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Decoding the cell type–specific transcription factor (TF) binding landscape at single-nucleotide resolution is crucial for un-

derstanding the regulatory mechanisms underlying many fundamental biological processes and human diseases. However,

limits on time and resources restrict the high-resolution experimental measurements of TF binding profiles of all possible

TF–cell type combinations. Previous computational approaches either cannot distinguish the cell context–dependent TF

binding profiles across diverse cell types or can only provide a relatively low-resolution prediction. Here we present a novel

deep learning approach, Leopard, for predicting TF binding sites at single-nucleotide resolution, achieving the average area

under receiver operating characteristic curve (AUROC) of 0.982 and the average area under precision recall curve

(AUPRC) of 0.208. Our method substantially outperformed the state-of-the-art methods Anchor and FactorNet, improv-

ing the predictive AUPRC by 19% and 27%, respectively, when evaluated at 200-bp resolution. Meanwhile, by leveraging a

many-to-many neural network architecture, Leopard features a hundredfold to thousandfold speedup compared with cur-

rent many-to-one machine learning methods.

[Supplemental material is available for this article.]

Transcription factors (TFs) play a fundamental role in regulating
gene expression via binding to specific DNA sequences (Badis
et al. 2009; Vaquerizas et al. 2009; Jolma et al. 2013). Precisely de-
coding the TF binding landscape at single-nucleotide resolution is
crucial for understanding the regulatory mechanisms underlying
many cellular processes and human diseases (Rhee and Pugh
2011; Albert and Kruglyak 2015; Corces et al. 2018; Lambert
et al. 2018). Beyond the sequence preferences of TF binding repre-
sented as motifs (Khan et al. 2018; Kulakovskiy et al. 2018), the
Encyclopedia of DNA Elements (ENCODE) Project has established
thatmany TFs predominantly bind to open chromatin (Neph et al.
2012; Thurman et al. 2012). The TF binding landscapes therefore
vary substantially across cell types, which are associated with their
unique organization of accessible chromatin across the genome
(Thurman et al. 2012; Heinz et al. 2015). Chromatin immunopre-
cipitation followed by DNA sequencing (ChIP-seq) is a common
technique to measure the in vivo TF binding profile in a specific
cell type (Johnson et al. 2007). However, in ChIP-seq, DNA frag-
ments are typically long and have variable lengths, which hinders
precise localization of the binding site. In addition, the contami-
nation of immunoprecipitations from unbound DNA in ChIP-
seq experiments further leads to the description of TF binding
only at a relatively low resolution (Rhee and Pugh 2011; Furey
2012). An alternative approach, ChIP-exo, can precisely map the
genome-wide TF binding locations and reduce the erroneous calls
(Rhee and Pugh 2011; He et al. 2015). However, it is infeasible to
experimentally measure the single-nucleotide-resolution TF bind-
ing landscapes in the enormous combinations of TF and cell type
pairs owing to limits on time and resources.

Advancements in computational models show great promise
to delineate the TF binding landscape in silico (Eraslan et al. 2019;
Zou et al. 2019). Previous works such as gkmSVM (Ghandi et al.

2014) and CENTIPEDE (Pique-Regi et al. 2011) solve this problem
through statistical learning. Recent works, including DeepSEA
(Zhou and Troyanskaya 2015), DeepBIND (Alipanahi et al.
2015), Basset (Kelley et al. 2016), Basenji (Kelley et al. 2018),
DanQ (Quang and Xie 2016), DeFine (Wang et al. 2018), and
BPNet (Avsec et al. 2021), havemodeled the relationships between
DNA sequences and TFs using neural network models. However,
without the cell type–specific information on chromatin accessi-
bility, thesemodels cannot distinguish the diverse TF binding pro-
files across different cell types and conditions. Recent methods,
including Anchor (Li et al. 2019) and FactorNet (Quang and Xie
2019), address this problem by considering both DNA sequence
and chromatin accessibility, greatly improving the prediction ac-
curacy in a cross–cell type fashion. But these methods typically
only provide the statistically enriched TF binding regions at
∼200-bp resolution. Therefore, there is a great demand for compu-
tational tools to both accurately and precisely model the TF bind-
ing status for every single genomic position.

In computer vision, a common pixel-level image segmenta-
tion task is to train a computer program to recognize objects in
an image and assign the object label to each input pixel. A simple
way to solve this task is using the many-to-one neural network,
which uses “many” pixels as input to predict “one” label at a
time. Because there could be tens of thousands of pixels in an im-
age, this many-to-one neural network is less efficient. An alterna-
tive is the many-to-many neural network, which simultaneously
generates predictions for all pixels in an image and tremendously
accelerates the prediction speed. This pixel-level image segmenta-
tion task is similar to the single-nucleotide TF binding: Each single
nucleotide can be treated as a pixel, and we need to predict the
binding or not label for each nucleotide in the genome “image.”
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The many-to-one neural network has been used in many pioneer-
ing research efforts to investigate functional genomics (Alipanahi
et al. 2015; Zhou and Troyanskaya 2015; Kelley et al. 2016).
We here present a many-to-many nucleotide-level segmentation
framework to generate predictions for multiple genomic positions
simultaneously, not only improving the predictive performance
but also allowing for a hundredfold to thousandfold speedup com-
pared with state-of-the-art methods.

