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Currently, conventional neoadjuvant therapy or postoperative adjuvant

therapy, such as chemotherapy and radiation therapy, can only bring limited

survival benefits to gastric cancer (GC). Median survival after palliative

chemotherapy is also low, at about 8–10 months. Immunotargeting is a new

option for the treatment of GC, but has not been widely replicated. The highly

immunosuppressed tumor microenvironment (TME) discounts the efficacy of

immunotherapy for GC. Therefore, new strategies are needed to enhance the

immune response of the TME. This paper reviewed the relationship between

microorganisms and GC, potential links between microorganisms and

immunotherapy and research of microorganisms combined immunotherapy.
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gastric cancer, microbiota, immune checkpoint inhibitors, immune response, PD-L1,
CTLA-4

Background

Despite its lowering prevalence, gastric cancer (GC) is still plaguing the world.
According to the latest data released by International Agency for Research on Cancer
(IARC) (Sung et al., 2021), GC has the fifth highest prevalence (1.09 million cases)
and the fourth highest mortality (770,000 deaths) in 2020. Most of GC cases, once
confirmed, have already entered an advanced stage. Surgical resection remains the
primary option for GC, but the associated 5-year survival rate is still less than 60%
(Koumarianou et al., 2019). Unfortunately, conventional neoadjuvant therapies or
postoperative adjuvant therapies, such as chemotherapy and radiotherapy, can only
provide a marginal survival benefit. About 50% of cases develop local recurrence
or systemic metastasis after adjuvant treatment, and only 10–15% of the cases have
an overall survival (OS) of 5 years. Metastases are primarily treated with palliative
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chemotherapy, leaving a lower median survival rate of about 8–
10 months (Nishikawa et al., 1990, 2019; Alvarez-Manceñido
et al., 2021). Among the currently used targeted drugs, only
Trastuzumab and Ramucirumab have shown beneficial results
in improving OS (Lazăr et al., 2018).

Immunotherapy, which targets the host immune system, has
completely changed the landscape of cancer treatment. Blocking
immune checkpoints, such as cytotoxic T lymphocyte associated
antigen-4 (CTLA-4), programmed cell death protein 1 (PD-
1), and its ligands (PD-L1 or B7-H1), have proved effective
for several solid cancers (Ansell et al., 2015; Motzer et al.,
2015; Ferris et al., 2016; Antonia et al., 2017; Weber et al.,
2017). Immunotargeting is promising a new option for the
treatment of GC.

By using gene expression data, the Asian Cancer Research
Group has described four molecular subtypes of GC, including
the subtypes of epithelial-mesenchymal transition (EMT),
microsatellite instability (MSI), microsatellite stability
(MSS)/TP53+ and MSS/TP53-(The Cancer Genome Atlas
Research Network, 2014; Cristescu et al., 2015; Oh et al., 2018).
Based on the comprehensive description for its molecular
landscape, GC is divided into four subtypes, including
encompassing chromosomal instability (CIN), MSI, genome
stable (GS), and EBV (The Cancer Genome Atlas Research
Network, 2014). Despite the deepened understanding of the
molecular subtypes of GC, little is known about the cell-
infiltrating characterizations of tumor microenvironment
(TME). The efficacy of immunotherapy varies with the
immunogenicity of TME as well as the TME heterogeneity
and complexity formation (Han et al., 2021). TME contains
microorganisms, which can be regulated to enhance the efficacy
of immunotherapy (Angelova et al., 2015; Ribas and Wolchok,
2018; Greally et al., 2019).

Here, we review analyses of the microorganisms of different
body parts (in and around the stomach, oral and intestinal
areas) in GC patients, discuss the potential relationship between
microorganisms and immunotherapy, and summarize several
current studies on microorganisms combined immunotherapy.

Relationship between
microorganisms and gastric
cancer

Correlation between intragastric and
perigastric microbiota and gastric
cancer

TME plays a key role in the occurrence, development,
and metastasis of cancer. Intragastric and perigastric
microbiota have been proven an important part of tumor
microenvironment (Ling et al., 2019; Smet et al., 2021).

