1:2,000; Polyclonal; Affinity Biosciences), 
binding immunoglobulin protein antibody (BIP/GRP78; 
cat.  no.  66574‑1‑Ig; 1:4,500; Monoclonal; ProteinTech 
Group, Inc.), activating transcription factor 6 (ATF6) anti-
body (cat. no. WL02407; 1:2,000; Polyclonal; Wanleibio Co., 
Ltd.), and GAPDH antibody (cat. no. HRP‑60004; 1:12,000; 
Monoclonal; ProteinTech Group, Inc.). Secondary anti‑rabbit 
antibodies (cat. no. SA00001‑2; 1:10,000; ProteinTech Group, 
Inc.) or anti‑mouse antibodies (cat. no. SA00001‑1; 1:12,000 
ProteinTech Group, Inc.) were used to incubate the membranes 
for 1 h at room temperature with constant agitation. Proteins 
were visualized with an enhanced chemiluminescence reagent 
(Wanleibio Co., Ltd.) and a Chemiluminescence Detection 
System (Image Lab version 5.1; Bio‑Rad Laboratories, Inc.); 
the GAPDH signal was used as a loading control. Each assay 
was repeated at least three times.
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Immunofluorescence and confocal microscopy. A total of 
1x104 cells were placed on coverslips in a 48‑well plate and then 
treated with HP‑β‑CD alone or in combination with TGF‑β1 for 
48 h at 37˚C. The cells were rinsed in PBS and then fixed in 4% 
paraformaldehyde for 30 min at room temperature, followed by 
another three washes in PBS. Then the cells were treated with 
0.5% Triton X‑100 in PBS to increase the permeability, and 
the coverslips were immersed in 5% bovine serum albumin 
(cat. no. A8020; Beijing Solarbio Science & Technology Co., 
Ltd.) at room temperature in PBS for 1 h. The cells were 
incubated with anti‑TβRI antibodies (cat. no. AF5347; 1:100; 
Affinity Biosciences) overnight at 4˚C, and then incubated 
with fluorescein isothiocyanate‑conjugated goat anti‑rabbit 
antibody (cat. no. SF134; 1:400; Beijing Solarbio Science & 
Technology Co., Ltd.) for 60 min at room temperature. DAPI 
(Wuhan Boster Biological Technology, Ltd.) was used to stain 
the nuclei for 10 min at room temperature, and the cells were 
rinsed with PBS. The cells were observed under a confocal 
microscope (Leica SP8; Leica Microsystems, Ltd.; magnifica-
tion, x40), and the fluorescence of TβRI was analyzed with 
ImageJ software (ver. 2.1; National Institutes of Health).

Statistical analysis. All data were analyzed using GraphPad 
Prism 6.0 software (GraphPad Software, Inc.). Results are 
expressed as the mean ± standard deviation. The differences 
between groups were analyzed using one‑way analysis of vari-
ance followed by a Dunnett's post hoc test. All experiments 
were repeated ≥3 times. P<0.05 was considered to indicate a 
statistically significant difference.

Results

HP‑β‑CD suppresses EMT features in MDA‑MB‑231 cells. 
First, MTT and western blotting was used to test the cyto-
toxic ability of HP‑β‑CD. MTT demonstrated that HP‑β‑CD 
exhibited no significant cytotoxicity in the cells up to 5 mmol/l 
concentration (Fig. 1A). Western blotting demonstrated that 
the expression of Bax/Bcl‑2 had no significant change up to 
5 mmol/l concentration (Fig. 1B). However, HP‑β‑CD was 
found to significantly attenuate cellular growth at a concentra-
tion above 5 mmol/l in MTT (Fig. 1A) and western blotting 
demonstrated the same result (Fig. 1B).

HP‑β‑CD inhibited EMT in breast cancer cells in a 
dose‑dependent pattern, with the greatest effect observed 
with treatment of 5 mmol/l HP‑β‑CD, resulting in a 64% 
decrease in the expression of vimentin and a 105% increase 
in E‑cadherin expression (Fig. 1C; P<0.001; n=3). Therefore, 
5 mmol/l HP‑β‑CD was chosen as the appropriate concentra-
tion to influence EMT for subsequent experiments. In addition, 
the expression of p‑Smad2 was downregulated by HP‑β‑CD 
(Fig. 1D; P<0.001; n=3), but this had no effect on Smad2 
expression. These results suggested that p‑Smad2 might be 
involved in regulating the HP‑β‑CD‑induced suppression of 
EMT in MDA‑MB‑231 cells.