Results

Overview of experimental design

Leopard is designed to predict cross–cell type TF binding sites at a
single-nucleotide level based on DNA sequence and chromatin ac-
cessibility from DNase-seq (Fig. 1A). For each TF–cell type pair, we
used the real-valued DNase-seq filtered alignment signal as the
primary feature. Meanwhile, DNA sequences were one-hot-encod-
ed as additional input features to capture TF binding motifs.
Leopard was designed to extract information frommultiple ranges
and resolutions for predicting TF binding locations. It has a deep
convolutional neural network architecture, which accepts six-by-
10,240matrices as inputs (Fig. 1B). The six channels in the first di-
mension are signals from (1) DNase-seq, (2) ΔDNase-seq, and (3–6)
one-hot-encoded DNA sequences. The ΔDNase-seq is the differ-
ence between a specific cell type and the average of all cell types
used in this study, which is designed to capture potential sequenc-
ing biases (see Methods, “ΔDNase-seq Feature”). The columns in
the second dimension correspond to the input length of 10,240
successive genomic positions. The core building block is the one-
dimensional (1D) convolution operator (Fig. 1C). By scanning
across all 10,240 positions, the convolutional layer can capture
the upstream and downstream information, and key determi-
nants of TF binding will trigger an activation, such as a motif
match and open chromatin (see Methods, “The Neural Network
Architecture of Leopard”). The details about all the network layers
in the Leopard architecture can be found in Supplemental Table
S1. To obtain genome-wide single-nucleotide TF binding events,
we usedGEMpeak finder (Guo et al. 2012) to process the sequence
alignment file of ChIP-seq reads. A total of 51 ChIP-seq data were
used to build models (n=28) and evaluate the cross-cell-type pre-
dictive performance (n=23).

Leopard accurately identifies cell type–specific TF binding

profiles at single-nucleotide resolution

We first compared the Leopard prediction profiles with the high-
resolution ChIP-seq peaks extracted by GEM in the 23 testing
TF–cell type pairs. For each TF, we trained and validated our model
in a subset of training cell types and thenmade predictions on the
other subset of testing cell types. The complete train-test partition
is shown in Supplemental Table S2. To further avoid potential
overfitting to specific chromosomes (Chrs), the Chr 1, Chr 8,
and Chr 21 were held out as the three testing chromosomes and
the other 20 chromosomes (Chr 2–7, 9–20, 22, X) were used for
training. Both the area under receiver operating characteristic
curve (AUROC) and the area under precision recall curve
(AUPRC) were calculated and compared (Fig. 2A–D). Leopard accu-
rately identified TF binding profiles for the 10 TFs in this study,
with a median prediction AUROC of 0.982. In 19 out of 23
(83%) testing TF–cell type pairs, Leopard achieved high AUROCs
above 0.970 (Fig. 2A,B). The corresponding precision recall (PR)
curves and AUPRCs are shown in Figure 2, C and D. Of note, iden-

tifying TF binding sites is an extremely difficult class imbalance
problem; on average, only 0.0156% of all genomic positions
were bound by TFs in the 23 testing TF–cell type pairs
(Supplemental Table S3). The AUPRC baseline of random predic-
tion was therefore very low, around 0.000156 (Fig. 2C, dashed
line). Compared with the random prediction baseline, Leopard
(average AUPRC=0.208) had more than a thousandfold improve-
ment. We also created a more stringent AUPRC baseline by over-
lapping DNase-seq signals with FIMO motif scanning results
(Supplemental Table S3; Grant et al. 2011). This average AUPRC
baseline is 0.0149, and Leopard had a 14-fold improvement. In ge-
neral, single-motif-based scanning approaches are potentially
problematic in identifying TF binding events, because many TFs
have cognate motifs and some TFs may not have well-character-
izedmotifs. It has been reported that ChIP-seq peaksmay not con-
tain cognate motifs (Wang et al. 2012), especially for indirect or
tethered binding events. Therefore, instead of refining ChIP-seq
signals with motif scanning, we extracted high-resolution ChIP-
seq peaks using GEM, which is a peak calling and de novo motif
discovery approach (Guo et al. 2012).

Because the TF binding events are extremely sparse in the hu-
man genome space, the full areas under curves may not ideally
reflect the predictive performance. We therefore calculated the
partial areas under precision recall (PR) curves using multiple cut-
offs of recall (1%, 5%, 10%, 50%, 80%, 90%) and the partial areas
under receiver operating characteristic (ROC) curves using multi-
ple cutoffs of false-positive rate (FPR; 0.01%, 0.1%, 0.5%, 1%,
5%, 10%), and the corresponding numbers of true positives,
false positives, false negatives, precisions, recalls, and FPRs
(Supplemental Tables S4, S5). In summary, these results showed
the high prediction accuracy of our method.

To visualize the Leopard prediction results, we show a 2000-
bp segment of JUND binding profile in the liver cell line as an ex-
ample (Fig. 2E). The raw ChIP-seq data were processed through
the standard ENCODE analysis pipeline, resulting in a broad re-
gion of putative binding sites between locations 12,678,147 and
12,680,147 in Chr 1, in terms of the fold enrichment (Fig. 2E,
the first row “ChIP-seq fold enrichment”). After peak calling using
GEM, we obtained a high-resolution peak (Fig. 2E, the second row
“ChIP-seq peak”). Similarly, the predictions from Leopard clearly
depicted the exact binding locations, aligning with the ChIP-seq
peak (Fig. 2E, the third row “Leopard prediction”). We need to em-
phasize that Leopard is not a peak caller; it predicts the high-reso-
lution TF binding events fromonly DNase-seq andDNA sequence.
To visualize the genomic positions contributing to the predictions,
we calculated the saliency maps (Zeiler and Fergus 2013) from
these two inputs (Fig. 2E, “saliencymap–DNA sequence” and “sali-
encymap–DNase-seq”) and the peak regions contributedmost. For
comparison, we also aligned the DNase-seq signal, the ΔDNase-seq
signal, and FIMO motif scanning score. As we expected, without
the cell type–specific information on chromatin accessibility, the
sequence-based motif scanning approach generates many false-
positive binding sites (Fig. 2E, peaks in the bottom row). On the
other hand, the DNase-seq and ΔDNase-seq signals indicated the
open chromatin regions, which were a prerequisite for TF binding
except for pioneering TFs. In general, a genomic site with the
“open chromatin” status and a high motif match score is more
likely, but not necessary, to be a binding site. In Figure 2E,
Leopard distinguishes the putative binding events from nonbind-
ing ones. For instance, the region around location 12,680,000 in
the pink rectangle has high DNase-seq signals and multiple motif
matches. However, no binding events were observed within this
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region based on the ChIP-seq experiment. Leopard correctly pre-
dicted no binding peaks within this region.