Helicobacter pylori (HP) infection, a major risk factor for GC
and has been extensively studied. Correa (1992) proposed
a multi-step model to elucidate the mechanism of gastric
microbiota in GC, which can progress from chronic superficial
gastritis to atrophic gastritis, intestinal metaplasia, dysplasia,
and eventually to GC; this model proved the contributing role of
HP in GC. Later exploration found that The mechanism of GC
caused by HP infection may be related to the effect of virulence
factors (Amieva and Peek, 2016), and Wnt/β-catenin was a key
pathway of GC (Song et al., 2015). HP could up-regulate the
Wnt/β-catenin activator c-met (Suzuki et al., 2009; McCracken
et al., 2014) and EGFR (Yan et al., 2009; Chaturvedi et al.,
2014), down-regulate the Wnt/β-catenin repressor TFF1 (Ito
et al., 2008, 2011; Tsang et al., 2010) and RUNX3 (Lefebvre
et al., 1996; Park et al., 2000; Tomita et al., 2011). HP could
also activate the Wnt/β-catenin pathway by recruiting tumor-
associated macrophages (Oguma et al., 2008; Oshima et al.,
2011). Importantly, through the Wnt/β-catenin pathway, HP
induced the production and expansion of gastric stem cells,
which promoted the occurrence and development of GC. The
relevant mechanism is shown in Figure 1. Besides, HP infection
was also found associated with host genetic susceptibility and
interactions with other environmental factors such as smoking
and diet (Pereira-Marques et al., 2021).

Apart from HP, there are many other microorganisms
in the stomach, and their interactions are necessary in the
maintenance of GC, which has been the focus of current
research. The main microbiota in the human stomach contain
five phyla, including Proteobacteria, Firmicutes, Bacteroidetes,
Actinobacteria, and Fusobacteria (Hsieh et al., 2018; Pereira-
Marques et al., 2019). For microbial diversity, different studies
have shown opposite results due to differences in sample
types, ranking methods, geographical sources, and population
environmental exposure. Chen X. et al. (2019) used 16S
rRNA gene sequencing and PICRUSt to predict the functional
distribution of the microbiota, and constructed a co-occurrence
network to analyze the interaction between gastric microbiota.
The results showed that compared with the non-cancerous
gastric tissue, the richness and diversity of microorganisms
increased in cancerous tissue, making a symbiotic network
more complicated. Oral bacteria (such as Streptococcus and
Fusobacterium) were enriched in the cancerous tissue, while
lactic acid produced bacteria (such as Lactococcus lactis and
Lactobacillus brevis) in adjacent non-cancerous tissue. Another
study showed an increasing diversity of gastric mucosa bacteria
ranging from atrophic gastritis, intestinal metaplasia, to GC
(Gantuya et al., 2020). In addition, Wang L. et al. (2020)
found this diversity increased in GC or gastritis stage by using
gas chromatography.

Other studies have reported the decrease in microbial
richness and diversity in GC patients, especially in those
with HP (Ferreira et al., 2018; Liu et al., 2019). Wang
et al. (2022) performed metagenomic shotgun sequencing
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FIGURE 1

Mechanism of gastric cancer induced by HP. The virulence of HP was expressed through various pathogenic markers, such as CagA, VacA. VacA
and CagA could regulate each other. CagA induced c-Met phosphorylation, triggered PI3K/Akt signaling, and caused β-catenin accumulation.
VacA induced EGFR phosphorylation and activated PI3K/Akt pathway. In HP infection, the intracellular pathway initiated by EGFR and c-Met
converges to PI3K\/AKT-GSK3β−−β catenin. Due to promoter methylation, the Wnt/β-catenin repressor TFF1 and RUNX3 were often
down-regulated, and RUNX3 was also associated with CagA. TFF1 inhibited Akt and GSK3β phosphorylation through PP2A, and then reduced
β-catenin nuclear translocation and TCF transcription activity. HP infection recruited macrophages via MCP-1or Shh. These macrophages
produced pro-inflammatory cytokines, such as TNF-α,which could activate Wnt/βcatenin via Akt-GSK3β signaling in GC. This fig was made by
Figdraw. CagA, cytotoxin-associated gene A; VacA, vacuolating cytotoxin A; TFF1, Trefoil factor 1; PP2A, protein phosphatase 2A; PI3K,
phosphatidylinositol 3-kinase; MCP-1, monocyte chemoattractant protein-1; Shh, Sonic Hedgehog.

on stomach swab samples from 96 patients with GC, and
then conducted metagenomic association analysis between
changes in stomach microbiota and HP infection status.
It was found that HP became the dominant species after
colonization in human stomach, and significantly reduced the
α diversity of gastric community. A study in Portugal also
showed that as the disease progressed from gastritis to GC,
the diversity index gradually decreased and the number of
non-HP proteus increased (Ferreira et al., 2018). Compared
with patients with chronic gastritis, the number of several
bacteria (including Streptococcus, Prevotella, Achromobacter,
Citrobacter, Clostridium, Rhodococcus, Lactobacillus, and
Phyllobacterium) was significantly increased in patients with
GC (Ferreira et al., 2018). Wang L. et al. (2020) reported that the
bacterial richness and diversity in the gastric mucosa gradually
decreased across non-atrophic chronic gastritis, intestinal
metaplasia, intraepithelial neoplasia, and GC.

