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Abstract

In the yeast Saccharomyces cerevisiae, the Ras/cAMP/PKA pathway is involved in the regulation of cell growth and
proliferation in response to nutritional sensing and stress conditions. The pathway is tightly regulated by multiple
feedback loops, exerted by the protein kinase A (PKA) on a few pivotal components of the pathway. In this article, we
investigate the dynamics of the second messenger cAMP by performing stochastic simulations and parameter sweep
analysis of a mechanistic model of the Ras/cAMP/PKA pathway, to determine the effects that the modulation of these
feedback mechanisms has on the establishment of stable oscillatory regimes. In particular, we start by studying the
role of phosphodiesterases, the enzymes that catalyze the degradation of cAMP, which represent the major negative
feedback in this pathway. Then, we show the results on cAMP oscillations when perturbing the amount of protein
Cdc25 coupled with the alteration of the intracellular ratio of the guanine nucleotides (GTP/GDP), which are known to
regulate the switch of the GTPase Ras protein. This multi-level regulation of the amplitude and frequency of
oscillations in the Ras/cAMP/PKA pathway might act as a fine tuning mechanism for the downstream targets of PKA,
as also recently evidenced by some experimental investigations on the nucleocytoplasmic shuttling of the
transcription factor Msn2 in yeast cells.

Introduction
In living cells many processes are regulated by nega-
tive and positive feedback mechanisms, which are usually
interlaced in complex regulatory networks and can func-
tion to either attenuate, amplify or even exploit molecular
noise and stochasticity (see, e.g., [1-3] and references
therein). As a matter of fact, molecular fluctuations do
not always represent a negative feature for the proper
functioning of a cellular system, on the contrary they
can be advantageous to widen the range of stimulus-
response to different perturbations, therefore promoting
the adaptability to changeable environments. In this con-
text, computational models represent an indispensable
tool to investigate the complexity of the systems where
multiple feedback and feedforward loops occur, multiple
feedback and feedforward loops, as well as to reveal their
emergent behaviors, as the use of experimental analysis
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alone is typically not able to unravel the whole picture
of these (inhibitory or activatory) molecular interactions
cascade [4-6].

A signal transduction pathway that is characterized
by such complexity is the Ras/cAMP/PKA pathway
in the yeast Saccharomyces cerevisiae, which regulates
metabolism and cell cycle progression in response to
nutritional sensing and stress conditions [7-10]. In bud-
ding yeast, five interlocked systems are known to par-
ticipate in glucose signaling, which altogether result in a
massive restructuring of the transcriptional state of the
genome, as well as in a rapid change in the pattern of
protein phosphorylation when glucose is added to cells
growing on a non-fermentable carbon source [11]. Among
these five pathways, the Ras/cAMP/PKA system plays a
central role in responding to changes in glucose concen-
tration and in turning on the processes that lead to cellular
growth and division.

In particular, the Ras/cAMP/PKA pathway controls
more than 90% of all genes that are regulated by glu-
cose through the activation of the protein kinase A (PKA),
that is able to phosphorylate a plethora of downstream
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proteins [11]. PKA is activated by the binding of the
second messenger cyclic-AMP (cAMP), which is synthe-
sized by the adenylate cyclase Cyr1. The activity of Cyr1
is controlled by the monomeric GTPases Ras1 and Ras2,
which cycle between a GTP-bound active state and a
GDP-bound inactive state. In turn, Ras proteins are pos-
itively regulated by protein Cdc25, a Ras-GEF (Guanine
Nucleotide Exchange Factor) that stimulates the GDP to
GTP exchange, and negatively regulated by proteins Ira1
and Ira2, two Ras-GAP (GTPase Activating Proteins) that
stimulate the GTPase activity of Ras proteins. The degra-
dation of cAMP is governed by two phosphodiesterases,
Pde1 and Pde2. These two enzymes constitute a major
negative feedback in this pathway: the low-affinity phos-
phodiesterase Pde1 is active under the positive regulation
of PKA, while the high-affinity phosphodiesterase Pde2 is
active in the basal level regulation of cAMP [7,12]. Exper-
imental evidences suggest that the negative feedback loop
exerted by PKA operates also at the level of Ras2-GTP
[13-15]: PKA can phosphorylate Cdc25, reducing its
exchange activity, as well as Ira proteins, increasing the
Ras-GAP activity (in both cases, this regulation results in
a decrease of the activity of the adenylate cyclase).

Because of such complex interplay, it is not easy to
predict the behavior of the Ras/cAMP/PKA pathway in
different growth conditions or in response to various
stress signals. To understand the role of the negative
feedback controls, in [16,17] we defined and analyzed
a stochastic model of the Ras/cAMP/PKA pathway. In
particular, we focused our attention on the mechanisms
that allow the emergence of oscillatory regimes, since
recent experiments evidenced in vivo the presence of
continuous oscillations related to this pathway under spe-
cific stress conditions [18,19]. Furthermore, the effects
of some regulatory mechanisms related to the stress
response in the Ras/cAMP/PKA pathway were also high-
lighted through the analysis of the nucleocytoplasmic
shuttling of Msn2, a transcription factor whose localiza-
tion is controlled in yeast by the periodic activation of
PKA [20,21]. This periodicity can be ascribed to an oscil-
latory behavior of the intracellular cAMP concentration
and of PKA activity, though no direct measurements of
the dynamics of these components have been executed in
vivo so far. In this context, our previous computational
investigations indicated that stable oscillatory regimes
of cAMP amount can be established when the feed-
back operating on Ira proteins is activated, and that this
dynamics seems to be regulated by the balance between
the activities of the Ras protein modulators, i.e., Cdc25
and Ira proteins. In addition, we previously showed that
also the intracellular ratio of guanine nucleotides pools
(GTP/GDP) could represent an important metabolic sig-
nal for the regulation of the pathway, as also suggested in
[22,23].

In this article, we extend the study presented in [24] and
continue the analysis on the establishment of oscillatory
regimes of cAMP by investigating the modulation of other
feedback mechanisms. In particular, we study the influ-
ence that a change in the activity of phosphodiesterases
- coupled with the perturbation of Cdc25 amount - have
on the existence of stable oscillations of cAMP, and we
highlight that the deletion of Pde1 can induce marked
variations in the cAMP dynamics, while the deletion of
Pde2 fosters the establishment of oscillations. Moreover,
a preliminary analysis carried out on the oscillations fre-
quency of cAMP in both the conditions of deletion of
Pde1 and Pde2, considering different values for the ratio
Cdc25/Ira2, shows that the deletion of Pde2 is able to
diminish the oscillations frequency of cAMP with respect
to the wild type condition, while the deletion of Pde1 has
a minor effect on the frequency modulation.

Then, we continue the investigation initiated in [17] and
study the role played by the guanine nucleotide concen-
trations, which control the exchange activity of Cdc25.
Through the investigation of the simultaneous modula-
tion of the amount of Cdc25 and of the intracellular ratio
of guanine nucleotides, we show here that a decrease in
the ratio GTP/GDP—which mimics a reduced nutritional
condition in yeast cells—is able to control the transition
between stable steady states and oscillations, indepen-
dently from the amount of Cdc25.

Methods
Mechanistic model of the Ras/cAMP/PKA pathway
The mechanistic model of the Ras/cAMP/PKA path-
way that we previously presented in [16,17] was devel-
oped according to the stochastic formulation of chemical
kinetics [25], defined by specifying the set of molecular
species occurring in the pathway and the set of biochem-
ical reactions, together with their related stochastic con-
stants (see Table 1). In particular, the model describes the
major interactions between the pivotal components of the
Ras/cAMP/PKA pathway, as well as the negative feedback
mechanisms which are able to regulate the intracellu-
lar levels of cAMP. The model consists of six functional
modules, which correspond to the following processes:

1. The switch cycle of Ras2 protein between its inactive
state (Ras2-GDP) and active state (Ras2-GTP),
regulated by the activity of the GEF Cdc25 and of the
GAP Ira2 (reactions r1, . . . , r10 in Table 1).