We further compared the above 2000-bp genomic region
across three cell types (GM12878, H1-hESC, and liver) and ob-
served distinct TF binding patterns across cell types. In liver (Fig.

2E) andH1-hESC (Supplemental Fig. S1), JUNDhad a similar bind-
ing peak in this region, and Leopard correctly predicted these bind-
ing events. In contrast, JUND did not bind to this region in
GM12878 (Supplemental Fig. S1A), potentially owing to the rela-
tively restricted chromatin accessibility in this specific cell line.

A

B C

Figure 1. Schematic illustration of Leopard workflow. (A) This study aims to decode the high-resolution transcription factor (TF) binding landscapes
(ChIP-seq peaks extracted by GEM peak finder) based on chromatin accessibility (DNase-seq signals) in a cross–cell type fashion. A total of 28 ChIP-seq
experimental results from the ENCODE Project were used to train and validate models, whereas the other 23 results were used to test the performance
of our method. The DNase-seq signals of filtered alignments and one-hot-encoded DNA sequences were used as inputs for a deep convolutional neural
network model. (B) Leopard accepts two-dimensional matrices as inputs, where the first dimension represents six channels (DNase-seq, ΔDNase-seq, and
one-hot-encoded DNA sequence) and the second dimension represents 10,240 genomic positions. The 10,240 genomic positions correspond to random-
ly sampled consecutive segments in the human genome. Leopard has two components: the encoder (blue) and the decoder (yellow). The encoder con-
tains five convolution-convolution-pooling (ccp) blocks, and the decoder has five upscaling-convolution-convolution (ucc) blocks. This architecture allows
for generating outputs for multiple positions simultaneously, substantially boosting the prediction speed. In addition, the concatenation operations (hor-
izontal green arrows) connect the encoder with the decoder, preventing information decay in deep neural networks. (C) The one-dimensional (1D) con-
volution operator calculates the inner product between the kernel (w1, w2, w3) and the input signal (x1, x2, x3), resulting in one feature map value (y1) in
step 1. Then the kernel slides along the entire input signal (steps 2 and 3) and generates the output feature map vector, which has the same size in dimen-
sion 2 as the input.

Fast and high-resolution prediction of TF binding
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Leopard successfully distinguished GM12878 from the other three
cell types, because DNase-seq and ΔDNase-seq signals were the cell
type–specific input features for Leopard. In contrast, computation-
al methods only based on DNA sequences without DNase-seq fea-
tures will not identify the differences across cell types. These
results show the great advantage of Leopard over only DNA se-
quence-based methods for predicting TF binding sites.

Benchmarking Leopard prediction

against the ChIP-exo data

To evaluate the predictive performance
of Leopard at single-base resolution, we
further trained and evaluated Leopard
models using ChIP-exo data, including
CTCF in HeLa-S3 (Rhee and Pugh
2011); NR2F2, Estrogen Receptor (ER),
and EP300 in MCF-7 (Serandour et al.
2013); and Glucocorticoid Receptor
(GR) in IMR-90 and K562 (Starick et al.
2015). We built a within-cell-type model
across chromosomes owing to the limit-
ed number of ChIP-exo data and used
the same train-test chromosome parti-
tion as the previous ChIP-seq section.
The predictive AUROCs and AUPRCs
of Leopard are shown in Figure 3, A
through D. Similar to the results on the
ChIP-seq data, the average AUROC of
0.985 is very high, and the average
AUPRC score is 0.349. The average
AUPRC baseline of random prediction
is only 0.00133 (Fig. 3C, dashed line).
We also calculated the partial areas un-
der PR curves at recall cutoffs of 1%,
5%, 10%, 50%, 80%, and 90%, and the
partial areas under ROC curves at FPR
cutoffs of 0.01%, 0.1%, 0.5%, 1%, 5%,
and 10% (Supplemental Tables S6, S7).
In addition to the areas under curves,
we further investigated the spatial resolu-
tion of the top 1% predictions on the
testing chromosomes (Chr 1, Chr 8,
and Chr 21) (Fig. 3E). Specifically, for
each center of ChIP-exo peak, we
calculated the shortest distance to a pre-
dicted binding site among the top 1%
Leopard predictions. For example in
Chr 1, all six protein–cell type combina-
tions achieved >70% fraction of 0-bp
distance to the ChIP-exo peak center.
As we expected, predictions of CTCF
binding have the highest cumulative
fractions and highest overlapping with
ChIP-exo peaks in these three testing
chromosomes. This is potentially
because CTCF has a consensus motif,
and it is easier to locate the precise bind-
ing sites, whereas other non-TF proteins
do not necessarily have a well-character-
ized motif.