The mechanism of microorganisms other than HP affecting
the occurrence and development of GCr has also been reported.
Based on the map obtained from the 16S rRNA gene sequence,

Ferreira et al. (2018) completely reconstructed a metagenome
showing that compared with chronic gastritis, GC occurred
with enhanced function of nitrate reductase, which degrades
nitrate into nitrite, and nitrite into nitric oxide. Fourgenera of
citrobacter, Achromobacter, Clostridium, and Phyllobacterium
have been identified as the major contributors. Interestingly,
this result is consistent with a follow-up study in Taiwan that
evaluated the effect of subtotal gastrectomy as a treatment for
early GC (Tseng et al., 2016). These data suggest that the gastric
microbiome has the potential to produce carcinogenic nitroso
compounds during the development of cancer. Furthermore,
toxic metabolites and inflammation by abnormal microbiota
products may directly damage host cells or interfere with
host signaling pathways engaged in cell turnover and survival,
thereby increasing the risk of gastric malignant transformation
(Pereira-Marques et al., 2019).

Given that microbiological disorder is a factor of GC,
identifying related bacterial species is of great clinical
significance. It is undeniable that HP, a common risk factor
for GC (Yu et al., 2017), colonizes to disrupt the structure of
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microbiota. Here, through several microbiological studies on
Chinese GC population (Table 1; Yu et al., 2017; Hsieh et al.,
2018; Chen X. et al., 2019; Wang L. et al., 2020; Wang Z. et al.,
2020; Dai et al., 2021; Wu et al., 2021; Zhang et al., 2022b),
we found that the enrichment of Clostridium, Bacteroid, and
Lactobacillus was positively correlated with the occurrence
and development of GC. Clostridium has also been found
to be associated with poor prognosis of GC (Hsieh et al.,
2018; Boehm et al., 2020; Nie et al., 2021). In addition, ROS
produced by lactic acid bacteria can damage DNA, promote
tumor growth and metastasis, and inhibit tumor apoptosis by
promoting the production of N-nitroso compounds (NOCs)
(Jones et al., 2012; Ling et al., 2019). Furthermore, a recent
animal study suggested that the increase of Lactobacillus
richness accelerated the progress of GC, turning it a potential
biomarker (Dai et al., 2021). A study also revealed that Candida
albicans initiated GC progress by reducing the diversity and
abundance of microbes in the stomach (Zhong et al., 2021).
Zhang et al. (2022a) observed a dysregulation of fungal flora
on gastric mucosa between the GC group and the normal
group, and the abundance of some taxa in the GC group was
higher than that in the normal group. Lefse analysis found that
Solicocozyma was differentially enriched at the genus level in
GC group and was considered as a gastric fungal marker, and
functional predictions suggested that the positive expression
of Solicocozyma in tumors was associated with amino acid and
carbohydrate-related metabolic pathways in GC.

Correlation of oral microbiota with
gastric cancer

Mounting evidence shows that human oral microbe
is related to the development of digestive system cancer
(Tuominen and Rautava, 2021). A recent study by Coker
et al. (2018) examined the bacterial taxonomy in patients
with superficial gastritis, atrophic gastritis, intestinal metaplasia,
and GC, using 16S RNA sequencing. They found that, the
oral microbiota were more abundant in GC specimens than
in benign and precancerous specimens, especially digestive
Streptococcus, Clostridium, Dialysis bacteria, Proteobacteria, and
vascular Streptococcus. In addition, bacterial network analysis
showed that the interaction of these oral microorganisms
with other bacteria in the gastric mucosa was more intensive.
A study in the United States compared the periodontal pathogen
abundance in saliva and dental plaque samples from 35
patients with pathological changes before GC and 70 controls.
They found that people predisposed to GC has the enriched
T. forsythia, T. Denticola, and A. actinomycetemcomitans in
their oral microorganisms (Sun et al., 2017). People prone
to GC also has different oral microbial compositions. For
example, the pyrosequencing of 16S rRNA genes in the tongue
coating microbiome of 57 patients with newly diagnosed GC

