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ABSTRACT: Endometrial cancer (EC) ranks as the sixth
common cancer for women worldwide. To better distin-
guish cancer subtypes and identify effective early diagnos-
tic biomarkers, we need improved understanding of the
biological mechanisms associated with EC dysregulated
genes. Although there is a wealth of clinical and molec-
ular information relevant to EC in the literature, there
has been no systematic summary of EC-implicated genes.
In this study, we developed a literature-based database
ECGene (Endometrial Cancer Gene database) with
comprehensive annotations. ECGene features manual
curation of 414 genes from thousands of publications,
results from eight EC gene expression datasets, precom-
putation of coexpressed long noncoding RNAs, and an
EC-implicated gene interactome. In the current release, we
generated and comprehensively annotated a list of 458 EC-
implicated genes. We found the top-ranked EC-implicated
genes are frequently mutated in The Cancer Genome Atlas
(TCGA) tumor samples. Furthermore, systematic analysis
of coexpressed lncRNAs provided insight into the impor-
tant roles of lncRNA in EC development. ECGene has
a user-friendly Web interface and is freely available at
http://ecgene.bioinfo-minzhao.org/. As the first literature-
based online resource for EC, ECGene serves as a useful
gateway for researchers to explore EC genetics.
Hum Mutat 37:337–343, 2016. Published 2015 Wiley Periodi-
cals, Inc.∗
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Introduction
Endometrial cancer (EC; cancer of the uterine corpus) is the

sixth most commonly diagnosed cancer in women worldwide
[Ferlay et al., 2015]. It is estimated that approximately 10,170 women
will die from EC in the United States in 2015 (Siegel, et al., 2015).
The majority of EC cases (53%) are from developed countries,
with the highest incidence of this cancer reported in Northern
America and Europe (Ferlay, et al., 2015). Accumulated
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histological and molecular evidence have classified EC as two dis-
tinct types (Bokhman, 1983; Dedes, et al., 2011), type I and type II
carcinomas. Type I ECs, comprising approximately 80% of new EC
cases, are of endometrioid histology and characterized by expression
of the estrogen receptor and progesterone receptor. Type II ECs are
nonendometrioid in histology, often with clear-cell or serous papil-
lary morphology (Dedes, et al., 2011). Type II EC tumors tend to be
high grade, poorly differentiated tumors, and are associated with a
more aggressive phenotype. Although type II tumors make up only
�20% of all EC cases, they are responsible for a high proportion of
EC-related deaths (44%) (Hamilton, et al., 2006).

Despite the distinct morphologic and clinical features of the two
EC subtypes, most EC patients are treated with the same chemother-
apy, without an effective screening strategy in place to distinguish EC
subtypes. Similar to other cancers, EC is remarkably heterogeneous
at the cellular and molecular levels. The uncontrolled cell growth
of EC results from promoter methylation (Tao and Freudenheim,
2010), copy-number alteration of tumor suppressor genes and onco-
genes (Zhao, et al., 2013e), and dysregulated expression of mRNA,
microRNA (Banno, et al., 2013), and long noncoding RNAs (He,
et al., 2014). Therefore, prioritization of genes reported to be associ-
ated with EC and understanding their function is critical to identify
potential targets for precise treatment of this disease. Moreover, inte-
gration of known genes from published databases and the literature
is necessary to evaluate their consistency. Here, we aim to develop
the first literature-based genetic resource for EC. With extensive an-
notations, ECGene will serve as a valuable platform allowing users
to efficiently retrieve information about literature, gene regulation,
and gene interactions of EC-implicated genes.

Materials and Methods

Data Integration from Existing Bioinformatics Resources

To survey EC-related genetic information, we performed exten-
sive literature curation and data integration. EC-implicated genes
were first integrated from three databases: four genes from OMIM
(Online Mendelian Inheritance in Man) (Amberger, et al., 2009);
113 unique genes from 149 published studies from GAD (The Ge-
netic Association database) (Becker, et al., 2004); and 14 candidate
genes identified from GWASCatalog (Welter, et al., 2014). Com-
bined, we harvested a nonredundant EC-implicated gene list of
127 human genes.