Leopard substantially outperforms state-of-the-art methods

for predicting TF binding sites despite being evaluated

at the low 200-bp resolution

We further compared the recent state-of-the-art methods for TF
binding site prediction, including the top performing methods
named Anchor and FactorNet in the ENCODE-DREAM in vivo

A B

C

E

D

Figure 2. Leopard identifies cell type–specific transcription factor binding events at single-nucleotide
resolution. (A) The receiver operating characteristic (ROC) curves and (B) the areas under receiver oper-
ating characteristic curves (AUROCs) of the 23 testing TF–cell type pairs. Each dot represents the overall
AUROC calculated from the testing chromosomes (Chr 1, Chr 8, and Chr 21). Different colors represent
different cell types. (C) The precision recall (PR) curves and (D) areas under the precision recall curves
(AUPRCs) of the 23 testing TF–cell type pairs. The average AUPRC baseline score of random prediction
is 0.000156, shown as the horizontal dashed line, corresponding to the number of TF binding sites
over the total number of base pairs in the testing chromosomes (Chr 1, Chr 8, and Chr 21). (E) An ex-
ample 2000-bp segment is given to show the prediction results. This segment contains signals between
genomic positions 12,678,147 and 12,680,147 of Chr 1 from the JUND binding profile in the liver cell.
The first row is the original ChIP-seq fold enrichment generated through the standard ENCODE analysis
pipeline. The second row is the high-resolution ChIP-seq peak created by the GEM peak finder. In the
third row, Leopard generates single-nucleotide predictions and precisely provides the binding sites.
The two saliency maps of DNA sequence and DNase-seq indicate positions contributing to the predic-
tions. The corresponding DNase-seq and ΔDNase-seq signals, as well as the sequence-based motif
scan scores using FIMO, are also shown here for comparison. Of note, the region in the pink rectangle
also has open chromatin (high DNase-seq signals) and binding motifs (high FIMO scores), but no bind-
ing events were observed from the ChIP-seq experiment. Leopard is able to detect these nonbinding lo-
cations, no prediction peaks in this region.
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TF binding site prediction challenge. Anchor is based on a classical
tree-based machine learning model, XGBoost, to predict TF bind-
ing sites through sophisticated feature engineering, whereas
FactorNet is based on a many-to-one neural network model to
address this problem. In addition, we compared earlier deep learn-
ing–based and svm-based methods, including DeepSEA, Basset,
and gkmSVM.We benchmarked thesemethods on the same train-
ing and testing data sets in the ENCODE-DREAM challenge
(Supplemental Table S8), which evaluated the predictive perfor-
mance at 200-bp resolution with an offset of 50 bp. We adapted
Leopard architecture to generate predictions at 200-bp resolution,
which was called Leopard-200-bp (Supplemental Fig. S2).

The performance was evaluated in a cross–cell type and cross-
chromosome fashion (for details, see Methods). Overall, Leopard
achieved higher prediction AUPRCs than other methods (Fig.
4A). The mean and median AUPRCs show the improvement of
Leopard predictions in the 13 testing TF–cell type pairs. Compared

with the top performing methods in the
ENCODE-DREAM challenge, Leopard
improved the median prediction AUPRC
by 19%and 27%over Anchor and Factor-
Net, respectively. We further performed
pairwise statistical comparison of Leop-
ard, Anchor, and FactorNet. For each
testing TF–cell type pair, we randomly
sampled 100 segments with a length
of 100 kbp and then calculated the pre-
diction AUPRC 100 times. The paired
Wilcoxson signed rank test was per-
formed. Leopard significantly outper-
formed Anchor and FactorNet in the
11 out of 13 (85%) testing TF–cell type
pairs (Supplemental Fig. S3). In terms of
AUROCs, Leopard, Anchor, and Factor-
Net had comparable performances,
which were also higher than the other
three methods (Supplemental Fig. S4).
We also evaluated these three methods
at 1-bp resolution. Because Anchor and
FactorNet only provide predictions at
the 200-bp interval, their predictions
for each 200-bp interval were repeated
200 times to generate the “1-bp” predic-
tions. The comparison results are shown
in Supplemental Figure S5. Again, Leop-
ard shows significantly higher AUPRCs
than Anchor and FactorNet in the 13
testing TF–cell type pairs.

In addition to higher prediction res-
olution and accuracy, Leopard has a great
speed advantage over previous methods.
Previous neural network approaches
were typically based on the many-to-
one architecture (Alipanahi et al. 2015;
Zhou and Troyanskaya 2015; Quang
and Xie 2016; Wang et al. 2018; Quang
and Xie 2019), in which genomic seg-
ments containing hundreds or thou-
sands of base pairs were used as inputs
to predict only a single label at a time.
Considering the fact that the human ge-
nome contains more than 3 billion bp, it

requires a considerably long runtime for the genome-wide predic-
tions usingmany-to-onemodels. In contrast, Leopard is based on a
many-to-many neural network architecture, in which the base-
wise labels for every nucleotide in the input genomic segment
(10,240 bp) are generated simultaneously. This unique architec-
ture tremendously boosts the prediction speed. To benchmark
the runtimes of the many-to-one and many-to-many neural net-
work structures, we modified Leopard and created a many-to-one
version that accepted 10,240 bp as inputs and generated only
one prediction value (Supplemental Fig. S6). For comparison, we
also tested the runtime of Anchor, representing the speed of a
tree-based XGBoost model. Leopard can finish prediction within
4.70, 2.80, and 0.95 min for predicting the single-nucleotide
HNF4A binding sites on Chr 1, Chr 8, and Chr 21, respectively
(Supplemental Fig. S7A). Yet Anchor and the many-to-one neural
network require much longer runtimes, on the scales of hours.
Meanwhile, Leopard is flexible with both graphics processing