HP‑β‑CD can inhibit the TGF‑β/Smad signaling pathway. 
Consistent with the results above, treatment of 5  mmol/l 
HP‑β‑CD for 48  h significantly downregulated p‑Smad2 
(Fig. 2A; P<0.001; n=3) expression but demonstrated no signif-
icant effect on Smad2 expression. However, TGF‑β1 treatment 

upregulated p‑Smad2 expression by 70.7%, with no significant 
changes in Smad2 (Fig. 2A; P<0.001; n=3). Western blotting 
demonstrated that TGF‑β1 treatment increased the expression 
of TβRI by 28.3%; however, the combination of HP‑β‑CD and 
TGF‑β1 treatment diminished the expression of TβRI by 17.8% 
compared to TGF‑β1 treatment alone (Fig. 2B; P<0.05; n=3), 
which was confirmed by immunofluorescence and confocal 
laser microscopy (Fig.  2C; P<0.001; n=3). Treatment of 
TGF‑β1 alone downregulated the expression of the ER stress 
markers GRP78 and ATF6, and HP‑β‑CD treatment reversed 
these effects, increasing the expression of GRP78 and ATF6 
by 18.8 and 37.6% respectively (Fig. 2D; P<0.05; n=3). These 
results indicated that HP‑β‑CD regulates ER stress.

HP‑β‑CD inhibits the TGF‑β1‑induced migration and inva‑
sion of MDA‑MB‑231 cells. HP‑β‑CD reversed the effects 
of TGF‑β1 on EMT, shifting MDA‑MB‑231 cells to a more 
epithelial phenotype, downregulating vimentin expression by 
35.9% while upregulating E‑cadherin expression by 28.5% 
(Fig. 3A; P<0.001; n=3). The wound healing assay demon-
strated that TGF‑β1 treatment significantly increased the 
migration ability of cells by 41.2%, which was significantly 
inhibited by HP‑β‑CD (Fig.  3B). The invasive ability of 
MDA‑MB‑231 cells was increased after 48 h of TGF‑β1 treat-
ment and this effect was significantly inhibited with HP‑β‑CD 
pre‑treatment (Fig. 3C).

HP‑β‑CD activates ER stress in MDA‑MB‑231 cells. Treatment 
of cells with HP‑β‑CD alone upregulated the expression 
of ER stress‑related proteins GRP78 and ATF6 by 37.7 and 
61.8% respectively (Fig. 4A and B; P<0.001; n=3). However, 
treatment with the ER stress inhibitor 4‑PBA blocked these 
effects, downregulating GRP78 and ATF6 expression by 
30.7 and 64.2% respectively (Fig. 4A and B; P<0.001; n=3). 
In addition, p‑Smad2 was downregulated by 54.3% after cells 
were treated with HP‑β‑CD alone. Whereas after the combina-
tion of HP‑β‑CD and 4‑PBA treatment, it was upregulated by 
77.1%. Consistent with the experiments described above, no 
significant changes in the expression of Smad2 were observed 
(Fig. 4C and D; P<0.001; n=3). These data confirmed that 
HP‑β‑CD can activate ER stress.

HP‑β‑CD attenuates the EMT via activating ER stress in 
MDA‑MB‑231 cells. Inhibition of ER stress with 4‑PBA also 
reversed the HP‑β‑CD‑induced inhibition of EMT, resulting 
in upregulation of vimentin and downregulation of E‑cadherin 
(Fig. 5A). Furthermore, the migratory ability of cells was 
increased after 4‑PBA treatment compared with that detected 
under HP‑β‑CD treatment alone (Fig. 5B), and the inhibition 
of the invasive ability of MDA‑MB‑231 cells was also reversed 
by 4‑PBA (Fig. 5C).