and 80 healthy controls showed higher relative abundance
of Firmicutes and lower relative abundance of Bacteroidetes
in the oral microbe of people with GC. At the genus level,
GC patients have a higher abundance of Streptomyces (Wu
et al., 2018). A prospective study of oral microbiome and GC
risk demonstrated that people with high risks of GC have
the decreased microbial abundance of Tenericutes, M. Orale,
E. Yurii, and Cutibacterium, and increased abundance of
Betaproteobacteria, Neisseriales, Neisseriaceae, N. mucosa, and
P. pleuritidis (Yang et al., 2022b). The above studies have
suggested that oral microbiota may be an important factor in
maintaining GC, and the detection of oral microbiota may
help in early diagnosis and screening of GC. Therefore, Sun
et al. (2018) examined the total bacterial spectrum of saliva
and plaque samples from 50 subjects (including 37 patients
with GC and 13 controls), using high-throughput sequencing
technology. The Venn diagrams and clusters generated from the
data suggested that the oral bacteria of GC patients were more
intricate. According to the characteristics of oral microbiome of
GC patients, a scoring system was designed to screen GC, with a
sensitivity of 97%.

Studies have found that oral microorganisms can cause
excessive inflammatory response, especially Clostridium,
porphyromonas, and Prevotella, which can cause oncogene
activation, mutation, DNA damage, cell cycle arrest, cell
proliferation, tumor invasion, migration, metastasis, and
angiogenesis (Ahn et al., 2012; Szkaradkiewicz and Karpinski,
2013). They can promote anti-apoptosis of cancer cells, such
as Mycobacterium nucleonucleus (Haura et al., 2005) and
Pseudomonas gingivalis (Michaud, 2013), which ultimately
inhibits apoptosis by activating anti-apoptotic signaling
pathway and inhibiting pro-apoptotic pathway, leading to
cancer growth. They can also produce carcinogens, eventually
leading to GC (Sun et al., 2020).

Correlation between gut microbiota
and gastric cancer

The human gut microbiota (GM), with more than 100
trillion microbial cells, are a symbiotic system in the host
and a key regulator in host metabolism. Therefore, significant
changes in their composition and function are associated with
many diseases, including cancer (McQuade et al., 2019). In
childhood, Bifidobacterium initially dominates GM to resist the
inflammatory pregastrointestinal environment, which is typical
in this stage of life (Arboleya et al., 2016). In adulthood,
Firmicutes and Bacteroidetes make up 90% of GM, with
Actinomycetes, Proteus, Fusobacterium, and Verrucomicrobia
composing the remaining 10%. They synthesize short chain fatty
acids (SCFA) that enable the host to digest plant polysaccharides
and extract energy from the diet (Cătoi et al., 2020). As the host
ages, bacterial biodiversity gradually drops, pathogens (such
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TABLE 1 Genera depleted and/or enriched in cancer vs. non-cancer.

N Diagnosis (sample size) Country Genera depleted and/or enriched in cancer vs.
non-cancer

References

160 GC(80) VS. Non-cancer(80) China, Mexico ↑Bacteroidetes, Firmicutes, Fusobacteria, Spirochaetes
↓Proteobacteria

Yu et al., 2017

27 GC(11) vs. Non-cancer(16) China ↑Clostridum, Fusobacteruim, Lactobacillus Hsieh et al., 2018

124 GC(62) vs. Non-cancer(62) China ↑Peptostreptococcus, Streptococcus, and Fusobacterium Chen X. et al., 2019

132 GC(29) VS. IN(25) VS. IM(27) VS.
CG(21) VS. HC(30)

China ↑Actinobacteria, Bacteriodes, Firmicutes, Fusobacteria, SR1, and TM7
↓phyla Armatimonadetes, Chloroflexi, Elusimicrobia, Nitrospirae,

Planctomycetes, Verrucomicrobia, and WS3

Wang L. et al., 2020

120 GC(60) vs. CG(60) China ↑Novosphingobium, Ralstonia,
Ochrobactrum, Anoxybacillus, and Pseudoxanthomonas

Wang Z. et al., 2020

50 GC(18) vs. SG(32) China ↑Dialister, Lactobacillus, Rhodococcus, Sediminibacterium Wu et al., 2021

74 GC(37) vs. Non-cancer(37) China ↑Lactobacillus, Streptococcus, Acinetobacter, Prevotella, Sphingomonos,
Bacteroides, Fusobacterium, Comamonas, Empedobacter,

Faecalibacterium

Dai et al., 2021

52 GC(22) vs. Non-cancer(30) China ↑Proteobacteria, Prevotella_9, Streptococcus, and Lactobacillus Zhang et al., 2022b

IN, intraepithelial neoplasia; IM, intestinal metaplasia; CG, chronic gastritis; HC, :healthy controls; SG, superfcial gastritis; ↑, GC enriched; ↓, GC depleted.

as clostridium) flourish, and butyric acid-producing bacteria
undergo rearrangement (Brandi et al., 2017).