A B

C

E

D

Figure 3. Evaluating Leopard predictions based on TF binding profiles from ChIP-exo experiments.
(A) The ROC curves and (B) the AUROCs of the six protein–cell type combinations. Different colors rep-
resent different combinations. (C) The PR curves and (D) AUPRCs of the six protein–cell type combina-
tions. The average AUPRC baseline score of random prediction is 0.00133 shown as the horizontal
dashed line. These results were calculated on the three testing chromosomes (Chr 1, Chr 8, and Chr
21). (E) The spatial resolution is defined as the shortest distance (in bp) between Leopard predictions
and the center of ChIP-exo peaks. We focused on the top 1% predictions and calculated the cumulative
fractions of peaks with different spatial resolutions, ranging from 0 bp to 100 bp in three testing
chromosomes.
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unit (GPU) and central processing unit (CPU) settings. When run-
ning Leopard on CPU, the prediction runtimes remain acceptable
on the scale ofminutes (Supplemental Fig. S7B).Whenmaking ge-
nome-wide predictions at single-nucleotide resolution, Leopard
has a great advantage of speed; it only requires <1 h on GPU or 4
h on CPU. In contrast, it requires 583.6 h (>24 d) for the many-
to-one neural network model and 1220.8 h (>50 d) for Anchor
(Fig. 4B). Therefore, Leopard not only outperformed but also en-
abled a hundredfold to thousandfold speedup over the common
many-to-one neural network and the Anchor model, respectively.

Discussion

Many studies have proposed computational models for predicting
the sequence specificities of DNA-binding proteins and variant ef-
fects ab initio from DNA sequences (Alipanahi et al. 2015; Zhou
and Troyanskaya 2015; Zhou et al. 2018, 2019). These approaches
have advanced our understanding of the transcriptional regula-
tion. However, in the new era of precision medicine, the con-
text-dependent functional genomic and epigenomic landscapes
across different cell types, tissues, and patients may not be
completely encoded in the DNA sequence space. These genomic
and epigenomic profiles provide crucial information for disease
mechanism investigation and future treatment discovery. In this
work, we develop a robust, scalable, and fast software, Leopard,
to identify cell type–specific TF binding sites at the single-nucleo-
tide level, which is a key challenge in computationally decoding
functional elements of the human genome. Leopard leverages
the cutting-edge deep learning framework for pixel-level image

segmentation and large-scale data from
the ENCODE Project, achieving high
cross–cell type prediction accuracy. In
addition to the ChIP-seq and ChIP-exo
data used in this study, there aremany al-
ternativemethods to study protein–DNA
interactions. For example, CUT&RUN-
seq is a recent technique with a higher
signal-to-noise ratio, which requires less
sequencing depth than ChIP-seq (Skene
and Henikoff 2017). ChIP-nexus is an
improved ChIP-exo approach with high
resolution and enhanced robustness,
which only requires similar amounts
of cells as ChIP-seq (He et al. 2015). Sim-
ilarly, SLIM-ChIP also provides high-
resolution signals with small amounts
of sample material (Gutin et al. 2018).

Unlike classical machine learning
approaches that require complicated fea-
ture crafting and engineering (Li et al.
2018, 2019; Keilwagen et al. 2019), neu-
ral network models automatically learn
the informative features and factors con-
tributing to TF binding, largely increas-
ing the flexibility and scalability (Jiang
et al. 2019; Li and Guan 2021). For exam-
ple, both Anchor (Li et al. 2019) and the
method by J-Team (Keilwagen et al.
2019) calculated bin-level aggregate stat-
istical features (maximum, mean, mini-
mum, and other statistics) to represent
the major signals instead of using the

complete signals for the sake of computational efficiency. In con-
trast, Leopard accepts the complete DNase-seq signals of the input
segments covering 10,240-bp positions without information loss,
which may explain its higher predictive performance. Compared
with many-to-one neural network models such FactorNet (one
output at a time), the major advantages of Leopard include 1-bp
resolution, high accuracy, and a hundredfold/thousandfold
speedup (thousands of outputs at a time). Specifically, this speed
boosting allows us to implement deep and complex neural net-
work architectures such as U-Net to address the TF binding predic-
tion problem, especially for huge data set at the scales of millions
to billions (e.g., the humangenome). If the speed is the bottleneck,
it is impractical to build deep neural networks using the traditional
many-to-one framework, and the depth of networks is one of the
key parameters to achieve high performance. A recent DNA se-
quence-based neural network approach, Basenji, also leverages
the idea of a many-to-many framework (Kelley et al. 2018). It ac-
cepts a 131-kbp bin as input and generates predictions of normal-
ized coverage for the same length at a resolution of 128-bp bins,
whereas the input and output length are both 10,240 bp in our
model. Similarly, BPNet uses DNA sequence to predict base-resolu-
tion TF binding profiles on ChIP-nexus data, and the input and
output lengths are 1 kb (Avsec et al. 2021). Dilated convolutions
were also used to capture distal information in these methods. In
terms of network structure tuning, we adapted the U-Net structure
into the 1Dversion. Comparedwith a standard convolutional neu-
ral network, U-Net contains the unique “concatenation” opera-
tion to transfer information from the encoder to the decoder,
which diminishes the information decay and proves to be

BA

Figure 4. Leopard substantially improves TF binding site prediction over state-of-the-art methods.
(A) Leopard was benchmarked with the top performing classical tree-basedmodel (Anchor), the top per-
forming neural network model (FactorNet) in the ENCODE-DREAM in vivo TF binding site prediction
challenge, two recent deep learning approaches (DeepSEA and Basset), and a classical machine learning
method (gkmSVM). The same challenge training and testing data sets were used to train models and
evaluate performance. Overall, Leopard achieved higher prediction AUPRCs than did the other methods.
The mean and median AUPRCs on the bottom right clearly show the advantage of Leopard predictions in
the 13 testing TF–cell type pairs. Leopard substantially improved the median prediction AUPRC by 19%
and 27% over Anchor and FactorNet, respectively. (B) The runtime was tested for predicting the HNF4A
binding profiles in the liver cell using differentmethods. Leopard shows a great advantage of speed and is
flexible with both GPU and CPU.
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powerful in computer vision tasks. Recent work in the field of neu-
ral architecture search indicates that neural networks based on
randomly wired graphs achieved competitive performance to
manually designed architectures on image classification (Xie
et al. 2019). It would be interesting to see the future application
of these models to bioinformatics research.