2. The synthesis of cAMP through the activation of the
adenylate cyclase Cyr1, mediated by Ras2-GTP
(reactions r11, r12, r13 in Table 1).

3. The activation of PKA, mediated by the reversible
binding of cAMP to its two regulatory subunits, and
the subsequent dissociation of the PKA tetramer,
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Table 1 Mechanistic model of the Ras/cAMP/PKA pathway
in S. cerevisiae
No. Reagents Products Constant ci

r1 Ras2-GDP + Cdc25 Ras2-GDP-Cdc25 1.0

r2 Ras2-GDP-Cdc25 Ras2-GDP + Cdc25 1.0

r3 Ras2-GDP-Cdc25 Ras2-Cdc25 + GDP 1.5

r4 Ras2-Cdc25 + GDP Ras2-GDP-Cdc25 1.0

r5 Ras2-Cdc25 + GTP Ras2-GTP-Cdc25 1.0

r6 Ras2-GTP-Cdc25 Ras2-Cdc25 + GTP 1.0

r7 Ras2-GTP-Cdc25 Ras2-GTP + Cdc25 1.0

r8 Ras2-GTP + Cdc25 Ras2-GTP-Cdc25 1.0

r9 Ras2-GTP + Ira2 Ras2-GTP-Ira2 ∗1.0 × 10−2

r10 Ras2-GTP-Ira2 Ras2-GDP + Ira2 ∗2.5 × 10−1

r11 Ras2-GTP + Cyr1 Ras2-GTP-Cyr1 1.0 × 10−3

r12 Ras2-GTP-Cyr1 + ATP Ras2-GTP-Cyr1 + cAMP 2.1 × 10−6

r13 Ras2-GTP-Cyr1 + Ira2 Ras2-GDP + Cyr1 + Ira2 1.0 × 10−3

r14 cAMP + PKA cAMP-PKA 1.0 × 10−5

r15 cAMP + cAMP-PKA (2cAMP)-PKA 1.0 × 10−5

r16 cAMP + (2cAMP)-PKA (3cAMP)-PKA 1.0 × 10−5

r17 cAMP + (3cAMP)-PKA (4cAMP)-PKA 1.0 × 10−5

r18 (4cAMP)-PKA cAMP + (3cAMP)-PKA 1.0 × 10−1

r19 (3cAMP)-PKA cAMP + (2cAMP)-PKA 1.0 × 10−1

r20 (2cAMP)-PKA cAMP + cAMP-PKA 1.0 × 10−1

r21 cAMP-PKA cAMP + PKA 1.0 × 10−1

r22 (4cAMP)-PKA C + C + R-2cAMP + R-2cAMP 1.0

r23 R-2cAMP R + cAMP + cAMP 1.0

r24 R + C R-C 7.5 × 10−1

r25 R-C + R-C PKA 1.0

r26 C + Pde1 C + Pde1p 1.0 × 10−6

r27 cAMP + Pde1p cAMP-Pde1p 1.0 × 10−1

r28 cAMP-Pde1p cAMP + Pde1p 1.0 × 10−1

r29 cAMP-Pde1p AMP + Pde1p 7.5

r30 Pde1p + PPA2 Pde1 + PPA2 1.0 × 10−4

r31 cAMP + Pde2 cAMP-Pde2 1.0 × 10−4

r32 cAMP-Pde2 cAMP + Pde2 1.0

r33 cAMP-Pde2 AMP + Pde2 1.7

r34 C + Cdc25 C + Cdc25p 1.0

r35 Cdc25p + PPA2 Cdc25 + PPA2 1.0 × 10−2

r36 Ira2 + C Ira2p + C 1.0 × 10−3

r37 Ras2-GTP + Ira2p Ras2-GTP-Ira2p 1.25

r38 Ras2-GTP-Ira2p Ras2-GDP + Ira2p 2.5

r39 Ira2p Ira2 10.0

The mechanistic model of the Ras/cAMP/PKA pathway in S. cerevisiae,
developed according to the stochastic formulation of chemical kinetics, consists
of 39 reactions among 33 molecular species. Each reaction is described by a set
of reagents and a set of products, and is characterized by a stochastic constant
(ci , i = 1, . . . , 39), here expressed in arbitrary time units (time−1). The following
notation has been used in writing the reactions: (i) X + Y represents an
interaction between the molecular species X and Y; (ii) X-Y describes a molecular
complex between species X and Y; (iii) Xp denotes the phosphorylated form of
species X; (iv) the regulatory and catalytic subunits of PKA are indicated by
symbols R and C, respectively. Note that the values of the stochastic constants of
reactions r9 and r10—highlighted with an asterisk in the table—are changed to
3.0 × 10−2 and 7.0 × 10−1 , respectively, when reactions r36, . . . , r39 are not active,
that is, when the negative feedback exerted by PKA on Ira2 is switched off.

which releases the two catalytic subunits (reactions
r14, . . . , r25 in Table 1).

4. The activity of the two phosphodiesterases Pde1 and
Pde2, that carry out the degradation of cAMP. The
activation of Pde1 is regulated by the catalytic
subunits of PKA, and it represents one of the main
negative feedback control exerted by PKA within this
pathway [12] (reactions r26, . . . , r33 in Table 1).

5. The negative feedback exerted by PKA on Cdc25,
whose effect is modeled as a partial inactivation of
the GEF activity, as stated in [15,26], and a reduction
of the active state level of Ras2-GTP (reactions
r34, r35 in Table 1).

6. The negative feedback exerted by PKA on Ira2
which, according to [13,14], is assumed to increase
the GAP activity and to induce a faster decrease of
the Ras2-GTP level (reactions r36, . . . , r39 in Table 1).

In Figure 1, we give a schematic picture of the main
inhibitory and activatory regulations existing among
the components of the pathway. The complete net-
work of the interactions between all molecular species,
as well as the SBML version of the model, are avail-
able for free download at the BioSimWare website
(http://biosimware.disco.unimib.it). A “generalized mass-
action based” [27] version of this mechanistic model was
derived, in order to compare the outcome of stochastic
and deterministic approaches, as also discussed in [17].

Unless otherwise specified, all the simulations of our
mechanistic model were performed starting from an
initial state in which the Ras/cAMP/PKA pathway is
switched off, that is, in a condition where no cAMP
molecules are present in the system and the main compo-
nents of the pathway (Ras2, adenylate cyclase, PKA) are
inactive. The switch on of the pathway is triggered by the
presence of an initial amount of the inactive form of Ras2
protein (Ras2-GDP complex), that can be transformed
into the active form Ras2-GTP thanks to the presence of
guanine nucleotide pools and of the Ras regulator proteins
(the values of molecular species initially occurring in the
system are given in Table 2). In cascade, the downstream
components of the pathway are activated one after the
other, giving rise to the emergent dynamics of the whole
system and the resulting steady states. This situation is
close to that observed in vivo when S. cerevisiae cells bear-
ing a deletion in the GPR1 gene were starved for nutrients
and then stimulated by glucose addition [28].