Discussion

The present study demonstrated that HP‑β‑CD can suppress 
the EMT of breast cancer cells by activating ER stress. 
MTT analysis demonstrated that 5 mmol/l HP‑β‑CD has no 
significant effects on the viability of MDA‑MB‑231 cells, 
with no significant change in the relative expression of 
Bax/Bcl‑2. Meanwhile, it was found that HP‑β‑CD suppressed 
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EMT features in MDA‑MB‑231  cells by downregulating 
TβRI expression, interfering with TGF‑β1‑induced Smad2 
phosphorylation, and thereby increasing the expression of 
E‑cadherin and decreasing that of vimentin. In addition, 
HP‑β‑CD inhibited the migratory and invasive capacities of 
MDA‑MB‑231 cells. These effects were mediated through the 

induction of ER stress by HP‑β‑CD, since blocking ER stress 
with 4‑PBA, an inhibitor of ER stress, promoted the migra-
tory and invasive capability of cells treated with HP‑β‑CD. 
Notably, TGF‑β1 decreased the expression levels of ER stress 
marker proteins, and 4‑PBA increased the expression of 
p‑Smad2. Overall, these results demonstrated that depletion of 

Figure 1. HP‑β‑CD suppresses EMT features and the TGF‑β/Smad signaling pathway in MDA‑MB‑231 breast cancer cells. MDA‑MB‑231 cells were incubated 
in the presence of HP‑β‑CD at different concentrations (0, 2.5, 5 and 10 mmol/l). MTT was used to detect the cell viability after 48 h, and western blotting 
was used to measure the expression level of apoptosis, EMT and TGF‑β/Smad pathway‑related proteins. (A) Viability of MDA‑MB‑231 cells. (B) Expression 
of Bax and Bcl‑2 in cells. (C) Expression of vimentin and E‑cadherin in cells. (D) Expression of p‑Smad2 and Smad2 in cells. Values are shown as the 
mean ± standard deviation (n=6 or n=3). **P<0.01 vs. the control group; #P<0.05, ##P<0.01 vs. 2.5 mmol/l HP‑β‑CD group; &P<0.05, &&P<0.01 vs. 5 mmol/l 
HP‑β‑CD group. HP‑β‑CD, hydroxypropyl‑β‑cyclodextrin; EMT, epithelial‑to‑mesenchymal transition; TGF, transforming growth factor; p‑, phosphorylated.



Molecular Medicine REPORTS  21:  249-257,  2020 253

Figure 2. HP‑β‑CD can inhibit the TGF‑β/Smad signaling pathway by decreasing the expression of TGF‑β type I receptors while activating ER stress. 
MDA‑MB‑231 cells were treated with 5 mmol/l HP‑β‑CD then with or without 10 ng/ml TGF‑β1 for 48 h. Western blotting was used to measure (A) the 
relative expression of TGF‑β/Smad pathway‑related proteins (p‑Smad2 and Smad2) and (B) expression of TβRI. (C) Confocal microscope image for immu-
nofluorescence staining of TβRI. Magnification, x40 (D) ER stress‑related proteins (GRP78 and ATF6) were also detected by western blotting. Values are 
shown as the mean ± standard deviation (n=3). *P<0.05, **P<0.01 vs. the control group; ##P<0.01 vs. HP‑β‑CD group; &P<0.05, &&P<0.01 vs. TGF‑β1 group. 
HP‑β‑CD, hydroxypropyl‑β‑cyclodextrin; TGF, transforming growth factor; ER, endoplasmic reticulum; GRP78, binding immunoglobulin protein antibody; 
ATF6, activating transcription factor 6.
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Figure 4. 4‑PBA promotes HP‑β‑CD‑inhibited EMT in MDA‑MB‑231 breast cancer cells. MDA‑MB‑231 cells were treated with HP‑β‑CD and then with 
or without 4‑PBA for 48 h. Western blotting was used to detect (A and B) the relative expression of ER stress‑related proteins (GRP78 and ATF6) and 
(C and D) relative expression of TGF‑β/Smad pathway‑related proteins (p‑Smad2 and Smad2). Values are shown as the mean ± standard deviation (n=3). 
*P<0.05, **P<0.01 vs. the control group; ##P<0.01 vs. the HP‑β‑CD group. HP‑β‑CD, hydroxypropyl‑β‑cyclodextrin; EMT, epithelial‑to‑mesenchymal 
transition; 4‑PBA, sodium 4‑phenylbutyrate; ER, endoplasmic reticulum; GRP78, binding immunoglobulin protein antibody; ATF6, activating transcription 
factor 6; TGF, transforming growth factor.