GM is associated with GC (Vogelmann and Amieva, 2007;
Chen D. et al., 2019), and HP plays an important role in this
association. Wang D. et al. (2019) sequenced 313 fecal samples
using macrogenomic shotgun method, finding that HP infection
was associated with changes in the composition and function
of intestinal microbiota in Chinese people. Scher et al. (2013)
found that P. copri was significantly enriched in HP positive
individuals, and also very active in the pro-inflammatory
gastrointestinal environment, which could further increase the
inflammation level. Some researchers also found that P. copri
was related to immune rheumatoid arthritis (Zhang et al.,
2015; Pianta et al., 2017). Therefore, P. copri may be related
to the changes of intestinal immune environment. Previous
multi-time-point follow-up studies reported that fecal microbial
diversity decreased significantly in a short term after eradication
of HP for 1 or 2 weeks, but then recovered slowly (Yap et al.,
2016; Liou et al., 2019). This is consistent with the findings
of Guo et al., 2020 who also found that successful eradication
of HP had more beneficial effects on the GM than failed
treatments, such as probiotic enrichment and down-regulation
of resistance mechanisms (Guo et al., 2020). Lertpiriyapong
et al. (2014) found that the co-infection of HP and three
other GM (Clostridium ASF356, Lactobacillus ASF361, and
Bacillus ASF519) led to the formation of GC in transgenic
mice with germ-free human gastrin overexpression (INs-GAS
mice). The above evidence suggested that there was interactions
between HP and GM, and HP colonization is a risk factor for
GC development, so GM may play an important role in the
maintenance of GC.

Other studies have found that the abundance of some GM
in patients with GC is different, but whether it significantly
affects the occurrence and development of GC is still

controversial. A study of fecal samples from 10 patients with
gastric adenocarcinoma showed that Bacteroides was the most
abundant genus in all samples, followed by Blautia (7.1%),
Veillonella (6.4%), and Sartrella (8.2%) (Wang F. et al., 2019).
Yet another study analyzing the diversity and composition of
GM in the fecal samples of 20 GC patients and 22 healthy
controls revealed that the GC group had higher contents of
Shigella, Clostridium perfringens, and Clostridium, and a lower
content of Bacteroides (Liang et al., 2019). Bifidobacterium is also
an important part of GM. It is worth mentioning that Sivan et al.
(2015) and Sarhadi et al. (2021) found that Bifidobacterium was
less abundant in diffuse gastric adenocarcinoma; meanwhile,
the gastric adenocarcinoma was less infiltrated by immune
cells and more aggressive. This study also showed that oral
Bifidobacteriu controlled tumor growth in mice by increasing
T cell accumulation in the TME and enhancing the efficacy
of programmed cell death protein 1 (PD-L1) specific antibody
therapy (Sivan et al., 2015). Thus, intestinal Bifidobacterium
acts on tumor growth through mediating host immunity, and
Bifidobacterium supplements may have a beneficial effect on
cancer patients.

The structure of GM in patients with GC is affected
by different tumor types, regardless of surgery or treatment.
Recently, a study in Finland found that a high abundance
of Enterobacteriaceae was a common GM feature of all GC
subtypes. Patients with diffuse gastrointestinal stromal tumor
and diffuse gastric adenocarcinoma exhibited lower intestinal
microbiota diversity, which might be related to the stronger
aggressiveness of higher stages of tumors (Sarhadi et al.,
2021). Radical gastrectomy also has a significant impact on the
composition of intestinal microbiota. Wang F. et al. (2019) and
Erawijantari et al. (2020) found that the relative abundances
of aerobic bacteria (Streptococcus and Enterococcus), facultative
anaerobe (Escherichia coli, Enterobacter, and Streptococcus) and
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oral microbiota in postoperative patients were higher than
those in the control group. Chemotherapy also has an impact.
Zhang et al. (2021) found that chemotherapy reduced the
abundances of some intestinal bacteria in GC patients, but most
of these bacteria had shown enrichment in gas chromatograph.

Therefore, there is no unified conclusion on the composition
of GM in patients with GC. The composition of GM is the
result of multiple factors, which requires studies with a large
sample size for statistics. On the mechanism of GM affecting
the occurrence and development of GC, it has been reported
that the intestinal microbiome may pose carcinogenic effects by
inducing oxidative stress, genotoxicity, host immune response
dysfunction, and chronic inflammation (Weng et al., 2019).