The rationale behind this choice is that this initial con-
dition allows us to investigate the transient accumulation
as well as the oscillatory dynamics of cAMP according to
a sequential activation of the different regulatory mecha-
nisms within the pathway. To this aim, as also described
in [16], the validation of the model was carried out by
simulating the first functional module (the switch cycle
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Figure 1 Positive and negative regulations in the Ras/cAMP/PKA
pathway. The diagram shows the logical relationships among the
principal components of the Ras/cAMP/PKA pathway. The switch
cycle of Ras2 protein between its inactive state (Ras2-GDP) and active
state (Ras2-GTP) is regulated by the activity of Cdc25 (a) and Ira2 (b).
The intracellular ratio of GTP and GDP also contributes to the
regulation of the activity of Ras proteins (a), since Cdc25 stimulates
the exchange of these nucleotides on Ras according to their relative
concentration. Ras2-GTP controls the activity of the adenylate cyclase
Cyr1 (c), which mediates the synthesis of the second messenger
cAMP (d). cAMP activates PKA (e) by binding to its regulatory subunits
and releasing its catalytic subunits. The degradation of cAMP is
governed by Pde1 (i) and Pde2 (j), which constitute a major negative
feedback in this pathway, as they both contribute to decrease the
intracellular level of the second messenger. The active form of PKA
exerts three main regulations in this pathway through the
phosphorylation of different components: a positive regulation of
Pde1 (h) and of Ira2 (g), and a negative regulation of Cdc25 (f). Since
the increased activity of the phosphorylated forms of both Pde1 and
Ira2 result in switching off the signal—that is, they both contribute to
reducing the intracellular level of cAMP—due either to a faster
degradation of cAMP by Pde1 (i) or to a diminished fraction of active
Ras2 by Ira2 proteins (b), these two positive regulations actually have
the effect of a negative feedback control on the whole pathway. The
negative regulation of Cdc25 by PKA results in a partial inactivation of
the GEF activity (a), and thus a reduced activation of the Ras2 protein,
which results in a decreased activity of the adenylate cyclase and
therefore contributes to lowering the cAMP level.

of Ras2 protein) and then adding, in a sequential and
iterative way, all the other modules of the model. So doing,
we can easily identify the role played by every functional
module of reactions on the emergent behaviors of the
Ras/cAMP/PKA pathway, avoiding possible interferences
with the molecular mechanisms that are already turned
on in the system when starting the simulations from a

Table 2 Molecular amounts of initial species in the
Ras/cAMP/PKA model

Molecular species Copy number (molecules/cell) Reference

Cyr1 200 [16]

Cdc25 300 [29]

Ira2 200 [16]

Pde1 1,400 [29]

PKA 2,500 [29]

PPA2 4,000 [29]

Pde2 6,500 [29]

Ras2-GDP 20,000 [29]

GDP ∗1.5 × 106 [23]

GTP ∗5.0 × 106 [23]

ATP ∗2.4 × 107 [23]

The molecular amounts of the species initially occurring in the system are
expressed as number of molecules per cell. The number of molecules for Ras2,
Cdc25, PKA, Pde1, Pde2 and PPA2 were evaluated using the data presented in
[29] (available online at http://yeastgfp.ucsf.edu/). The number of molecules for
Ira2 and Cyr1 were estimated in [16] by comparing the fluorescence of yeast
cells expressing fusion with eGFP (obtained by http://yeastgfp.ucsf.edu/) using
Cdc25-eGFP as a standard (300 molecules/cell). The number of molecules for
ATP, GTP and GDP were calculated by considering experimental data presented
in [23] and assuming an internal free water volume of about 30 fL [16], obtained
by considering an average cell volume of 45 fL [30,31] and taking into account
that part of this volume is occupied by the cell wall and internal structures.
Therefore, assuming a concentration of 1 mM, for ATP we obtained about
2.4 × 107 molecules/cell, while for GTP and GDP we estimated 5.0 × 106 and
1.5 × 106 molecules/cell, respectively, for yeast cells growing in minimal glucose
medium [16]. Unless otherwise specified, the amounts of GDP, GTP and
ATP—highlighted with an asterisk in the table—are kept constant during the
execution of simulations.

different initial condition such as, e.g., a steady state cor-
responding to the basal level of cAMP. Nevertheless, we
will show later on that the system response (e.g., the estab-
lishment of oscillatory regimes when the sixth functional
module is activated) is actually independent of the cho-
sen initial state of the system. For this reason, knowing
that we obtain qualitatively and quantitatively compara-
ble system responses starting from either a steady state
condition or when the pathway is totally switched off, we
prefer the latter initial state in order to analyze the path-
way behaviors—in relation to both the initial transient and
the subsequent dynamics in response to given stimuli—
and to better compare the simulation outcomes under
different perturbations.

Simulation and analysis tools
The model was simulated and analyzed with the soft-
ware BioSimWare [32], using a personal computer with an
Intel Core2 CPU (2.66 GHz) running Linux. All stochastic
simulations were performed by exploiting the tau-leaping
algorithm [33], which represents one of the most efficient
methods for simulating the temporal evolution of bio-
chemical systems. This method is an approximated but
accurate version of the stochastic simulation algorithm
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(SSA) defined in [25], which allows to select and execute
in parallel several reactions per step—instead of execut-
ing the reactions in a sequential manner, as it is done with
SSA—thus speeding up the computation. The mean dura-
tion time to execute one run of the tau-leaping algorithm
to simulate the dynamics of the Ras/cAMP/PKA path-
way over 1500 arbitrary time units is about 30 s, using the
initial values of molecular amounts given in Table 2 and
the stochastic constants reported in Table 1. Determinis-
tic simulations were executed using the LSODA algorithm
[34].

In this study, the efficiency of tau-leaping and LSODA
algorithms was exploited to carry out a parameter sweep
analysis (PSA), to the aim of investigating the effect of the
variation of the values of molecular amounts and of reac-
tion constants on the dynamics of cAMP and of other
pivotal components of the Ras/cAMP/PKA pathway. PSA
was performed using a computational tool that generates
a set of different initial conditions for the model and then
automatically executes the corresponding stochastic or
deterministic simulations. With this tool, the value of each
analyzed parameter varies within a specified range (with
respect to a reference value), according to the following
procedures:

• The sweep analysis for single parameters (PSA-1D) is
performed considering a linear (logarithmic,
respectively) sampling of values within the specified
range in the case of molecular amounts (reaction
constants, respectively). The logarithmic sampling
allows to uniformly span different orders of
magnitude of the value of the chosen parameter using
a reduced but fine-grained set of samples, therefore
efficiently analyzing the dynamics of the system in a
broad range of environmental conditions.

• The sweep analysis over pairs of parameters
(PSA-2D) is performed by exploiting the
quasi-random series method [35]. Quasi-random
series, also called low discrepancy sequences, allow to
efficiently sample a multidimensional space of
numerical values. The discrepancy of a sequence
represents a measure of its uniformity, and is
computed by comparing the actual number of
sampled points in a given multidimensional space
with the number of points that would be sampled by
assuming a uniform distribution. Therefore, the aim
of quasi-random series is to uniformly cover the
chosen parameter sweep space with “few” samples
(i.e., with a lower number of points with respect to
classic uniform distributions).