Literature Collection and Gene Curation

A literature query of the GeneRif (Gene Reference Into Func-
tion) database was performed on Apr 5, 2015 to identify additional
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EC-implicated genes and relevant publications. GeneRif is a collec-
tion of short descriptions about gene function in the Entrez Gene
database (Lu, et al., 2007). By matching those GeneRif records with
both endometrial and cancer keywords: ([endometrial OR uter-
ine] AND [cancer OR tumor OR carcinoma]), we retrieved 845
PubMed abstracts. For further curation, we downloaded all 845
PubMed abstracts in a Medline format for manual review. Curation
of EC-implicated genes involved three steps: (1) grouping all 845
retrieved abstracts based on their sematic similarity, (2) extracting
descriptions related to EC, and (3) collecting gene names from the
descriptions and mapping the gene names to Entrez gene database.
Here, we used Entrez gene IDs to cross-link the same genes from dif-
ferent public bioinformatics databases. For example, in the sentence
“COX-2 is upregulated in endometrial cancer and facilitates tumor
growth via angiogenesis produced in associated with VEGF and TP.
Specific inhibition of COX-2 may be a useful therapeutic intervention
in endometrial cancer” (Fujiwaki, et al., 2002), the gene COX-2 was
one of the synonyms of PTGS2 in the current Entrez gene database.
For those studies not on human, we mapped all the curated genes to
their corresponding human homologous groups using NCBI Ho-
moloGene database as implemented previously (Kong, et al., 2013;
Zhao, et al., 2013d; Brown, et al., 2015).

In total, we identified 414 Entrez human genes from 747 PubMed
abstracts. By integrating the 127 EC-implicated genes identified
from OMIM, GAD, and the GWASCatalog, we consolidated a list of
458 EC-implicated genes, including 423 protein coding and 35 non-
coding genes (Table S1). As shown in Supp. Figure S1, the majority
of EC-implicated genes were identified from our literature curation.

Biological Annotation

To understand the biological function of the EC-implicated genes,
functional annotations for each gene was collected. Basic gene in-
formation such as gene names and DNA/protein sequences were
integrated from the Entrez gene database (Sayers, et al., 2012).
Cross-links to the rate-limiting enzyme database RLEdb (Zhao,
et al., 2009) and text mining server iHOP (Fernandez, et al.,
2007) were also provided. Associated biological pathways for genes
were retrieved from BioCyc (Caspi, et al., 2014), KEGG Pathway
(Kanehisa, et al., 2008), PID Curated (Schaefer, et al., 2009),
PathLocdb (Zhao and Qu, 2010), PANTHER (Thomas, et al., 2003),
and PID Reactome (Matthews, et al., 2009; Croft, et al., 2011). Ad-
ditionally, reported associations with other diseases were integrated
from the KEGG Disease database (Kanehisa, et al., 2010), Fundo
(Du, et al., 2009; Osborne, et al., 2009), GAD (Becker, et al., 2004),
NHGRI (Hindorff, et al., 2009), and OMIM (Sayers, et al., 2011).
Post-translational modifications and transcription factor regulation
information was collected from dbPTM (Lee, et al., 2009) and the
TRANSFAC database (Heinemeyer, et al., 1999), respectively. Digital
gene expression information for 184 tumor samples and 84 normal
tissues were integrated from BioGPS (Su, et al., 2004). Informa-
tion about methylation sites were integrated from DiseaseMeth (Lv,
et al., 2012), and protein–protein interactions from the Pathway
Commons database (Cerami, et al., 2011).

Network Reconstruction

To present a broader biological picture of EC, we collected
all pathway-based gene interactions associated with the 458 EC-
implicated genes, using a nonredundant pathway-based human in-
teractome from PathCommons. In total, the final pathway-based in-
teractome contained 3,629 genes and 36,034 connections. To create
a subnetwork related to EC, we adopted the subnetwork extraction

approach (Zhao, et al., 2013b). In this algorithm, all inputted EC-
implicated genes were mapped to the integrated interactome and the
subnetwork extracted by connecting input genes by their shortest
paths.

Unlike the functional exploration of a single gene, biological net-
works are often too complex to test the function on each element.
However, because a few simple rules of topology relate to network
function, the topological properties of a network are often used to
characterize its global function (Barabasi and Oltvai, 2004). Here,
the topological analyses were performed using NetworkAnalyzer
(Smoot, et al., 2011). For each gene in the network, we calculated the
number of connections for a node, also known as degree (Barabasi
and Oltvai, 2004), and the short path, indicating the shortest steps
for one gene to reach another (Barabasi and Oltvai, 2004). Cytoscape
2.8 was used for final network visualization (Smoot, et al., 2011).