Figure 3. HP‑β‑CD inhibits the migration and invasion of MDA‑MB‑231 cells induced by TGF‑β1. MDA‑MB‑231 cells were treated with 5 mmol/l HP‑β‑CD 
then with or without 10 ng/ml TGF‑β1 for 48 h. (A) Western blotting was used to measure the relative expression of EMT‑related proteins (vimentin and 
E‑cadherin) in cells. (B) Wound‑healing assay and (C) Transwell invasion assay demonstrated the migratory and invasive ability of cells, respectively. 
Magnification, x4. Values are shown as the mean ± standard deviation (n=3). *P<0.05, **P<0.01 vs. the control group; #P<0.05, ##P<0.01 vs. HP‑β‑CD group; 
&&P<0.01 vs. TGF‑β1 group. HP‑β‑CD, hydroxypropyl‑β‑cyclodextrin; TGF, transforming growth factor; EMT, epithelial‑to‑mesenchymal transition.



Molecular Medicine REPORTS  21:  249-257,  2020 255

cholesterol in lipid rafts could inhibit TGF‑β1‑induced EMT 
in MDA‑MB‑231 cells, which could suppress metastasis.

Lipid raft is a signaling platform (8‑10) and can regulate 
many signaling pathways, therefore it serves vital roles in many 
biological processes, including cytoskeleton rearrangement, 
proliferation, and the migration and apoptosis of various types 
of cancer cells (24‑26). We previously identified that sphin-
gomyelin synthase 1 (SMS1) overexpression could inhibit 
TGF‑β1‑induced EMT by increasing the content of sphingo-
myelin in lipid rafts (13). Thus, the present study focused on 
the effects of another important lipid raft component, choles-
terol, in the context of breast cancer. HP‑β‑CD can deplete 
cholesterol in lipid rafts and this may affect the construction of 
lipid rafts and then cancer cell viability by regulating the trans-
membrane signaling (15,27). For example, Alawin et al (28) 
found that antiproliferative effects of γ‑tocotrienol are associ-
ated with lipid raft disruption in HER2‑positive human breast 
cancer cells and Badana et al (29). demonstrated that lipid 
rafts disruption induces apoptosis by attenuating expression of 
LRP6 and survivin in triple negative breast cancer. Although 

Figure 5. 4‑PBA activates the migration and invasion inhibited by HP‑β‑CD. (A) Western blotting was used to measure the relative expression of EMT‑related 
proteins (vimentin and E‑cadherin) in MDA‑MB‑231 cells. (B) Wound healing analysis and (C) Transwell invasion assay demonstrated the migratory and inva-
sive ability of cells, respectively. Magnification, x4. Values are shown as the mean ± standard deviation (n=3). *P<0.05, **P<0.01 vs. the control group; #P<0.05, 
##P<0.01 vs. the HP‑β‑CD group. 4‑PBA, sodium 4‑phenylbutyrate; HP‑β‑CD, hydroxypropyl‑β‑cyclodextrin; EMT, epithelial‑to‑mesenchymal transition.

Figure 6. Proposed mechanism of how HP‑β‑CD attenuates EMT via ER 
stress in MDA‑MB‑231 breast cancer cells. HP‑β‑CD can deplete choles-
terol in lipid rafts then regulates TβRI expression negatively to attenuate 
the TGF‑β/Smad signaling pathway, which then activates ER stress, thereby 
leading to suppression of EMT. HP‑β‑CD, hydroxypropyl‑β‑cyclodextrin; 
EMT, epithelial‑to‑mesenchymal transition; ER, endoplasmic reticulum; 
TβRI, TGF receptor; TGF, transforming growth factor; GRP78, binding 
immunoglobulin protein antibody; ATF6, activating transcription factor 6; 
UPR, unfolded protein response.
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many reports have suggested that the transmembrane 
signaling of the TGF‑β/Smad signaling pathway is dependent 
on lipid raft (30‑33), to the best of the authors' knowledge, this 
is the first study to demonstrate its role in EMT regulated by 
TGF‑β/Smad signaling pathway.

