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Abstract: Primary pulmonary artery sarcoma (PPAS) is a rare malignancy arising from mesenchy-
mal pulmonary artery cells and mimics pulmonary embolism. Palliative chemotherapy such as
anthracycline- or ifosfamide-based regimens and targeted therapy are the only options. However, the
evidence of clinically beneficial systemic treatment is scarce. Here, we report a case of disseminated
PPAS achieving clinical tumor response to olaparib based on comprehensive genetic profiling (CGP)
showing genetic alterations involving DNA repair pathway. This provides supportive evidence that
olaparib could be a promising therapeutic agent for patients with disseminated PPAS harboring
actionable haploinsufficiency of DNA damage repair (DDR).

Keywords: PARP inhibitor; olaparib; next-generation sequencing (NGS); comprehensive genetic
profiling (CGP); primary pulmonary artery sarcoma (PPAS); homologous recombination repair (HRR)

1. Introduction

Primary pulmonary artery sarcoma (PPAS) is a rare malignancy, with an incidence
rate of 1–30 per 100,000 people [1], which is originated from the pulmonary artery’s
mesenchymal cells and mimicking pulmonary embolism [1–3]. Due to the ambiguous
and rare manifestations of clinical image findings, PPAS is frequently misdiagnosed as
various pulmonary thromboembolic diseases (e.g., chronic thromboembolic, pulmonary
thromboembolism, or chronic thromboembolic pulmonary hypertension) [4]. As such,
PPAS has a poor prognosis, with a median overall survival of less than 3 months without
surgical resection and 1–2 years in the case with surgical resection [5,6].

Although surgical resection has been demonstrated to prolong survival [2,7], the
immediate postoperative mortality rate has been reported to be ~13–15%, and surgical
resection nearly never achieves R0 resection [3]. Furthermore, surgery has no role in
disseminated PPAS. Unfortunately, palliative therapy (e.g., anthracycline-/ifosfamide-
based chemotherapy regimens or targeted therapy) remains limited and unproven [8]. A
clinically useful systematic targeted approach is crucial [9].

Herein, we present our experience of treating a patient with PPAS harboring MDM2
amplification; CDKN2A homozygous deletion; and RAD50, PTCH1, PTEN, CHEK1, MRE11,
BRCA2, RB1, and BLM hemizygous deletion, treated with next-generation sequencing
(NGS)-guided olaparib (Lynparza®) and achieving a transient partial response.

2. Case Report

A 71-year-old woman had progressively exertional dyspnea associated with produc-
tive cough and chest tightness for half a year. A computed tomography (CT) scan of the
chest revealed a left main pulmonary arterial embolism and multiple metastatic nodules
over both lung fields (Figures 1 and 2). A CT-guided biopsy was performed for lung masses
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and pathology reported spindle-cell sarcoma, which was strongly positive for SMA, MDM2,
and negative for cytokeratin (AE1/AE3), CAM5.2, CD117 (c-KIT), DOG-1, EMA (E29),
P40, S-100, STAT6, TLE1, ER (6F11), PR (1A6), HMB-45, and CDK4. The positivity of SMA
indicates muscular differentiation. After reviewing the CT scan and performing positron
emission tomography (PET)/CT scan (Figure 2), disseminated PPAS with metastases to
both lungs, the left brain, and the T6 vertebra was diagnosed. Palliative whole-brain
radiotherapy was subsequently completed and systemic chemotherapy was suggested.
However, the patient refused chemotherapy because of the poor performance status of
3 and her old age. As such, NGS-based comprehensive genetic profiling (CGP) was sug-
gested and a lung tumor’s (70% tumor purity) formalin-fixed, paraffin-embedded (FFPE)
specimen was sequenced using a targeted panel of 400+ cancer-related genes (ACTOnco®+)
for molecular-matched therapeutic options [10].
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The FFPE lung tumor was subject to next-generation sequencing (NGS) using the
ACTOnco® + test (ACT Genomics, Taipei, Taiwan) to detect mutations in the coding region
of 440 cancer-related genes and fusion of 31 genes. NGS was conducted at a mean depth of
1298x and 91% uniformity. Twelve nonsynonymous mutations were identified, while none
of them was considered clinically significant (Table 1). The germline or somatic origin of
these mutations cannot be determined due to lack of a paired normal tissue. No fusion
gene was detected.

Table 1. Clinically relevant single nucleotide and small indel variants from FFPE lung biopsy.