A unique feature of neural network models is that no specific
TF motifs are needed as input. The TF motifs are implicitly con-
tained in the ground truth, the ChIP-seq signal. During the neural
network training process, the TFmotifs are learned by the convolu-
tional layers. In fact, the convolution operation on the one-hot-
encoded DNA sequences is very similar to the motif scanning
process. The difference is that for motif scanning, prior knowledge
(e.g., position weight matrix of a specific TF) is required, whereas
for convolution operation, no prior knowledge is required and
the convolution weights (similar to position weight matrix) are
learned during the training process. Traditional machine learning
methods such as Anchor require TF motifs as a part of the input.
The quality and potential biases of motifs (e.g., the data set, data-
type, and algorithm for motif calculation) may affect the predic-
tive performance. In addition, TF binding events are also
associated with different TF–TF interactions. An algorithm relying
on TF motifs may not be capable of considering all possible TF–TF
interactions. In contrast, neural network models directly learn the
potential binding patterns from DNA sequences, including pat-
terns for both single-TF and multiple-TF bindings.

In thiswork, we use the saliencymap approach to analyze fea-
ture importance in the neural network model, where the gradients
of the output are back-propagated to calculate the input impor-
tance. It has been reported that comparing the activation of each
neuron to its “reference activation” to obtain the contribution
score could be a better alternative, especially in deep learning–
based functional genomics studies using DeepLIFT (Shrikumar
et al. 2017). We anticipate that the analysis of feature importance
will further improve our understanding of deep learningmodels in
the future studies.

Recent advancement in deep learning studies of genomic
data has generated novel interpretations and biological hypothe-
ses (Eraslan et al. 2019; Zou et al. 2019). Although the many-to-
one neural network (with various convolutional, recurrent, and
fully connected layers) has been actively explored, the many-to-
many neural network remains to be developed. Amajor advantage
of the many-to-many structure is the ultrafast prediction speed,
which will accelerate the genomic research on the large genome-
wide scale at single-nucleotide resolution. Here we show its very
first application to identify TF binding events across cell types.
We envision that our analysis framework and model can be flexi-
bly adapted to investigate many other genomics modeling tasks
in the future, including predicting various epigenetic modifica-
tions in different cell types.

Methods

Data collection and preprocessing

In this study, we used the data from the ENCODE Project, which
consists of 51 ChIP-seq experiments and 13 DNase-seq experi-
ments covering 10 TFs (CTCF, EGR1, FOXA1, FOXA2, GABPA,
HNF4A, JUND, NANOG, REST, and TAF1) in 13 cell types (A549,
GM12878, H1-hESC, HCT116, HeLa-S3, HepG2, iPSC, IMR-90,
K562, liver, MCF-7, PANC-1, PC-3). The ChIP-seq data were down-
loaded from the ENCODE data portal (https://www.encodeproject

.org/), with the accession numbers provided in Supplemental
Table S9. The sequence alignment of ChIP-seq reads were
processed using the GEM peak caller, with the parameters
“‐‐s 2000000000 ‐‐k_min 6 ‐‐k_max 13.” A subset of 23 ChIP-seq
experiments were held out as the evaluation testing set, and the re-
maining 28 ChIP-seq data were used for model training
(Supplemental Table S2). For the 13DNase-seq data, we download-
ed them from the ENCODE-DREAM challenge website (https
://www.synapse.org/#!Synapse:syn6176232). We used raw filtered
alignment files without peak calling. Signals frommultiple techni-
cal and biological replicates of the same cell typewere summed and
combined. To reduce the potential cell-specific cleavage and se-
quencing biases, we performed the quantile normalization follow-
ing the same pipeline as described in Anchor (Li et al. 2019). In
addition to ChIP-seq data, we downloaded the processed ChIP-
exo peaks and ChIP-exo read alignments from the original studies.
For CTCF in HeLa-S3 (Rhee and Pugh 2011), it was analyzed using
the MACE pipeline (Wang et al. 2014). For NR2F2, ER, and EP300
in MCF-7 (Serandour et al. 2013), they were analyzed using MACS
(Zhang et al. 2008). For GR in IMR-90 and K562 (Starick et al.
2015), we downloaded the sequence alignments of ChIP-exo reads
and called peaks using GEM (Guo et al. 2012).

The ΔDNase-seq feature

The raw DNase-seq signals potentially have local sequencing bias-
es (Madrigal 2015; Vierstra and Stamatoyannopoulos 2016). It has
been well studied that the enzyme DNase I has an intrinsic cleav-
age preference for specific DNA sequence and/or shape (Dingwall
et al. 1981; Lazarovici et al. 2013), and many computational ap-
proaches have been proposed to address the DNase-seq sequence
biases (He et al. 2014; Gusmao et al. 2016; Martins et al. 2018).
The strength of DNase-seq signals could be overestimated or un-
derestimated owing to these local biases, which eventually affect
the performance of machine learning models.

To alleviate the potential sequencing biases, we calculated the
ΔDNase-seq signal by subtracting the reference DNase-seq signal
(Li et al. 2019), which is the average across all 13 cell types under
consideration. These 13 cell types include the training, validation,
and testing cell types. Because DNase-seq and ΔDNase-seq are fea-
tures, instead of the gold standard, for this TF binding prediction,
this design will not lead to any contaminations. Contaminations
will occur when the gold standard in the test set is involved in
any phase of the training, such as selecting important features us-
ing the gold standard in the test.