Multiple signaling pathways are known to mediate EMT, 
including TGF‑β, Notch‑, Hedgehog‑ and mitogen‑activated 
protein kinase‑dependent pathways  (34,35). Among these 
pathways, the TGF‑β‑dependent pathway is considered to be 
a primary inducer of EMT (5). TGF‑β receptors are internal-
ized by clathrin‑dependent endocytosis as a key regulatory 
event in signal transduction (30,36). Therefore, changing the 
main components of lipid rafts can influence the localization of 
TGF‑β receptors in the lipid rafts/caveolae and the consequent 
signal transduction, as confirmed in our previous study (13). 
The present study further demonstrated that HP‑β‑CD nega-
tively regulated TβRI expression, probably by influencing the 
distribution of TβRI in lipid rafts. These changes would then 
block the TGF‑β1‑induced activation of the TGF‑β/Smad 
signaling pathway to suppress TGF‑β1‑induced EMT, as well 
as the corresponding migration and invasion abilities of the 
cancer cells. Lipid composition and membrane biophysical 
properties serve an important role in cell movement  (37). 
Notably, our previous findings and those of the present study 
demonstrated that changing the composition of lipid rafts by 
using HP‑β‑CD to deplete cholesterol and overexpressing 
SMS1 to increase the content of sphingomyelin had the same 
effect on EMT, which means that cholesterol and sphingo-
myelin may serve opposite roles in the process of EMT. It 
also identified that cholesterol and sphingomyelin had the 
opposite roles in regulating the endothelial dysfunction (data 
not shown). Therefore, the detailed mechanism needs further 
investigations.

In the present study, TGF‑β1 decreased the expression 
levels of ER stress markers, which could be reversed by 
HP‑β‑CD pre‑treatment. In addition, 4‑PBA activated the 
TGF‑β/Smad signaling pathway and inhibited the effects 
of HP‑β‑CD on EMT. The role of ER stress in EMT is 
somewhat controversial. Huang  et  al  (21) demonstrated 
that pterostilbene‑induced ER stress could inhibit EMT in 
breast cancer, and recent studies have pointed to a relation-
ship between the TGF‑β/Smad signaling pathway and ER 
stress in a number of cell lines, including A549 cells and 
podocytes  (19,38) suggesting that TGF‑β1 can activate 
ER stress to promote the process of EMT. The present 
study demonstrated that HP‑β‑CD could block both the 
TGF‑β/Smad signaling pathway and EMT, revealing a posi-
tive association between TGF‑β/Smad signaling pathway 
and EMT, in line with the studies of Moon et al  (38) and 
Yamashita et al (19). However, in contrast to these reports, 
the present study found that HP‑β‑CD could induce ER stress 
to attenuate the EMT, indicating a negative association, and 
this is in line with Huang et al (21) and Dasgupta et al (39) 
who found that pterostilbene and AECHL‑1 suppressed the 
EMT by activating ER stress in breast cancer. These apparent 
contradictory findings highlight the cell type specificity of 
the effects of ER stress on EMT. In addition, other ER stress 
inducers, such as tunicamycin, can activate ER stress and 
then regulate the process of EMT; and inducing the ER stress 
can alter many other signaling pathways, including the AKT 

and MAPK signaling pathways (40) and the Wnt/β‑catenin 
signaling pathway (41), therefore, further studies are required 
to compliment the present study. Although there are several 
studies that do not include a 4‑PBA alone group  (41‑44), 
it would have been better if the present study had added a 
4‑PBA group to overcome the influence of 4‑PBA on the 
experimental results. Collectively, the results of the present 
study suggested that HP‑β‑CD regulates the EMT through 
inhibition of the TGF‑β/Smad signaling pathway, which then 
activates ER stress in MDA‑MB‑231 cells (Fig. 6). Since 
this can attenuate EMT in MDA‑MB‑231 cells, this mecha-
nism holds promise as a treatment target to suppress the 
progression of breast cancer prior to metastasis formation.
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