Gene Chr Exon Accession Number cDNA Change Amino Acid Change Coverage Allele Frequency COSMIC ID

ADAMTS9 3 1 NM_182920 c.107C > T P36L 1147 12.7% -
ATRX X 9 NM_000489 c.1331G > A R444Q 1626 17.7% COSM3424965
BRCA1 17 10 NM_007294 c.2347A > G I783V 1301 50.1% -
ERBB2 17 27 NM_004448 c.3763G > T V1255L 600 47.0% COSM7313442
FLT3 13 7 NM_004119 c.866A > C N289T 1966 47.2% -
KDR 4 8 NM_002253 c.983C > A P328H 369 39.6% COSM3825987

MUC16 19 3 NM_024690 c.18096C > G H6032Q 1438 63.4% -
NOTCH4 6 3 NM_004557 c.316C > A L106I 1645 49.2% -

NSD1 5 4 NM_022455 c.1070A > G N357S 1198 47.5% -
POLD1 19 10 NM_001256849 c.1232A > C Q411P 726 48.5% -

RECQL4 8 - NM_004260 c.1391-4G > T Splice region 1495 35.6% -
USH2A 1 66 NM_206933 c.14404T > C S4802P 1979 54.5% -
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Figure 2. CT images (A,D) and PET/CT scans (B,C). (A,B) Primary pulmonary artery sarcoma (PPAS) with lung metastases 
by CT scan (A) and the corresponding PET/CT scan (B). (C) A whole-body PET scan showed PPAS with multiple metas-
tases to the lung, bone, and brain. (D) Brain metastases on CT scan. 
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MDM2, classified as an oncogene, was identified and confirmed by immunohistochemical 
(IHC) staining, suggesting that MDM2 is a potential driver in sarcoma. MDM2 inhibitors 
may be the optimal treatment; however, they are not available outside clinical trials. The 
homozygous deletion of CDKN2A and hemizygous deletion of multiple tumor suppressor 
genes (TSGs) with haploinsufficiency, including RAD50 (chr 5), PTCH1 (chr 9), PTEN (chr 
10), CHEK1 (chr 11), MRE11 (chr 11), BRCA2 (chr 13), RB1 (chr 13), and BLM (chr 15), were 
determined by observed copy number < 2 copies and zygosity of SNPs located on the 
genes (Figure 3). Further analysis showed loss of heterozygosity (LOH) of chromosome 
11q, ranging from 11q13.1 to 11q24.3, suggesting single copy loss of another two DNA 
damage repair (DDR) genes, ATM and H2AX, that localize in this region. Although these 
DDR genes are all hemizygously deleted, multiple genetic lesions, alterations, and their 
haploinsufficient nature may lead to homologous recombination deficiency (HRD), as 
shown by LOH 55.5% of the genomic region interrogated. This indicates that the patient 
could benefit from a poly(ADP-ribose) polymerase (PARP) inhibitor. 

  

Figure 2. CT images (A,D) and PET/CT scans (B,C). (A,B) Primary pulmonary artery sarcoma (PPAS) with lung metastases
by CT scan (A) and the corresponding PET/CT scan (B). (C) A whole-body PET scan showed PPAS with multiple metastases
to the lung, bone, and brain. (D) Brain metastases on CT scan.

Clinically relevant copy number variants are shown in Table 2. Amplification of
MDM2, classified as an oncogene, was identified and confirmed by immunohistochemical
(IHC) staining, suggesting that MDM2 is a potential driver in sarcoma. MDM2 inhibitors
may be the optimal treatment; however, they are not available outside clinical trials. The
homozygous deletion of CDKN2A and hemizygous deletion of multiple tumor suppressor
genes (TSGs) with haploinsufficiency, including RAD50 (chr 5), PTCH1 (chr 9), PTEN (chr
10), CHEK1 (chr 11), MRE11 (chr 11), BRCA2 (chr 13), RB1 (chr 13), and BLM (chr 15), were
determined by observed copy number < 2 copies and zygosity of SNPs located on the
genes (Figure 3). Further analysis showed loss of heterozygosity (LOH) of chromosome
11q, ranging from 11q13.1 to 11q24.3, suggesting single copy loss of another two DNA
damage repair (DDR) genes, ATM and H2AX, that localize in this region. Although these
DDR genes are all hemizygously deleted, multiple genetic lesions, alterations, and their
haploinsufficient nature may lead to homologous recombination deficiency (HRD), as
shown by LOH 55.5% of the genomic region interrogated. This indicates that the patient
could benefit from a poly(ADP-ribose) polymerase (PARP) inhibitor.