Since we are interested in the analysis of the oscillatory
regimes related to the Ras/cAMP/PKA pathway, we also
developed a numerical procedure, implemented with the
LabVIEW 2009 (National Instruments) environment, in

order to evaluate the amplitude and frequency of stochas-
tic oscillations. In particular, we considered the dynamics
of cAMP as the target of this analysis. To this aim, for any
simulation outcome we choose a portion of the dynamics
where oscillations of cAMP occur (e.g., the time inter-
val [ 200, 1, 400] after the initial transient accumulation
of cAMP in Figure 2, bottom left), we evaluate the mean
amount of cAMP within this interval, and use this value
as a threshold to identify the disjoint sets of consecutive
points that are all above (or all below) the threshold. Then,
within each of these sets, we identify the global maxi-
mum (or minimum, respectively) amount of cAMP, and
finally we evaluate the mean and standard deviation of all
the maxima (or minima) points previously identified. So
doing, we can evaluate the maximum, minimum and aver-
age amplitude of the amount of cAMP during stochastic
oscillations. The frequency of oscillations of cAMP can
then be easily calculated by dividing the number of max-
ima (minima) by the length of the chosen time interval.
We refer to [17] for additional details on this method.

Results and discussion
The computational methods previously described were
exploited in this study to test different hypotheses on the
mechanisms that activate and regulate the components
of the Ras/cAMP/PKA pathway in single yeast cells. In
this context, our previous analysis on the Ras/cAMP/PKA
model suggested that stable oscillatory regimes in the
amount of cAMP can be regulated by the ratio between
Cdc25 and Ira2 proteins, which both control the acti-
vation of the adenylate cyclase by means of the active
fraction of Ras proteins (that is, Ras2-GTP) [17]. Hence,
we start here by briefly presenting the effects of mod-
ulating the feedback mechanisms on Cdc25 and Ira2
proteins. Then, we study the role of the feedback mech-
anism exerted by PKA at the level of Pde1, as well as
the influence of the deletion and of the overexpression
of both phosphodiesterases on the establishment of oscil-
latory regimes. Finally, we investigate the presence of
oscillations in the pathway through the variation of the
intracellular amounts of GTP and Cdc25. Indeed, as we
previously suggested [16], one of the signals that can mod-
ulate the activity of the Ras/cAMP/PKA pathway is the
ratio between GTP and GDP, since the exchange activity
of Cdc25 depends on the relative concentration of these
guanine nucleotides [23].

The role of feedback mechanisms on Ras activation
Starting from the initial condition of the system previ-
ously described, the simulation of the switch cycle of
Ras2 protein—together with the activation of the adeny-
late cyclase and of the downstream components—shows
a transient accumulation of cAMP in response to the
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Figure 2 Dynamics of cAMP, Ras2-GTP and active PKA with and without the feedback on Ira2. When the feedback control on Ira2 proteins is
not activated, the dynamics of cAMP shows an initial transient increase and the successive establishment of a stable steady state (top left). In this
condition, neither Ras2-GTP nor active PKA show oscillatory behavior (top right). On the contrary, when the feedback on Ira2 proteins is activated,
the initial peak on cAMP amount is followed by the establishment of a stable oscillatory state (bottom left), as also reflected in the dynamics of both
Ras2-GTP and of the active fraction of PKA (bottom right). In S. cerevisiae, cAMP was experimentally determined to be around 2 × 105 molecules after
stimulation, while basal levels vary from 2 × 104 to 5 × 104 molecules/cell; as a consequence of stimulation, a cAMP peak was observed after
45–60 s, and then a new steady-state was reached in 3–5 min (see, e.g., Figure 2 in [28]). The expected number of cAMP molecules derived from
stochastic simulations was calculated here by considering our own measurements [16] and data presented in [28].

formation of the complex Ras2-GTP. More precisely,
when we only activate the feedback mechanisms based
on the phosphorylation of Cdc25 and of the phosphodi-
esterase Pde1 (functional modules 1–5), we obtain a stable
steady state in the levels of cAMP, Ras2-GTP and active
PKA, as shown in Figure 2 (top plots). On the contrary,
if the feedback control on Ira2 proteins is activated (func-
tional module 6), then the system is able to generate stable
oscillatory states of cAMP amount, as well as of Ras2-GTP
and active PKA (Figure 2, bottom plots). We previously
analyzed this oscillatory regime in [17], showing that the
range of cAMP oscillations depends on the ratio between
the Ras regulator proteins Cdc25 and Ira2, and that the
oscillations frequency increases as the ratio Cdc25/Ira2
decreases, meaning that an unbalance between the GEF
and GAP activity with respect to the wild type condition
is able to induce a frequency modulation.

In Figure 3, we show that the occurrence of the oscil-
latory regime in cAMP dynamics is affected only by the
activation of these negative feedback mechanisms, and
is actually independent of the chosen initial condition
of the system. The plots show the establishment of sta-
ble oscillations in cAMP amount (left plot), as well as in

Ras2-GTP and active PKA amounts (right plot), when the
simulation is executed starting from an initial condition
where the level of cAMP is already at the stable steady
state.

Then, we investigated how an increased or a reduced
phosphorylation activity of PKA over Cdc25 and Ira2
can influence the establishment of oscillatory regimes.
Figures 4 and 5 represent the simulation results on the
dynamics of cAMP (left plots) and of Ras2-GTP (right
plots), carried out through a PSA-1D over the reaction
constants corresponding to the negative feedback over
Cdc25 and Ira2, respectively. Figure 4 shows that oscil-
lations occur for any value of the stochastic constant of
reaction r34, that is, regardless of the magnitude of the
feedback exerted by PKA on Cdc25. On the contrary, the
feedback on Ira2 is effectively able to control the estab-
lishment of oscillatory regimes (Figure 5): for values of the
constant of reaction r36 lower than the reference value,
only stable steady states can be reached. Conversely, if the
value of this reaction constant is higher than the refer-
ence value, that is, if the GTPase activity of Ras2 proteins
is strongly enhanced by the phosphorylation of Ira2, then
the oscillatory regime is lost.
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Figure 3 Activation of the feedback on Ira2: cAMP oscillations starting from a steady state condition. The occurrence of oscillatory regimes
in the cAMP dynamics is only affected by the activation of negative feedback mechanisms and is independent of the initial condition of the system.
The plots show the establishment of stable oscillations in cAMP amount (left), as well as in Ras2-GTP and active PKA amounts (right), starting the
simulation from an initial condition where the system is at a stable steady state. In this simulation, the initial amounts of cAMP, Ras2-GTP and active
PKA are around 47,000, 50, and 400 molecules, respectively.

In addition, the stochastic simulations of the oscillatory
regimes in the Ras/cAMP/PKA pathway were compared
to the outcome of deterministic simulations of the “gen-
eralized mass-action model” [17]. In Figure 6, we show
the dynamics of cAMP with different initial amounts of
Cdc25, obtained by means of stochastic (left plot) and
deterministic (right plot) simulations. It is worth not-
ing that the deterministic and stochastic behaviors are
comparable for Cdc25 equal to 200 and 300 molecules
(sustained oscillations occur in both cases) and for Cdc25
equal to 400 (damped oscillations). On the other hand,
by setting the initial amount of Cdc25 to smaller values,
e.g., 150 molecules, the two approaches show qualitatively
different outcomes: the stochastic approach provides sta-
ble oscillations of cAMP, while in the deterministic case,
under the same initial conditions, the dynamics show
damped oscillations. This result highlights the usefulness
of stochastic modeling and the role played by noise in
the Ras/cAMP/PKA pathway, which seems to support the
robustness of the system with respect to the variation
of the amount of pivotal components of the pathway (in

this case, protein Cdc25), ensuring the presence of stable
oscillatory regimes.