Coexpression with Long Noncoding RNAs in Matched
Cancer Samples

To provide coexpression patterns of EC-implicated genes with
long noncoding RNAs (lncRNAs), we downloaded lncRNA expres-
sion data for The Cancer Genome Atlas (TCGA) EC patients (Cancer
Genome Atlas Research Network et al., 2013) from the MiTranscrip-
tome database (Iyer, et al., 2015). EC-implicated gene expression
data for the same patients were extracted from the TCGA data
portal (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp). The ex-
pression correlation between each of the 458 EC-implicated genes
and all 17,250 lncRNAs was assessed using Spearman’s correlation
scores.

The expression correlation scores and corresponding P values
were calculated using R (version 2.14.0), and a false discovery
rate (FDR) was applied to correct for multiple testing. For all EC-
implicated gene and lncRNA pairs, we required expression corre-
lation scores greater than 0.3 and FDR-adjusted P values less than
0.01.

Functional Enrichment Analysis

The statistically representative pathways from KEGG and Reac-
tome for each gene set were identified by ToppFun (Aerts, et al.,
2006). In these functional enrichment analyses, all human protein-
coding genes were used as background. P values were corrected for
multiple testing using Benjamini–Hochberg adjustments. Only hu-
man pathways with a corrected P value less than 0.01 for any gene
set were considered significant.

Results and Discussion

Web Interface

Based on a systematic survey of EC-related genes in public re-
sources and literature, we have developed a user-friendly Web in-
terface to access all annotated information. Data and information
in ECGene are stored in a MySQL relational database on a Linux
server. Web-based queries to the database are implemented in Perl
scripts running in an Apache environment. ECGene allows users to
quickly query by GeneID or gene symbol and run BLAST searches
against all the sequences in ECGene. For advanced systems biology-
based studies, ECGene provides EC-implicated gene nucleotide and
protein sequences in a plain text format.
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Figure 1. Web interface of ECGene database. A: Example of the general information provided for each endometrial cancer-implicated gene. B:
Example of gene-supporting literature with keywords highlighted. C: Box plots of gene expression profiles in normal tissues. D: Gene expression
data from endometrial cancer tissue expression studies. E: Coexpressed lncRNAs in TCGA endometrial cancer samples. F: Query interface for text
search. G: The quick search interface for ECGene database. H: BLAST search interface for comparing query against all sequences in ECGene.

We classified gene annotations into nine groups: “Gene informa-
tion,” “Literature,” “T1/T2 Diff,” “Expression,” “lncRNA,” “Regula-
tion,” “Mutation,” “Homolog,” and “Interaction” (Fig. 1A). On the
“Gene information” page, the official gene symbol, synonyms, gene
functions, involved pathways and diseases, and nucleotide/protein
sequences are listed. Cross-references to other public bioinformat-
ics databases such as iHOP, NCBI Entrez Gene, and KEGG pathway
database are also included. The associated references for the queried
gene are provided on the “Literature” page. Abstracts are pro-
vided and highlighted with cancer keywords (Fig. 1B). The “T1/T2
Diff” page displays type I and type II EC expression results from
eight microarray expression studies (Fig. 1D; Supp. Table S2). In
the “Expression” page, the queried gene’s comprehensive expres-
sion profile from 84 normal and 184 tumor samples is provided
(Fig. 1C). The “lncRNA” page presents correlation coefficients and
associated P values for lncRNAs significantly correlated with the

queried gene’s expression using EC samples from TCGA (Fig. 1E).
To view coexpressed lncRNA expression patterns across all TCGA
tissue types in the MiTranscriptome database (Iyer, et al., 2015),
users can click on the lncRNA ID. Interactions of the queried gene
with transcription factors, its post-translational modifications, and
methylation information are found in the “Regulation” page. The
“Mutation” page presents classified somatic mutations and muta-
tion type (e.g., substitution, insertion, and deletion) from the most
COSMIC database. The homologous sequences from other model
species, integrated from NCBI HomoloGene database, are provided
on the “Homolog” page. Finally, protein–protein interaction data
from PathwayCommons database can be found on the “Interaction”
page.

ECGene supports a variety of ways to browse EC-implicated
genes, including the highlighted KEGG map and chromosome loca-
tion. KEGG maps have been marked with all EC-implicated genes in
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Figure 2. The enriched gene ontology terms of the top 100 ranked EC-implicated genes. The X-axis is the logarithm of corrected P values. The
Y-axis represents the similarity between the enriched gene ontology terms.

color. Using chromosome browser, users can click on a chromosome
of interest to access all EC-implicated genes on that chromosome,
with hyperlinks provided to access gene annotation pages.