The reference DNase signal only requires a one-pass calcula-
tion. When testing on new cell types, there is no need to recalcu-
late this reference. This is because we already have many cell types
to accurately estimate the average. To show this, we also calculated
the references from randomly selected nine, 10, 11, and 12 cell
types. These references are very similar, and the pairwise
Pearson’s correlations are all above 0.95 (Supplemental Fig. S8).

One-hot encoding of DNA sequence

TheDNA sequence is a string of A/C/G/T characters, which cannot
be directly understood by a computer program. A standard way of
encoding the DNA sequence into numeric values is one-hot en-
coding, in which each nucleotide is assigned a specific channel,
and the value is encoded as one onlywhen a specific nucleotide oc-
curs. For example, a 6-bp DNA sequence of “ACTGAT” can be en-
coded as a four-by-six matrix, where the four rows represent the
four nucleotide channels (from top to bottom are the A, C, G,
and T channels, respectively) and the six columns represent the
six nucleotide positions. In Leopard, we used DNA sequences of
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10,240 bp as input and encoded them into four-by-10,240
matrices. We also termed this as 10,240 successive genomic
positions.

Stringent baseline by overlapping DNase-seq signals

with motif scanning

A simple way to identify potential TF binding sites across the ge-
nome is calculating the TF motif matching score for each conces-
sive genomic region. Find Individual Motif Occurrences (FIMO)
is an efficient and fast software for scanning DNA sequences
with motifs (Grant et al. 2011), which returns a motif matching
score for each nucleotide in the input DNA sequence. By overlap-
ping these motif scanning scores with DNase-seq filtered align-
ment signals, we define a more stringent AUPRC baseline than
random predictions. Specifically, we scanned the hg19 reference
genome using FIMO based on the TF motifs from HOCOMOCO
v11 (Kulakovskiy et al. 2018). A relaxed cutoff of P= 0.01 was
used to locate all the potential binding sites.

The neural network architecture of Leopard

The Leopard architecture has two components, the encoder and
the decoder (Fig. 1B). The basic building unit of the encoder is
the convolution-convolution-pooling (ccp) block, which contains
two convolutional layers and one max-pooling layer. In each con-
volutional layer, the 1D convolution operation is applied to the
data along the second dimension to extract the upstream and
downstream information (Fig. 1C), and key determinants of TF
binding will trigger an activation, including open chromatin and
motif scanning hit. Of note, the users do not need to specify the
TF motifs because the convolution operators can automatically
learn and recognize the regulatory motifs and neighboring DNA
sequences. Meanwhile, each max-pooling layer reduces the input
length by half, allowing the subsequent convolutional layer to
capture the information spanning longer genomic positions. For
example, five successive points of the input matrix only cover
five positions, whereas five successive points at the end of the en-
coder cover 5 ×25 =160 genomic positions. A total of five ccp
blocks were used to gradually reduce the input length from
10,240 to 320 and increase the number of channels from six to
109, compensating for the loss of resolution along the genomic di-
mension. In contrast to the ccp blocks in the encoder, the counter-
part upscaling-convolution-convolution (ucc) blocks were used in
the decoder. They gradually increase the length but decrease the
number of channels. In addition, the concatenation operation
transfers the information from the encoder to decoder at each res-
olution (Fig. 1B, horizontal green arrows). The final output is a
one-by-10,240 array, corresponding to the prediction of TF bind-
ing signals at each input position at single-base resolution. This
neural network architecture effectively captures the long-range
and short-range information at multiple scales. To show this, we
compared Leopard models with five different input lengths
(512 bp, 1024 bp, 5120 bp, 10,240 bp, and 20,480 bp) and evalu-
ated the predictive performance of them in six TF–cell type pairs.
In general, longer inputs lead to significantly better performance,
which is also reported by previous studies (Kelley et al. 2016; Li
et al. 2019; Kelley 2020). The 10,240-bp/20,480-bp models have
the highest AUPRCs (Supplemental Fig. S9) and AUROCs
(Supplemental Fig. S10). Because the 10,240-bp model requires
fewer computational resources and remains comparable/has
slightly worse performance than the 20,480 model, we used
10,240 bp in this study.

Cross–cell type and cross-chromosome training, validation,

and testing

We used a “crisscross” training and validation strategy to build
models and avoid overfitting (Li et al. 2019). For each TF, we first
collected all the available training cell types. Then a pair of cell
types was selected, one for model training and the other for model
validation. Meanwhile, the 23 chromosomes (Chr 1–22 and X)
were also partitioned into the training, validation, and testing
sets. Chr 1, Chr 8, and Chr 21 were fixed throughout this
study as the testing chromosome set, whereas the remaining 20
chromosomes were randomly partitioned into the training and
validation sets.

During model training, we defined an epoch as 100,000 seg-
ments or samples randomly selected from the training chromo-
some set in the training cell type. Each time after the model was
trained on one epoch of training samples, another epoch of valida-
tion samples was randomly selected from the validation chromo-
some set in the validation cell type to calculate the prediction
losses, monitor the training progress, and avoid overfitting. The
Adam optimizer was used. Each neural network model was first
trained for five epochs with the learning rate of 1.0 × 10−3 and
then trained for 15 epochswith the learning rate of 1.0 × 10−4 until
the loss converged.