The negative regulation by phosphodiesterases
To determine the influence of phosphodiesterases on the
existence of stable oscillations of cAMP, we conducted
three different parameter sweep analyses:

1. A PSA-1D over the reaction constant corresponding
to the negative feedback exerted by PKA on Pde1,
whereby higher values of this parameter represent a
stronger activation of the phosphodiesterase activity,
and hence a higher net effect of the negative
feedback. In Figure 7, we plot the dynamics of cAMP
(top left plot), Ras2-GTP (top right plot),
phosphorylated Ira2 (bottom left plot) and
phosphorylated Pde1 (bottom right plot) with
respect to the variation of this reaction constant in
the interval [ 1.0 × 10−9, 1.0 × 10−3]. This interval
corresponds to 3 orders of magnitude below and 3
above the reference value given in Table 1, whose
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Figure 4 Effects of the modulation of the negative feedback on Cdc25 (reaction constant c34). The figure shows the simulated dynamics of
cAMP (left) and Ras2-GTP (right) resulting from a PSA-1D on the value of the reaction constant that modulates the phosphorylation of Cdc25 by
means of active PKA. The varied parameter is constant c34 (see Table 1), within the interval [ 1.0 × 10−3, 1.0 × 103], being 1.0 the reference value
(represented with the black thick line). Stable oscillations occur in both cAMP and Ras2-GTP dynamics, for any value of the reaction constant,
regardless of the magnitude of the feedback exerted by PKA on Cdc25. For larger values of the constant, namely c34 greater than 1.0, the only effect
is a reduction in the amount of cAMP and Ras2-GTP (whose average values are reduced from around 40,000 to 35,000 molecules, and from around
270 to 130 molecules, respectively) and an increase of about fifty per cent in the frequency of oscillations with respect to the reference value.
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Figure 5 Effects of the modulation of the negative feedback on Ira2 (reaction constant c36). The figure shows the simulated dynamics of
cAMP (left) and Ras2-GTP (right) resulting from a PSA-1D on the value of the reaction constant that modulates the phosphorylation of Ira2 by means
of active PKA. The varied parameter is constant c36 (see Table 1), within the interval [ 1.0 × 10−6, 1.0], being 1.0 × 10−3 the reference value
(represented with the black thick line). The reaction that describes the feedback on Ira2 is able to control the establishment of oscillatory regimes:
for values of the reaction constant lower than the reference value, only stable steady states can be reached. In particular, cAMP and Ras2-GTP reach
a noisy steady state around 60,000 and 10,000 molecules, respectively. Conversely, by increasing the value of the constant, that is, enhancing the
GTPase activity of Ras2 proteins by means of the phosphorylation of Ira2, the amplitude of oscillations of cAMP and Ras2-GTP is reduced from
around 40,000 to 25,000 molecules and from 600 to 140 molecules, respectively, as well as their average amounts, that decrease from around 40,000
to 20,000 and from around 270 to 50 molecules, respectively. For values of constant c36 greater than 1.0 × 10−2 the oscillatory regime is lost and the
average values of cAMP and Ras2-GTP drop to around 5,000 and 20 molecules, respectively.

related dynamics is represented in the plots with the
black thick line.

2. A PSA-2D over the amounts of Pde1 and of Pde2 in
the intervals [0, 2,800] and [0, 13,000] molecules,
respectively, which mimic the biological conditions
ranging from the deletion to a two-fold
overexpression of each phosphodiesterase. In
Figure 8 we plot the amplitude of cAMP oscillations
generated with these parameters, where the values
on the x- and y-axis were normalized to [0, 1]. In this
figure, an amplitude value equal to zero corresponds
to a non oscillating dynamics. Figure 9 shows the
dynamics of cAMP in the four extreme conditions of
the phosphodiesterases amounts, as highlighted in
Figure 8, where A corresponds to Pde1 = 0, Pde2 = 0
molecules; B corresponds to Pde1 = 0, Pde2 =
13,000 molecules; C corresponds to Pde1 = 2,800,

Pde2 = 0 molecules; D corresponds to Pde1 = 2,800,
Pde2 = 13,000 molecules.

3. A PSA-1D over the amount of Cdc25 in the interval
[0, 900] molecules, ranging from the deletion to a
three-fold overexpression of the GEF proteins, in
both conditions of deletion of Pde1 or Pde2. In
Figures 10 and 11, we plot the diagrams of the
amplitude of cAMP oscillations with respect to the
number of Cdc25 molecules, under the deletion of
Pde1 and Pde2, respectively. In these figures, square
points represent the mean value of cAMP amount,
circle (triangular) points the maximum (minimum)
value of oscillations with the respective standard
deviation, the left and right shady areas correspond
to noisy stochastic fluctuations and stable steady
states, respectively, while the white area corresponds
to oscillatory regimes.
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Figure 6 Comparison of stochastic and deterministic simulations of cAMP dynamics with different initial amounts of Cdc25. The figure
shows the dynamics of cAMP with different initial amounts of Cdc25 (150, 200, 300, and 400 molecules) obtained by means of stochastic (left) and
deterministic (right) simulations. The deterministic and stochastic behaviors are comparable for Cdc25 equal to 200 and 300 molecules (sustained
oscillations occur in both cases) and for Cdc25 equal to 400 (damped oscillations). On the contrary, when the initial amount of Cdc25 is low (i.e., 150
molecules), with the stochastic approach we obtain stable oscillations of cAMP, while in the deterministic case the dynamics shows damped
oscillations.
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Figure 7 Effects of the modulation of the negative feedback on Pde1 (reaction constant c26). The figure shows the simulated dynamics of
cAMP (top left), Ras2-GTP (top right), phosphorylated Ira2 (bottom left) and phosphorylated Pde1 (bottom right) resulting from a PSA-1D on the value
of the reaction constant that modulates the phosphorylation of Pde1 by means of active PKA. The varied parameter is constant c26 (see Table 1),
within the interval [ 1.0 × 10−9, 1.0 × 10−3], being 1.0 × 10−6 the reference value (represented with the black thick line). For values of the constant
lower than the reference value, stable oscillations still occur. On the contrary, by increasing the value of the reaction constant, that is, if we simulate a
marked promotion of the activity of Pde1, after an initial transient increase the amount of cAMP gets almost completely degraded and no oscillations
occur anymore (cAMP reaches a noisy steady state around 5,000 molecules, top left). Under the same condition, the amount of Ras2-GTP tends to a
high steady state level (around 10,000 molecules, top right), which would intuitively induce a promotion of the cyclase activity and thus an expectable
increase in the cAMP amount, which is instead counterbalanced by two concurrent processes: (i) the reduced activity of Ira2 proteins, whereby only
a few copies of phosphorylated Ira2 are present inside the system (around 5 molecules, bottom left), and (ii) the strong phosphodiesterase activity
taking place in this condition, that is also confirmed by the high level of phosphorylated Pde1 (around 1,200 molecules, bottom right).