Effects of microbiota on
immunotherapy for gastric cancer

Gastric tumor microenvironment and
immune response

In humans, there are two types of adaptive immune
response: humoral immunity mediated by B cell antibody and
cellular immunity mediated by T cells, including CD8 (TC) and
CD4 (th) cells. The immune system keeps the body homeostasis
by defending itself against infections and diseases caused by
bacteria, viruses, fungi and parasites. However, the immune
system can also constantly detect and remove precancerous cells
to prevent the progression to malignancy (Marzagalli et al.,
2019). Nevertheless, to evade immune surveillance, tumor cells
release proteins (such as CTLA-4, PD-1, and its ligand PD-
L1) that negatively regulate the immune response, so using
antibodies to directly block those negative immune regulators
(checkpoints) has proved to be an important strategy to enhance
immunity against cancer. At present, three types of immune
checkpoint inhibitors (ICIs), namely, anti-CTLA-4, PD-1, and
PD-L1, have been developed and proved effective for a variety of
malignant cancers (Olnes and Martinson, 2021).

Although immunotherapy is advancing rapidly, it is still
not as effective as conventional chemotherapy because tumor
cells can induce an immunosuppressive microenvironment.
GC can be subdivided into immunogenicity subtypes and
immune tolerance subtypes. Ren et al. (2021) have separated
GC into three types according to the infiltration of 34
immune cells. Clusters 1 and 2 are filled with immune cells,
antigen-presenting cells, and immunomodulatory molecules,
suggesting a preexisting antitumor immune response. In
contrast, Cluster 3 has fewer immune cells, MHC molecules, and
immunomodulatory molecules. The researchers defined Cluster
1 and 2 as hot tumors and Cluster 3 as cold tumors. Hot tumors
can activate immune function-related pathways. However, cold
tumors may promote mutagenesis by inducing changes to
epigenome through genomic instability and transcriptional

changes. In particular, CLDN3 is a key immunosuppressive
modulator, and targeting CLDN3 may program cold into hot
tumors and improve the efficacy of tumor immunotherapy
(Ren et al., 2021).

Microbiome influence the
immunotherapeutic response

Apart from the immune microenvironment of tumor, the
microbiota also plays a crucial role in immunotherapy (Olnes
and Martinson, 2021). In fact, the association among HP,
immune microenvironment (TME) and malignancy has long
been recognized in GC (Deng et al., 2021). It has been
demonstrated in the studies of Geng et al. (2022), which
proposed a molecular prognostic feature specifically designed
for GC patients with HP infection. According to the review
by Oster et al. (2022), HP infection has an adverse effect
on immunotherapy for cancer, but there is no evidence of
immunotherapy for GC. A recent retrospective study was the
first to reveal that patients with HP infection had a shorter OS
and PFS than those in the negative group (Che et al., 2022).
Therefore, whether HP can affect the efficacy of immunotherapy
in GC patients is still worth exploring and studying.

For GM, DNA sequencing analysis of fecal samples
taken before treatment with PD1 inhibitors revealed different
microbiota compositions between responders and non-
responders, suggesting a link between GM composition
and subsequent treatment response. The mouse model
reconstructed with fecal isolates from responders had greater
gains from checkpoint blockade therapy than that with
fecal samples from non-responders (Matson et al., 2018),
which further confirmed the link between microbiota and
the efficacy of immunotherapy. The relationship between
microbiota and immunosuppressive of GC is provided in
Figure 2. Preliminary evidence from mice studies suggests that
specific microorganisms help ICIs related immune therapy. For
example, the control of tumor growth by oral bifidobacteria
alone was the same as PD-L1 specific antibody therapy (Weng
et al., 2019). Similarly, bifidobacterium can also enhance the
efficacy of cancer immunotherapy through CTLA (Vétizou
et al., 2015). In terms of clinical studies, Peng Z. et al. (2020)
investigated the characteristics of GM associated with clinical
response to anti-PD1/PD-L1 immunotherapy in a cohort of
patients with gastrointestinal cancer (19 colorectal cancer, 23
GC, 14 esophageal cancer, and 18 other gastrointestinal cancer
types). They found that in this small mixed group, there was no
significant differences in GM diversity between responders and
non-responders regardless of cancer type, but the abundance of
Bacteroides appeared to be higher in non-responders compared
with responders for each cancer type. Other studies have
found that for PD-1/PD-L1, differences in immunotherapy
responses are linked to the composition of intestinal microbiota.
Especially, compared with non-respondents, A. muciniphila was
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FIGURE 2