Advanced search options are available to query ECGene by gene
name or functional characteristics, including chromosome location,
interaction partner, biological process, and disease (Fig. 1F). In
addition, users can access curated references using a keyword search.
A quick search function on the top right of each page is also provided
to query by gene symbols or Gene IDs quickly (Fig. 1G).

In the BLAST page, users can evaluate sequence similarity by
inputting their sequence of interest. The homologs of the input
sequence are searched among the human genes in ECGene using
BLAST. The sequence alignment options can be set by E-value and
identity score (Fig. 1H).

Gene Ranking for all the Genes in ECGene and the Enriched
Pathways for the Top-Ranked Genes

We explored the relative importance, mutational frequency, and
network properties of all 458 EC-implicated genes identified from
public resources and the literature. Since hundreds of genes are
associated with EC, it is necessary to systematically prioritize the
most informative genes. Using the ToppGene gene ranking tool
(Aerts, et al., 2006), we ranked the relative importance for all the
423 protein-coding genes in ECGene. To build a ranking model us-
ing ToppGene, we defined a training set with the 25 most reliable
genes, that is, genes with 10 or more publications in our database
(Supp. Table S3, training set). ToppGene then used the biological

feature annotations from the training set to rank the remaining 399
genes. Biological feature annotations included gene coexpression,
gene ontology evidence, literature mining data, pathway annota-
tions, protein domain, and other sequence features. Finally, Topp-
Gene combined all rankings, using order statistics, to construct a
global ranking (Supp. Table S3, ranking result). Not surprisingly,
some top-ranked genes from the global ranking are genes that have
been well-studied for EC (e.g., both EGFR and CDH1 have seven
references in ECGene). However, other top-ranked genes were only
supported by a single publication regarding their abnormal expres-
sion in EC samples: MUC8 (Hebbar, et al., 2005), TARP (Zhao,
et al., 2013a), and MAPK1 (Gong, et al., 2007). Further exper-
imental validation of these three genes in EC may be deserved
since their functional features are similar to those in the training
set.

Functional enrichment analysis revealed that the top 100 ranked
genes are enriched in cancer-related and reproductive system bio-
logical processes according to gene ontology (Fig. 2). In particular,
the top 100 ranked genes are associated with a number of key cancer
pathways, such as the “Pathways in cancer” (corrected P value = 5.2
× 10–5) and “p53 pathway feedback loops 2” (corrected P value =

6.56 × 10–5) (Supp. Table S4). Interestingly, the most significantly
enriched pathway is “Signaling by SCF-KIT” (corrected P value =

2.9 × 10–5), a system that has been associated with carcinogenesis of
the female genital tract (Inoue, et al., 1994). SCF (stem cell factor) is
a cytokine that binds to the c-KIT receptor (CD117) to promote cell
growth. A recent study found targeting of the SCF/CD117 axis with
imatinib-sensitized EC cells to cisplatin, suggesting this axis may be
a potential therapeutic target (Zhang, et al., 2014).
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Figure 3. The mutational landscape for the top 99 ranked endometrial cancer genes in multiple cancers.

Mutational Pattern for the Top 100 Ranked Genes in ECGene

To identify highly mutated genes for further screening in relevant
cancers, we systematically examined the somatic mutational pattern
of the top 100 ranked genes in various cancer genomics datasets us-
ing cBio portal (Gao, et al., 2013). To avoid mutation bias from
TP53 in the top 100 ranked gene set, it was excluded from muta-
tional analysis across multiple cancers. As shown in Figure 3, the
top 99 ranked EC-implicated genes are frequently mutated in other
cancer types such as colorectal and lung squamous cell carcinoma.
These 99 genes are mutated in 98.9% patients of TCGA lung squa-
mous cell carcinoma (176 individuals; Supp. Table S5), and among
98.8% patients of TCGA EC cohort (239 individuals) (Supp. Table
S5). A similar prevalence of mutations (mutation rate over 90%)
can be found in 31 other cancer mutation studies from 19 cancer
types. This suggests that EC may have common genetic mutations
with other carcinomas. Notably, those tumors adjacent to the uterus,
such as bladder and colorectal cancers, have the most frequent mu-
tational rate. This implies the adjacent tumors may have similar
driver mutations in relation to the tissue of origin, an observation
reported by the TCGA pan-cancer mutational analysis (Kandoth,
et al., 2013). Further exploration of the mutational pattern among
239 TCGA EC samples (Supp. Fig. S2 and Supp. Table S6) found
the most frequently mutated genes (� 20% mutation frequency)
are PTEN, PIK3CA, PIK3R1, CTNNB1, TP53, and KRAS. Taken
together, these results may provide new avenues to develop novel
therapeutics for those highly mutated genes in EC by repurposing
the available drugs used in other cancers.