Taken altogether, the results of these simulations show
that the deletion of the high-affinity phosphodiesterase
Pde2 fosters the establishment of oscillations of cAMP,

whose amplitude increases with the increase of Pde1
amount. On the contrary, the deletion of the low-
affinity cAMP phosphodiesterase Pde1 has the effect of
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Figure 8 Influence of the amount of Pde1 and Pde2 on the establishment of cAMP oscillatory regimes. The figure shows the oscillations
amplitude of cAMP dynamics resulting from a PSA-2D on the values of the initial amounts of Pde1 and Pde2, varied in the intervals [ 0, 2,800] and
[ 0, 13,000], respectively (being Pde1 = 1,400 and Pde2 = 6,500 molecules the reference values—see Table 2). In the plot, the values on the x- and
y-axis were normalized in the interval [ 0, 1]; a total of 200 initial conditions were sampled from the specified bidimensional parameters space. This
analysis shows that the deletion of the high-affinity phosphodiesterase Pde2 fosters the establishment of oscillations of cAMP, whose amplitude
increases with the increase of Pde1 amount (from point A to point C); on the contrary, the deletion of the low-affinity cAMP phosphodiesterase
Pde1 has the effect of diminishing or even abolishing the oscillations irrespective of the amount of Pde2 (from point A to B). The overexpression of
both phosphodiesterases (point D) does not allow the establishment of oscillatory regimes.
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Figure 9 cAMP dynamics obtained with different initial amounts of Pde1 and Pde2. Dynamics of cAMP with different initial amounts of the
phosphodiesterases, as given in Figure 8, where A: Pde1 = 0, Pde2 = 0; B: Pde1 = 0, Pde2 = 13,000; C: Pde1 = 2,800, Pde2 = 0; D: Pde1 = 2,800,
Pde2 = 13,000 molecules. The plots show that in the absence of both phosphodiesterases (A) we achieve, as expected, an unlimited accumulation
of cAMP, since our model does not include any other mechanism to reduce the intracellular level of cAMP; with a very high initial amount of Pde2 (B
and D), cAMP reaches a noisy steady state but no oscillations are observed; in the absence of Pde2, when only Pde1 is active (C), oscillations of cAMP
can then be established, showing a very large amplitude and a mean cAMP amount that is slightly higher than standard conditions. The molecular
amounts of cAMP reached in conditions A and C are higher than the physiological levels measured in corresponding experimental settings [12,14]
though, from a computational point of view, they are indicative of the role played by the two phosphodiesterases, since they highlight the different
dynamical behaviors of the pathway in extreme conditions.

diminishing or even abolishing the oscillations irrespec-
tive of the amount of Pde2 (see Figure 8). This might indi-
cate that the negative feedback on Pde1 is effectively able
to regulate the oscillatory regime of cAMP, independently
from the presence of Pde2.

Indeed, if we simulate a stronger activity of PKA over
Pde1, that is, a marked promotion of the activity of Pde1,
we see that after an initial transient increase the intra-
cellular cAMP gets almost completely degraded and no
oscillations occur anymore (Figure 7, top left plot). Inter-
estingly, in the same condition the amount of Ras2-GTP
tends to a high steady state level (Figure 7, top right
plot), which would intuitively induce a promotion of the
cyclase activity and thus an increase in the cAMP amount.
This counterintuitive behavior is an overall effect due to
two concurrent factors: (i) the strong negative feedback
exerted by Pde1 (Figure 7, bottom right plot), that causes
the immediate degradation of cAMP and does not allow
its intracellular accumulation, and (ii) the lack of the effect
of the feedback on Ira2, that causes the increase in the

amount of Ras2-GTP, a consequence of the fact that Ira2
proteins are basically not phosphorylated by PKA in this
condition (Figure 7, bottom left plot).

In addition, Figure 10 shows that in the absence of
Pde1 the oscillatory regimes are established even when
the amount of Cdc25 is at a two-fold overexpression with
respect to its physiological amount, which corresponds to
about 300 molecules/cell [29]. These data can be com-
pared to the analysis shown in [17], which highlights that
in normal conditions and in presence of Pde1, the oscil-
latory regimes can only be established when Cdc25 is
approximately between 150 and 400 molecules, that is,
when the ratio Cdc25/Ira2 is not higher than 2 (being the
amount of Ira2 around 200 molecules in normal condi-
tions). Therefore, the deletion of Pde1 with respect to the
ratio Cdc25/Ira2 has the effect of widening the conditions
under which sustained oscillations of cAMP occur. Sim-
ilar considerations can be done for the deletion of Pde2,
whereby oscillatory regimes occur with Cdc25 in between
200 and 600 molecules (Figure 11).
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Figure 10 Diagram of cAMP oscillations amplitude with respect
to Cdc25 amount when deleting Pde1. The figure shows the
oscillations amplitude of cAMP dynamics resulting from a PSA-1D
where the amount of Cdc25 varies in the interval [0, 900], in the
condition of deletion of Pde1. The mean and standard deviation of
the average (squares), maximum (circles) and minimum (triangles)
amount of cAMP during oscillations are plotted. The left and right
shady areas correspond to noisy stochastic fluctuations and stable
steady states, respectively, while the white area corresponds to
oscillatory regimes. This analysis highlights that, when deleting Pde1,
oscillatory regimes in cAMP can be established even when the
amount of Cdc25 is at a two-fold overexpression with respect to the
physiological amount of 300 molecules/cell (Table 2). Therefore, the
deletion of Pde1 has the effect of widening the range of Cdc25
molecules under which sustained oscillations of cAMP occur, being
approximately [150, 400] the interval whereby oscillatory regimes in
cAMP are found when Pde1 is present in the system (see [17] for
more details).

The computational results corresponding to the con-
ditions of deletion of the phosphodiesterases are in line
with recent experimental measurements of the nucleocy-
toplasmic localization of the transcription factor Msn2,
carried out in S. cerevisiae pde1� and pde2� mutant cells,
under continuous light-induced stress conditions [21]. In
yeast cells, the nuclear localization of Msn2 is under the
negative control of PKA: it is mainly localized in the
cytoplasm under non-stressed conditions, but in response
to environmental stresses Msn2 is dephosphorylated and
translocates to the nucleus. The observations presented in
[21] highlight that both deletion mutants—that are char-
acterized by a higher PKA activity with respect to the
control strain—show a decrease in Msn2 nuclear localiza-
tion, with pde2� exhibiting the strongest effect, that is, a
marked reduction of nuclear Msn2 with respect to both
pde1� and the control strain. Moreover, both phosphodi-
esterases seem to be involved in the regulation of cAMP
intracellular amount under light-induced stress. Indeed,
in cells lacking the phosphodiesterases, the PKA activity
was shown to increase, in agreement to our simulation
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Figure 11 Diagram of cAMP oscillations amplitude with respect
to Cdc25 amount when deleting Pde2. The figure shows the
oscillations amplitude of cAMP dynamics resulting from a PSA-1D
where the amount of Cdc25 varies in the interval [0, 900], in the
condition of deletion of Pde2. The mean and standard deviation of
the average (squares), maximum (circles) and minimum (triangles)
amount of cAMP during oscillations are plotted. The left and right
shady areas correspond to noisy stochastic fluctuations and stable
steady states, respectively, while the white area corresponds to
oscillatory regimes. Similarly to Figure 10, the analysis highlights that,
under the deletion of Pde2, oscillatory regimes in cAMP can be
established even when the amount of Cdc25 is at a two-fold
overexpression with respect to its physiological amount. Therefore,
also the deletion of Pde2 has the effect of changing the range of
Cdc25 molecules under which sustained oscillations of cAMP occur.

outcomes, therefore inducing a decrease in the nuclear
fraction of Msn2 [21].

Finally, an analysis similar to that presented in
Figures 10 and 11 was performed for the deterministic
case, though achieving different results with respect to
the stochastic approach. As shown in Figure 12, which
represents the dynamics of cAMP under different ini-
tial amounts of Cdc25, in both cases of deletion of Pde1
(left plot) and Pde2 (right plot) no sustained oscillations
of cAMP are obtained (for this reason, the diagram of
oscillations amplitude corresponding to the determinis-
tic simulations—as given in Figures 10 and 11 in relation
to the stochastic approach—is not shown, as it would be
non informative). Instead, in Figure 13 we show the com-
parison between the dynamics of cAMP obtained with
stochastic and deterministic simulations, under the dele-
tion of Pde1 (left plot) and Pde2 (right plot), and with an
initial amount of Cdc25 equal to 300 molecules, which
represents, the physiological level in yeast cells (Table 2).
The plots clearly show that in both conditions, while with
the deterministic approach oscillations are damped or
even not occurring, stochastic simulations show sustained
oscillations of cAMP. Therefore, we can hypothesize that
the introduction of noise in the Ras/cAMP/PKA pathway
is able to stabilize the oscillatory regimes.
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Figure 12 Deterministic simulations of cAMP dynamics under deletion of Pde1 or Pde2 with different initial amounts of Cdc25. The figure
shows the dynamics of cAMP with different initial amounts of Cdc25, obtained by means of deterministic simulations when deleting Pde1 (left) and
Pde2 (right). In both conditions, no sustained oscillations are present in the system for any value of the initial amount of Cdc25.