Table 2. Clinically relevant copy number variants (CNVs) from archival formalin-fixed, paraffin-embedded lung biopsy.

Pathway Involved Gene Copy Number Alteration

MDM2-P53 pathway MDM2 39 Amplification
ARF-MDM2-P53 pathway; Rb-E2F-1 pathway;

P16/Rb pathway CDKN2A 0 Homozygous Deletion

Homologous Recombination RAD50, BRCA2, BLM, CHEK1,
MRE11 1 Hemizygous Deletion

Nonhomologous End-joining RB1 1 Hemizygous Deletion
PTEN-PI3K-AKT pathway PTEN 1 Hemizygous Deletion

Type I noncanonical Hh pathway PTCH1 1 Hemizygous Deletion
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Figure 3. Summary list of genes with single copy loss detected within chromosome 11q.

3. Treatment Course

Based on the genomic alterations identified, olaparib 300 mg BID was prescribed for
one week and the dose was reduced to 150 mg BID in the second week due to adverse
events of grade 3 anorexia and grade 2 diarrhea. After a two-week treatment, the ECOG
performance status improved from 3 to 1 and chest X-ray (CXR) revealed that the lung
tumors remained stable (Figure 1). After one month of olaparib treatment, the patient
developed a fever and progressive dyspnea, and chest CT revealed infiltrations over both
lung fields, but the tumors decreased in size (Figures 1 and 4). The primary and metastatic
lung tumors decreased in diameter after olaparib treatment (Figure 4). Partial response was
achieved according to the response evaluation criteria in solid tumors (RECIST) criteria.
The symptoms of pneumonia improved after the completion of antibiotics. Unfortunately,
her symptoms and performance status deteriorated after two months of olaparib treatment,
and subsequent CXR confirmed tumor progression. Therefore, olaparib was discontinued,
and hospice care was suggested. The patient died three months after the commencement
of olaparib treatment.

This report was approved by the Institutional Review Board of Chang Gung Medical
Foundation (202100118B0). Written consent was obtained from the patient’s legal guardian
to use the images included in this report.
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cm (F) before and after olaparib treatment, respectively. Partial response was achieved according to response evaluation 
criteria in solid tumors (RECIST) criteria. 
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fected PDGFRA, RICTOR, CDK4, and KIT [11,12]. A total of 10 (48%) of PPAS harboring 
additional clinically relevant genomic alterations in EGFR, TSC2, ALK, and BRAF was con-
sidered actionable [11,12]. The mean tumor mutation burden (TMB) in the PPAS was 8.3 
mutations per Mb (mut/Mb), with 14% of PPAS having TMB > 10 mut/Mb and 10% of 
PPAS having TMB > 20 mut/Mb, implying that some patients may benefit from immuno-
therapy [13,14]. No microsatellite instability-high (MSI-H) was found in nine cases with 

Figure 4. CT scan of the chest revealed a size reduction of tumors before (A,C,E) and after olaparib treatment (B,D,F). The
asterisk (*) indicates a primary tumor, while the arrow symbol (→) indicates metastatic tumors. The primary tumor (*)
decreased in diameter from 4.8 cm (A) to 3.0 cm (B) before and after olaparib treatment, respectively. The metastatic tumors
of the lung (→) decreased in diameter from 2.0 cm (A), 3.4 cm (C), and 3.2 cm (E) to 0.8 cm (B), 1.6 cm (D), and 2.3 cm (F)
before and after olaparib treatment, respectively. Partial response was achieved according to response evaluation criteria in
solid tumors (RECIST) criteria.

4. Discussion

In this case report, a patient with disseminated PPAS was treated with CGP-guided
olaparib and achieved a transient partial response. Studies on CGP in PPAS are rare
and only reported in abstracts [11,12]. In 21 cases of PPAS, notable alterations that may
not be considered actionable included TP53 (47%), CDKN2A (36%), CDKN2B (25%), and
RB1 (13%). In contrast, 11% of PPAS harbored clinically relevant genomic alterations
that affected PDGFRA, RICTOR, CDK4, and KIT [11,12]. A total of 10 (48%) of PPAS
harboring additional clinically relevant genomic alterations in EGFR, TSC2, ALK, and BRAF
was considered actionable [11,12]. The mean tumor mutation burden (TMB) in the PPAS
was 8.3 mutations per Mb (mut/Mb), with 14% of PPAS having TMB > 10 mut/Mb and
10% of PPAS having TMB > 20 mut/Mb, implying that some patients may benefit from
immunotherapy [13,14]. No microsatellite instability-high (MSI-H) was found in nine cases
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with available results. However, no clinical benefit of targeted therapy or immunotherapy
was reported based on NGS-based CGP in the literature.