The relationship between microbiota and immunosuppressive of GC. The interaction between TCR and peptide-MCHII on APC and a second
costimulatory signal mediated by CD28 can activate T cells, while CTLA4 binds to B7-1 to inhibit the activation of T cells. Binding of PD-L1 on
GC cells to PD-I on T cells can also inhibit T cell activation, so blocking the binding can activate T cells. Gastrointestinal bacteria were found to
act synergistically. Butyric can induce CD8 + T cells to express ID2 through IL-12 signal transduction, and directly enhance the anti-tumor
cytotoxicity of CD8 + T cells. Inosine could enhance ICI efficacy by acting on A2AR on T lymphocytes. It stimulates the phosphorylation of
cAMP response element-binding protein (pCREB) through the inosine-A2AR-cAMP-PKA signaling pathway, which can upregulate IL12Rβ2 and
IFNγ transcription and promote Th1-cell differentiation and accumulation in the TME. This fig was made by Figdraw. TCR, T cell receptor; MHC,
major histocompatibility complex; APC, antigen-presenting cells.

proved to be more abundant in PD-1 treatment respondents
(Routy et al., 2018). In short, host microbiota can be modulated
to enhance the host response and reduce the side effects of
immunotherapy (Vétizou et al., 2015; Cramer and Bresalier,
2017; Qiu et al., 2021).

Gut microbiota metabolites affect
immunotherapy response

Normal GM synthesize a variety of immunomodulatory
compounds and metabolites, such as SCFA, propionate, acetate,
and butyrate, as well as secondary bile acids and ubiquitous
bacterial fermentation products (Huang et al., 2021). These
bioactive agents can regulate the sizes, metabolic processes
and functions of receptors on immune cells, which may bring
health benefits to the host (Belkaid and Harrison, 2017). It
was found that factors influencing the effective response of

PD-1/PD-L1 included the infiltration and localization of early
tumor-infiltrating lymphocyte (TIL), activation level of TIL and
effects of tumor cell mutation (Kansy et al., 2017; Hellmann
et al., 2018; Gao and Chen, 2021). GM can promote anti-tumor
immune response by several mechanisms, including triggering
T cell responses to the bacterial antigens. Bacterial antigens can
cross-react with tumor antigens, or recognize receptors through
mediating immunogenicity and anti-inflammatory effects, or
recognize tumor specific antigens through mediating the effect
of small metabolites on the host (Zitvogel et al., 2018).

SCFA can prevent cancer by regulating cell cycle through
Akt/mTOR and MEK/ERK signaling pathways, apoptosis
by transcription factors (NF-kB), and immune responses
by inhibiting HDACs activity, DNA methylation, histone
phosphorylation and methylation (Orchel et al., 2005; Feng
and Qiu, 2018). Among them, butyrate plays an important
role in human body and has strong anti-cancer activity
(Singh et al., 2014; Feng and Qiu, 2018). Butyrate, mainly
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produced by Bacillus faecalis, enhances not only gastrointestinal
immunity and maintain the integrity of the intestinal barrier
(Fu et al., 2019; Ratajczak et al., 2019), but also carcinogenesis
by increasing the proliferation of abnormal epithelial cells
(Matthews et al., 2007; Naseem et al., 2018). Recently, Oster
et al. (2022) found that the GM metabolite butyrate improved
the efficacy of oxaliplatin by regulating the function of CD8+ T
cells in the TME.

Inosine, another normal metabolite of intestinal flora,
is mainly produced by Ackermann mucilagium and b.
pseudolongum, and can activate immune cells and stimulate
metabolism in physiological state. Inosine can reprogram TME
and improve the response to ICI treatment (Correa, 1992; Lioux
et al., 2016). It can also enhance the response to immunotherapy
by promoting the immunogenicity of tumor cells and the
activation of immune cells (Lu et al., 2022). Inosine significantly
enhances the ability of tumor cells to present tumor antigens, so
that cytotoxic immune cells can easily recognize and kill tumor
cells, thus achieving antitumor effects (Bird, 2020). Mechanistic
studies showed that inosine was associated with significantly
increased activation of IFN-γ and TNF-α signaling pathways in
tumor cells. IFN-γ activates cytotoxicity of tumor-specific T cells
and NK cells by promoting the release of perforin and granzyme
to promote inosine-mediated antitumor effects (Harjes, 2020).
Inosine also activates macrophages to stimulate B-lymphocyte
differentiation and antibody production, enhancing anti-tumor
immune response and plant hemagglutinin (PHA)-mediated
immune response (Shinohara and Tsukimoto, 2018; Wang T.
et al., 2020).

Research methods of microbial
combined immunotherapy

At present, to enhance the efficacy of immunotherapy,
microbiota are mainly used in fecal bacteria transplantation
therapy, biological agent therapy, nanotechnology therapy, etc.
Most of these techniques are applied in solid tumors other than
GC. Whether they are also effective in GC is unknown, but it can
provide ideas for future research.