In this context, we also carried out a preliminary anal-
ysis on the oscillations frequency of cAMP in both the
conditions of deletion of Pde1 and Pde2, considering dif-
ferent values for the ratio Cdc25/Ira2, as already men-
tioned in the previous section for the wild type condition.
In Figure 14, we compare the oscillations frequency of
cAMP in these three conditions showing that, while the
deletion of Pde1 has a minor effect with respect to the wild
type on the frequency modulation, the deletion of Pde2
is able to diminish the oscillations frequency of cAMP, as
can also be gained by comparing the stochastic simula-
tions of cAMP dynamics presented in Figure 13 and in
Figure 2, bottom left.

The role of guanine nucleotide pools
We previously suggested that one of the signals able to
modulate the activity of the Ras/cAMP/PKA pathway is
the ratio between GTP and GDP, since the exchange activ-
ity of Cdc25 depends on the relative concentration of
GTP and GDP [16,23]. In normal growth conditions, the
concentration of GTP is 3 to 5 times higher than GDP,

allowing the activation of Ras protein; anyway, under lim-
ited nutrient availability (when the relative amount of GTP
decreases), the activity of Cdc25 does not result in Ras
proteins activation, since in this case the unproductive
binding/unbinding with GDP is mostly favored.

To investigate the role played by guanine nucleotides
concentrations on the establishment of oscillations, we
carried out a PSA-2D to simulate the behavior of the sys-
tem in perturbed conditions, where the concentration of
GTP varies in the interval [ 1.9×104, 5.0×106] molecules
(ranging from a reduced nutrient availability to a normal
growth condition) and, at the same time, also the amount
of Cdc25 varies in the interval [ 0, 600] molecules (rang-
ing from the deletion to a two-fold overexpression of the
GEF proteins). In Figure 15, we plot the amplitude of
cAMP oscillations obtained in these conditions. In this
figure, the values on the x- and y-axis were normalized
to [0, 1], and an amplitude value equal to zero corre-
sponds to a non oscillating dynamics. Figure 16 shows
the dynamics of cAMP in the four extreme conditions
of GTP and Cdc25 amounts, as highlighted in Figure 15,
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Figure 13 Comparison of stochastic and deterministic simulations of cAMP dynamics under deletion of Pde1 or Pde2, with Cdc25 = 300
molecules. The figure shows the comparison of the dynamics of cAMP obtained by means of stochastic and deterministic simulations when
deleting Pde1 (left) or Pde2 (right), with an initial amount of Cdc25 equal to 300 molecules. We note that, while in the deterministic case oscillations
are damped or even not occurring, the stochastic case shows sustained oscillations of cAMP in both cases.
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Figure 14 Frequency modulation of cAMP oscillations in the
wild type condition and under the deletion of Pde1 and Pde2.
The figure shows the comparison of the oscillations frequency of
cAMP in the wild type condition (red square dots) and under the
deletion of Pde1 (green circle dots) or Pde2 (blue diamond dots), with
respect to the ratio Cdc25/Ira2 (with the initial amount of Cdc25
ranging from 100 to 600 molecules, and Ira2 = 200 molecules). The
plot shows that the deletion of Pde1 has a minor effect with respect
to the wild type condition on the modulation of frequency, while the
deletion of Pde2 is able to diminish the oscillations frequency of
cAMP. For values of the ratio Cdc25/Ira2 greater than 1.5, the points
related to the wild type condition are not plotted, since no stable
oscillations are established in these cases [17].

where A corresponds to Cdc25 = 10, GTP = 1.9 × 104

molecules; B corresponds to Cdc25 = 10, GTP = 5.0×106

molecules; C corresponds to Cdc25 = 600, GTP = 1.9 ×
104 molecules; D corresponds to Cdc25 = 600, GTP =
5.0 × 106 molecules.

The simulations show that when the amount of Cdc25
is approximately at normal condition or slightly lower,
the oscillatory regimes are established for basically any
value of GTP, being the amplitude of oscillations smaller
in lower nutrient availability conditions. On the contrary,
when the amount of Cdc25 increases, no oscillations of
cAMP occur when GTP is high, but oscillatory regimes
are still present if GTP is low. This result can be motivated
considering that when the ratio GTP/GDP decreases, Ras
proteins are more frequently loaded with GDP instead
that with GTP, and their activity is therefore decreased,
inducing the establishment of an oscillatory regime.

Conclusion
With this study we determined, in a quantitative way,
that the coupling between feedback mechanisms and the
molecular levels of the Ras modulators can influence the
oscillatory regimes of cAMP and PKA. In this context, our
study highlights the role played by the feedback exerted by
PKA on phosphodiesterases and on Ira2 proteins, that was
never directly investigated so far. To this aim, stochastic

and deterministic simulations were carried out to ana-
lyze the behavior of the Ras/cAMP/PKA pathway under
different conditions. As also presented in [17], the com-
parison between the two approaches indicates that with
deterministic simulations the interval of Cdc25 amount
for obtaining stable oscillations of cAMP is reduced with
respect to stochastic simulations. In particular, in [17]
it was shown that stable oscillations occur when Cdc25
amount is approximately between 200 and 350 molecules
in the first case, while in the second case noisy oscilla-
tions are still evident for lower and higher Cdc25 amounts
(being the oscillatory regime interval around [150, 400]
molecules). Within this oscillatory interval, the frequency
and the amplitude of oscillations are well comparable in
the stochastic and the deterministic simulations in stan-
dard conditions.

On the contrary, the comparison between stochastic
and deterministic analysis performed in the perturbed
conditions (that is, under the deletion of phosphodi-
esterases) shows qualitatively and quantitatively different
results. Indeed, the dynamics of cAMP with different
initial amounts of Cdc25, in both cases of deletion of
Pde1 and Pde2, does not present sustained oscillations in
the deterministic case, while stochastic simulations show
stable oscillations.

Therefore, we can argue that molecular noise within
the Ras/cAMP/PKA pathway can enhance the robustness
of the system at least in response to the different per-
turbations we considered here, ensuring the presence of
stable oscillatory regimes as also previously discussed for
other biological systems (see [2] and references therein).
Indeed, stochastic simulations show that the cell might be
able to respond appropriately to an alteration of its piv-
otal components—such as the amount of protein Cdc25,
which is related to the stress level [19,36]—fostering the
maintenance of stable oscillations during the signal prop-
agation (i.e., the synthesis of the second messenger cAMP)
and the activation of PKA. As such, this might suggest
a stronger adaptation capability of yeast cells to various
environmental stimuli or endogenous variations.