AUROC and AUPRC

We define a nucleotide position to be positive only when these
two requirements are met: (1) this position falls in a conservative
peak of ChIP-seq, and (2) this position is a FIMO motif scanning
hit. If only one requirement or neither of these requirements is
met, a nucleotide position will be defined as negative. The
AUROC and the AUPRC between prediction and gold standard
were used to evaluate the prediction performance. Because the pre-
dictions are continuous values between zero and one, a series of
cutoff values, [0, 0.001, 0.002, …, 0.998, 0.999, 1.000], are used
to binarize the predictions. At each cutoff, the true-positive rate
(TPR) and the FPR are defined as

TPR = TP
TP+ FN

,

FPR = FP
FP+ TN

,

where TP is true positive, FN is false negative, FP is false positive,
and TN is true negative. Similarly, the precision and recall are de-
fined as

Precision = TP
TP+ FP

,

Recall = TPR = TP
TP+ FN

.

These values were calculated at each cutoff, forming the ROC
curve and PR curve. The area under the curve therefore reflects the
prediction performance of a model.

Overall AUPRC and AUROC

The overall AUPRC, or the gross AUPRC, is defined as

AUPRC =
∑
j

Pj(Rj − Rj+1),

Pj = number of TF binding nucleotides with predicted probability ( j/1000) or greater
total number of nucleotides with predicted probability ( j/1000) or greater

,

Rj = number of TF binding nucleotides with predicted probability ( j/1000) or greater
total number of TF binding nucleotides

,
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where precision (Pj) and recall (Rj) were calculated at each cutoff
j and j=0, 0.001, 0.002, …, 0.998, 0.999, 1. When multiple chro-
mosomes are under consideration, this overall AUPRC is similar
to the “weighted AUPRC,” which is different from simply averag-
ing the AUPRC score of all chromosomes (Li and Guan 2021).
This is because the overall AUPRC considers the length of each
chromosome and because longer chromosomes contribute more
to the overall AUPRC, resulting in a more accurate evaluation of
the performance. The overall AUROC is defined in a similar way
as the overall AUPRC.

Convolutional layer

The architecture of Leopard was adapted from a image segmenta-
tion neural network model, U-Net, which generates pixel-wise la-
bels for every pixel in the input two-dimensional image
(Ronneberger et al. 2015). Similarly, Leopard generates base-wise
labels for every nucleotide in the input genomic segment
(10,240 bp) simultaneously. In each convolutional layer, the ker-
nel size of seven was used. In each pooling layer, max pooling
was used. Each convolution operationwas followed by a nonlinear
activation, rectified linear unit (ReLU), which is defined as

f (x) = max(0, x),

where x is the input and f(x) is the output. Only positive values ac-
tivate a neuron, and ReLU allows for effective training of neural
networks compared with other complex activation functions. In
addition, batch normalization was used after each convolutional
layer. In the final layer, we used the sigmoid activation unit to re-
strict the prediction value between zero and one. The sigmoid ac-
tivation is defined as

f (x) = 1
1+ e−x ,

where x is the input and f (x) is the output.

Training losses

The cross entropy loss was used for model training, which is de-
fined as

H(y, ŷ) =
∑N
i=1

[−yi · logŷi − (1− yi) · log(1− ŷi)],

where yi is the gold standard label of TF binding=1 or nonbind-
ing =0 at genomic position i, ŷi is the prediction value at position
i, N=10,240 is the total number of base pairs in each segment, y is
the vector of the gold-standard labels, and ŷ is the vector of predic-
tions. Ideally, an “AUPRC loss” should be used for optimizing the
AUPRC. However, the AUPRC function is not mathematically dif-
ferentiable, which is required by the back-propagation algorithm
during neural network model training. We therefore used the
cross-entropy loss to approximate the “AUPRC loss.”

Method comparison at 200-bp resolution

When comparing our method with the top-ranking methods in
the ENCODE-DREAM challenge, we used the same data set pro-
vided by the challenge, consisting of 43 and 13 ChIP-seq
data for model training and held-out testing, respectively
(Supplemental Table S8). Of note, in the challenge, the resolution
of predictions was only 200 bp. For each 200-bp interval at 50-bp
sliding window steps, a gold-standard binary label “bound” or
“unbound” was assigned. The AUPRC between predictions and
gold-standard labels was used as the scoringmetric to compare dif-
ferent models, which was also used in the ENCODE-DREAM chal-

lenge. For this low-resolution prediction task, we created a Leopard
200-bp model (Supplemental Fig. S2), which directly generates
predictions at the 200-bp resolution. In addition to the one-hot-
encoded sequences and DNase-seq features, we also added the
number of 5′ tag counts within each 200-bp bin as an extra feature,
which was also named as frequency/Δfrequency feature in Anchor
(Li et al. 2019).

Saliency map

For a 10,240-bp genomic region under consideration (for exam-
ples, see Fig. 2E; Supplemental Fig. S1), we used the cross-entropy
loss of all 10,240 output positions to calculate the gradients for
each input position with two types of channels: (1) four DNA se-
quence A/C/G/T channels, and (2) two open chromatin related
DNase-seq/ΔDNase-seq channels. The original saliency map is a
six-by-10,240 matrix. Then for each type of input, we calculated
the maximum values along the channel dimension, resulting in
two signals “saliency map–DNA sequence” and “saliency map–
DNase-seq.” These saliency maps were calculated using the func-
tion “visualize_saliency” from the “keras-vis” module in Python.
We used the parameter backprop_modifier = “guided,” through
which only positive gradients were propagated positive
activations.

The reference genome

In this work, we used GRCh37 as the reference genome, instead of
GRCh38. One of the main improvements of GRCh38 over
GRCh37 is the annotation of centromere regions. To the best of
our knowledge, most TF binding sites are located outside the cen-
tromere regions. Therefore, if all the data in this work were lifted
over to GRCh38, we surmise that our conclusions will not be sig-
nificantly affected.

Software availability

The source code of our Leopard software is available on GitHub
(https://github.com/GuanLab/Leopard) and as Supplemental
Code.
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