In this case, several identified clinically relevant copy number variants provided
the rationale for using targeted therapy (Table 2, Figure 5). All of the chromosomal
locations and genes for those involved with hemizygous deletions are in Supplementary
Table S1. The genomic amplification of the MDM2 gene in this tumor, as confirmed by
IHC, might be one of the primary drivers [15]. MDM2 amplification was observed in
18.6% of sarcoma cases based on the TCGA database (PanCancer Atlas). Notably, MDM2
amplification is most common in well-differentiated liposarcoma/atypical lipomatous
tumors, dedifferentiated liposarcoma, intimal sarcoma, and low-grade osteosarcoma [15].
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Moreover, a homozygous deletion of CDKN2A was also found, implying that the
p14/MDM2/p53 axis played an essential role in tumorigenesis in this particular case.
MDM2 has been reported to be associated with tumorigenesis in multiple solid tumors and
sarcoma, as it inhibits the function of p53 (a tumor suppressor) via ubiquitination, leading
to proteasomal degradation. Targeting MDM2 alone or in combination with other agents
could be a therapeutic strategy in cancer treatment [16,17]. However, MDM2 inhibitors are
still under investigation in early clinical trials and are clinically unavailable [17,18]. In ad-
dition, the homozygous deletion of CDKN2A and hemizygous of RB1 were observed, and
CDK4/6 inhibitors (palbociclib, ribociclib, and abemaciclib) may be an off-label option [19].
As a result of the cytostatic effects of CDK4/6 inhibitor monotherapy and insufficient
clinical evidence, CDK4/6 inhibitors were not suggested for this patient.

Alternatively, the observed hemizygous deletions of several DDR genes (RAD50,
BRCA2, BLM, CHEK1, MRE11, PTEN, ATM, and H2AX) might highlight a possible ther-
apeutic route. According to Sanmartin et al., haploinsufficiency of DDR genes localized
in 11q may confer higher sensitivity to olaparib treatment in neuroblastomas [20]. The
collective haploinsufficiency from the 11q-loss would lead to a compromised DDR pathway.
As DNA damage can occur at any time or position of the genome, the DDR pathway is
essential to safeguard the genome’s integrity [21]. This repair mechanism can be exploited
by cancer cells to facilitate the maintenance of cell viability, and a deficiency of this repair
mechanism results in cancer susceptibility [22]. This deficiency also indicates the use of
PARP inhibitors.
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Clinical trials have demonstrated the effective induction of synthetic lethality in tu-
mors harboring BRCA1/2 pathogenic mutations and the loss or disruption of crucial HRR
genes [23–25]. The copy number loss of BRCAness genes such as MRE11, CHEK1, RAD51,
PTEN deficiency; knockdown of RAD50; and BLM have all conferred sensitivity to PARP
inhibitors across different tumor types [26–32]. Furthermore, PARP inhibitors significantly
improved survival outcomes in several studies, both as monotherapy (e.g., TOPARP-B and
QUADRA) [33,34] and combination therapy (e.g., PAOLA-1/ENGOT-ov25) [35]. These
preclinical and clinical studies support expanding different PARP inhibitor treatments to
patients with DDR-positive tumor types beyond those with BRCA mutations. Olaparib,
an FDA-approved PARP inhibitor, has accumulated evidence establishing a relatively
profound and sustained antitumor response across different tumor types, such as ovarian
cancer, breast cancer, and pancreatic cancer, associated with germline BRCA1/2 muta-
tions [36]. No documented PPAS cases harboring haploinsufficiency of DDR genes treated
with PARP inhibitors have been reported to our knowledge. This case report provides a
possible novel strategy for patients with such rare malignancies.

5. Conclusions

Given the lack of targeted therapies for patients with PPAS, olaparib could be a
promising therapeutic agent for patients with disseminated PPAS harboring actionable
haploinsufficiency of DDR genes. Future studies using NGS-based CGP to guide the
treatment of PPAS-harboring haploinsufficiency of DDR genes are eagerly awaited.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm11050357/s1, Table S1: Chromosomal locations and genes involved associated with
hemizygous deletions in Figure 4.
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