In [37] it was shown that in MIN6 beta cells PKA, cAMP
and calcium are highly integrated in an oscillatory circuit
that allows a fine spatiotemporal regulation of the kinase
activity. Similarly, we think that the multi-level regulation
carried out with different feedback mechanisms in the
Ras/cAMP/PKA pathway in yeast might represent a way
to extend the regulatory span of the system, therefore act-
ing as a tuning mechanism for the numerous downstream
targets of PKA. This assumption might be in line with
the hypothesis of the “frequency-modulated” regulation
that was recently proposed in yeast in relation to calcium
oscillations [38], though further computational and exper-
imental investigations should be carried out to ascertain
the validity of this hypothesis also in relation to cAMP and
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Figure 15 Influence of the amount of GTP and Cdc25 on the establishment of cAMP oscillatory regimes. The figure shows the oscillations
amplitude of cAMP dynamics resulting from a PSA-2D on the values of the initial amounts of GTP and Cdc25, varied in the intervals
[ 1.9 × 104, 5.0 × 106] and [ 0, 600], respectively (being GTP = 5.0 × 106 and Cdc25 = 300 molecules the reference values—see Table 2). In the plot,
the values on the x- and y-axis have been normalized in the interval [ 0, 1]; a total of 200 initial conditions were sampled from the specified
bidimensional parameters space. This analysis shows that when the amount of Cdc25 is approximately at normal condition or slightly lower,
oscillatory regimes are established for basically any value of GTP (from point A to point B), being the amplitude of oscillations smaller in lower
nutrient availability conditions. On the contrary, when the amount of Cdc25 increases, no oscillations of cAMP occur when GTP is high (point D), but
oscillatory regimes are still present if GTP is low (point C).

PKA oscillations induced by the molecular interactions
within the Ras/cAMP/PKA pathway.

Indeed, oscillations related to the Ras/cAMP/PKA path-
way were experimentally observed, but only in indirect
ways, e.g., through the analysis of the periodic nucleocy-
toplasmic shuttling of Msn2 [18,19]. In this context, the
observations presented in [21] show that, in single yeast
cells subject to continuous light exposure, the oscillations
frequency of Msn2 between the nucleus and the cyto-
plasm can be influenced by PKA as well as by Pde1 and
Pde2, whereby phosphodiesterases indirectly affect the
activity of PKA through the degradation of cAMP. In par-
ticular, in [21] it was shown that the oscillation frequency
of Msn2 increases alongside the increase in the induced-
stress condition, which can be also ascribed to a reduced
activity of Cdc25 protein [19,36], as tested in our study.
Anyway, it is not clear whether the nucleocytoplasmic
oscillations frequency of Msn2 can be interpreted solely
in terms of the above mentioned frequency modulation
control, since the response of the cell to cumulative light-
induced stress might suggest a more complex scenario
that is still to be unraveled [21].

The computational results presented in this study and
in [17], in relation to the amplitude and the frequency
of oscillations within the Ras/cAMP/PKA pathway, sug-
gest that a frequency modulation can be achieved when
perturbing the ratio between the amounts of Cdc25 and
Ira2 proteins, that is, the Ras regulator proteins. In par-
ticular we showed here that, with respect to the wild
type condition, the deletion of Pde2 is able to diminish

the oscillations frequency of cAMP, while the deletion of
Pde1 has a minor effect on its variation. These results
represent a first step towards an in depth analysis of oscil-
latory regimes in the Ras/cAMP/PKA pathway, that we
plan to carry out in different ways. On the one hand,
we will investigate the correlation between the oscilla-
tions of cAMP, PKA and its downstream targets (such as
Msn2) to analyze how this behavior propagates through
the signal transduction pathway. On the other hand, we
are currently developing a computational tool to quanti-
tatively characterize the oscillations (whether stochastic,
deterministic or noise-induced) by means of Fourier anal-
ysis, as already proposed for the study of the oscillatory
shuttling of NF-κB [39], whereby the power spectrum of
simulated dynamics was analyzed to verify the occurrence
of peaks at non-zero frequencies, as well as to calculate the
signal-to-noise ratio, in order to inspect the presence of
oscillations. In addition, qualitative analysis of the nature
of bifurcation points, based on dynamical systems theory
(see, e.g., [40] for an application to the study of noise-
induced stabilization in a genetic circuit, and [41] for a
broad overview of the subject), could be exploited to bet-
ter investigate how stochastic fluctuations are able to orig-
inate the stable oscillatory regimes in the Ras/cAMP/PKA
model, which do not occur in the absence of noise.

Furthermore, as a future development of our study,
we will investigate the response of the Ras/cAMP/PKA
pathway to nutrients and to intracellular acidification
(that likely causes an inhibition of GAP activity of the
Ira proteins [42]), its crosstalk and integration with
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Figure 16 cAMP dynamics obtained with different initial amounts of Cdc25 and GTP. The figure shows the dynamics of cAMP with different
initial amounts of Cdc25 and GTP, as given in Figure 15, where A: Cdc25 = 10, GTP = 1.9 × 104; B: Cdc25 = 10, GTP = 5.0 × 106; C: Cdc25 = 600,
GTP = 1.9 × 104; D: Cdc25 = 600, GTP = 5.0 × 106 molecules. The plots show that low amounts of Cdc25 (A and B), or high amounts of Cdc25
coupled with low amounts of GTP (C), lead to the production of very low amounts of cAMP, showing a noisy dynamics. On the other hand, when
the amounts of both Cdc25 and GTP are high (D), we observe a dynamics of cAMP similar to that obtained without the feedback on Ira2 proteins
(see Figure 2, top left), and no oscillations are established.

other pathways co-involved in glucose signaling and
yeast metabolism, as well as the regulated expression of
downstream target genes. In particular, we will define
additional functional modules of reactions to describe the
Gpr1/Gpa2 pathway, a signaling mechanism that responds
only to high glucose concentration and operates in an
addictive redundant way with Ras2-GTP to activate the
adenylate cyclase [28,42]. We also plan to define a multi-
volume version of our mechanistic model, in order to
characterize the intracellular localization of the central
components of this pathway, since there exist experimen-
tal evidences that most of the Cdc25, Cyr1, Ira2 and Ras2
proteins localize at internal membranes, suggesting the
presence of large signaling complexes inside yeast cells
[43,44]. Investigations about the topological distribution
of the molecular species in distinct cellular regions will be
performed by means of the tau-DPP framework [45]. This
will enable us, for instance, to study the dynamical move-
ment of Cdc25 proteins to plasma membrane in response
to nutrient starvation, and the hyper-activity of PKA to
counteract the localization of Cdc25 and Ira2 proteins.

In conclusion, the computational model we developed
allows to investigate in details the mechanisms that

regulate the transition between stable and oscillatory
regimes in the Ras/cAMP/PKA pathway, to make pre-
dictions on the conditions that lead to the insurgence
of oscillations, and to eventually plan focused validation
experiments. In particular, by directly operating on the
modulation of specific components of the pathway, such
as molecular amounts and reaction constants, we are able
to study in details the influence of every molecular inter-
action on the pathway behavior. Nonetheless, although
the Ras/cAMP/PKA pathway has gone through extensive
investigations in S. cerevisiae, accurate wet data on the
spatiotemporal dynamics of cAMP in single yeast cells
are still lacking. To this aim, we are carrying out exten-
sive laboratory work to develop a FRET-sensor based on
Epac able to respond to cAMP levels in S. cerevisiae, in
order to measure the changes in the level of cAMP in sin-
gle cells and to directly test the presence of long term
cAMP oscillations in vivo [46]. This setup will allow us to
conduct an in depth analysis of the response of the path-
way to different nutritional and stress conditions, as well
as to perform an accurate parameter estimation analysis
[47], therefore working thoroughly on the experimental
and computational validation of our model.
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Acimovic, J Kesseli, T Mäki-Marttunen, A Larjo, O Yli-Harja, Eigth
International Workshop on Computational Systems Biology, WCSB 2011 (vol.
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