Reconstruction of EC-Implicated Interactome

To explore how the EC-implicated genes interact with each other,
we accessed large-scale protein–protein interaction data. Only reli-
able interactions were used in this analysis to avoid the high level of
noise (Cerami, et al., 2011). EC-implicated genes were mapped to
the pathway-based interactome using a module searching method,

as described previously (Zhao, et al., 2013b). The reconstructed EC
pathway interactome comprised 290 genes and 769 gene–gene in-
teractions (Fig. 4A). Of the 290 nodes, 246 are included in ECGene.
The remaining 44 are linker genes to connect the EC genes to form
a fully connected map.

Network topological analyses indicate the majority of genes are
closely connected in the reconstructed map. This not only supports
the accuracy of our data, but also implies that EC-implicated genes
can form a high-density cellular module. As shown in Figure 4B, the
majority of nodes have multiple connections, with only 89 of the
290 nodes in the reconstructed map displaying one connection. The
degrees of all genes in our reconstructed EC map follow a power
law distribution P(k)�k–b, where P(k) is the probability that a gene
interacts with other k genes and b is an exponent with an estimated
value of 1.3. This means that our EC pathway map is more closely
connected compared with all interactions in the human interac-
tome, where most of nodes were sparsely connected with exponent
b given as 2.9 (Jin, et al., 2013). Topological analysis on the shortest
path distribution also confirmed dense modulation, with 75.9% of
the node separated by only four steps (Fig. 4C; Supp. Table S7).
With dense modularity, the hub nodes (defined as nodes with 20
or more connections) in this network may have prominent roles in
the transfer of cellular signals by the shortest path. Eleven hub genes
were identified in our network: TP53 (47), MYC (37), CTNNB1
(33), AKT1 (23), NFKB1 (23), AR (22), ESR1 (22), HDAC1 (22),
FOS (21), PIK3CA (21), and PIK3R1 (20) (Supp. Table S7). All 11
genes were present in ECGene. Annotation of these eleven genes
found they are enriched in “cellular response to endogenous stimu-
lus” and “enzyme-linked receptor protein signaling pathway” (both
corrected P values are 1.48×10–11) (Supp. Table S8). Moreover, 10
genes are involved in KEGG “Pathway in cancer” (corrected P value
= 5.34 x –12), “Colorectal cancer” (corrected P value = 1.94×10–11),
“Prostate cancer” (corrected P value = 8.98×10–11), and “Endome-
trial cancer” (corrected P value = 3.39×10–10). In summary, our
reconstructed map not only discovers multiple cancer pathways but
also reveals a dense modular structure of previously unconnected
EC signaling pathways.
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Figure 4. Reconstructed endometrial cancer map using protein–protein interaction data. A: The 246 genes in orange are genes from the core
dataset in ECGene. The remaining 44 genes in blue are linker genes that bridge the 246 genes. B: The degree distribution. C: The short path length
frequency.

Coexpressed lncRNAs with EC-Implicated Genes

To explore the role of lncRNAs in EC, we assessed the coex-
pression between 423 protein-coding EC-implicated genes with
all 17,250 lncRNA transcripts from the MiTranscriptome database
(Iyer, et al., 2015). We found 43 EC-implicated genes that each had
100 or more positively coexpressed lncRNAs. As shown in Supp.
Table S9, these genes are mainly enriched in the nucleoplasm (cor-
rected P value = 1.97×10–10), associated with cell cycle (corrected
P value = 1.83 10 –9), and chromosome organization (corrected P
value = 2.71×10–9). For example, TERF1 was detected to be pos-
itively coexpressed with 539 lncRNAs in TCGA EC samples. The
full name of this gene is Telomeric Repeat Binding Factor (NIMA-
Interacting) 1, which is present at telomeres throughout the cell
cycle, inhibiting telomerase to interrupt the elongation of individ-
ual chromosome ends. These preliminary results imply coexpressed
lncRNAs may be critical for tumorigenesis processes, such as cell
cycle.

Conclusions

In conclusion, we have consolidated 458 EC-implicated genes
(423 protein-coding and 35 noncoding genes) by systematic data in-
tegration and literature curation. A user-friendly Web interface was
developed to access all gene, annotation, and literature information
in our database, ECGene. We will continue to collect EC-implicated
genes from literatures in the future. In addition, we also plan to
develop more tools that allow users to custom browse and search
the Website.
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