Fecal microbial transplants (FMT) can fight tumors by
“repairing” intestinal microbiota. Healthy intestinal microbiota
can be transplanted to reconstruct the patient’s intestinal
microbiota and increase the proportion of regulatory T cells
in the colonic mucosa, and has great potential in reducing
the side effects of cancer immunotherapy (Wang et al., 2018;
Xu et al., 2021). Studies showed that FMT regulated tumor-
related intestinal microbiome and immunity, and could be
used as a mainstay therapy for pancreatic cancer (Chandra
and McAllister, 2021). Frankel et al. (2017) demonstrated
the presence of Bacteroidetes in melanoma patients who
responded to ICIs. They also found that the antibodies used
in cancer immunotherapy were associated with the types of

bacteria in responders. The intestinal microbiota were rich in
filamentous Haldermania, Enterococcus faecalis, and Bacteroides
polyformis among cases who responded to navuliuzumab, but
rich in Doloides among those responded to paboliuzumab.
Therefore, the combination of FMT with chemotherapy and
immunotherapy provides a new idea for the treatment of GC.
A clinical study is being conducted to prove the improvement
of FMT capsules in the anti-PD-1 efficacy for digestive system
cancer (No. nct04130763).

Nanotechnology can be employed to target the microbiota
to treat cancer (Song et al., 2019). In the treatment of GC, an
engineered nanoparticle encapsulating antibiotics can target HP
on the gastric membrane and release antibiotics in the target
area (Angsantikul et al., 2018). This prophylactic strategy relies
on nanotechnology to selectively kill cancer-causing microbes
before tumor formation (Inamura, 2021). A recent animal study
also found that HP-infected mice responded less to CTLA-4
alone or its combination with anti-PD-L1 than uninfected mice,
which was not associated with HP-induced intestinal microflora
changes (Oster et al., 2021). Therefore, anti-HP infection is
critical in the treatment of GC.

Biologic therapy has been experimented in animal
studies of melanoma. Researchers evaluated the function
of microorganisms in enhancing the immune defense against
tumor in the mice with solid tumor after oral administration of
Bifidobacterium longum and Bifidobacterium brevis cocktails. It
was found that tumor growth was better controlled compared
with that in untreated mice (Sivan et al., 2015), suggesting
that Bifidobacterium cocktails can cooperate with immune
checkpoint inhibitors to activate anti-tumor immunity. The
application of Bifidobacterium could be extended to other types
of cancer. The effective treatments for other types of cancer may
also be applied to GC.

Researchers should focus on a better understanding of gut
microbe interaction and how they interact with the host, in
order to improve the success rate of the probiotic or FMT
treatment, especially future personalized cancer treatments
based on microbial cocktails (Oster et al., 2021).

Expectation

Microbes, especially HP, have been extensively studied in
relation to the occurrence and development of GC (Alarcón
et al., 2017; Matsuzaki et al., 2021; Yang et al., 2022a). However,
except HP, no new bacteria has been widely recognized as
a high risk factor for GC (Pereira-Marques et al., 2021).
Genetic mutations such as CDH1 and TP53, lifestyle (including
smoking, overweight, low fruit and vegetable consumption,
as well as high intake of salt, nitrates, and preserved food)
were also associated with an increased GC risk (Yang et al.,
1990; Pharoah et al., 2001). Multiple studies have shown that
the use of microbiota, especially specific bacteria, can provide
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new microbial markers for cancer prevention, diagnosis and
treatment (Peng C. et al., 2020). This article reviews several
bacteria that may be potential biomarkers, but larger and more
comprehensive studies are needed to confirm their feasibility.

New treatment options are always designed to prolong the
survival of patients, or even cure the tumor. Despite refreshment
in GC treatment strategies from chemotherapy, radiotherapy,
targeted therapy to immunotherapy over hundreds of years,
the mortality rate remains high. Over the past decade,
immune checkpoint inhibitors, such as PD-1, PD-L1, and
anti-angiogenic monoclonal antibodies, have revolutionized
the result of advanced cancer (Peng C. et al., 2020).
Microbiota participate in immune regulation through a variety
of signal pathways, thereby enhancing the efficacy of tumor
immunotherapy and intoxicating drugs. Tools based on
bioinformatics, big data and artificial intelligence may be
invented to realize precision GC treatment in the future. Even
in the absence of a cure for cancer, solutions using microbes
to achieve sustainable and long-term disease control are likely
to exist to prolong quality of life and meet life needs in
the future. This may help to turn an incurable disease into
a chronic but manageable one. Better understanding of the
internal environmental balance between microbial and cancer
systems may ultimately contribute to a long and healthy life
(Xavier et al., 2020).
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