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Abstract

Background: Hyperresponsiveness to inhaled non-infectious microbial particles (NIMPs) has been associated with illnesses
in the airways. Hypersensitivity pneumonitis (HP) is considered to be the prototype for these NIMPs-related diseases;
however, there is no consensus on the definitions or diagnostic criteria for HP and the spectrum of related illnesses.

Methods and Findings: In order to identify the possible diagnostic markers for illnesses associated with NIMPs in alveolar
lining fluid, we performed a proteomic analysis using a two-dimensional difference gel electrophoresis on bronchoalveolar
lavage (BAL) fluid from patients with exposure to NIMPs in the context of damp building-related illness (DBRI) or conditions
on the borderline to acute HP, designated here as agricultural type of microbial exposure (AME). Samples from patients with
HP and sarcoidosis (SARC) were included for reference. Results were compared to results of healthy subjects (CTR). Western
blot was used for validation of potential marker proteins from BAL fluid and plasma. Protein expression patterns suggest a
close similarity between AME and HP, while DBRI was similar to CTR. However, in DBRI the levels of the inflammation
associated molecules galectin-3 and alpha-1-antitrypsin were increased. A novel finding emerging from this study was the
increases of semenogelin levels in BAL fluid from patients with AME, HP and SARC. Histone 4 levels were increased in AME,
HP and SARC. Elevated plasma levels of histone 2B were detected in HP and SARC, suggesting it to be a potential blood
indicator for inflammatory diseases of the lungs.

Conclusions: In this study, the proteomic changes in bronchoalveolar lavage of DBRI patients were distinct from other NIMP
exposure associated lung diseases, while changes in AME overlapped those observed for HP patient samples. Some of the
proteins identified in this study, semenogelin and histone 4, could function as diagnostic markers for differential diagnosis
between DBRI and HP-like conditions.
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Introduction

Certain occupations and surroundings increase the risk of

exposure to inhaled non-infectious microbial particles, referred to

as NIMPs in this article. NIMPs contain microbial cell wall

structures and other microbial components, which are not

infectious, but can activate immune response via Toll-like

receptors and other pattern recognition receptors [1,2]. Working

in an agricultural environment, especially handling of moldy hay

or grain, exposes farm workers to NIMPs. The exposure to the

indoor air in damp buildings, will also cause exposure for NIMPs.

Hypersensitivity pneumonitis (HP), is a well-known yet complex

syndrome associated with the exposure to NIMPs. HP is an

inflammatory disease of the lung alveoli caused by exposure to a

wide range of airborne substances: bacteria, fungi, even inorganic

materials like certain chemicals. In some cases HP can also be

caused by exposure to damp buildings [3]. Only a small portion of

those exposed (1–15%), develop HP [4,5]. According to a two hit

hypothesis suggested to explain this: genetic factors (first hit) and

exposure patterns (second hit) are required for the NIMP exposure

to cause HP [6].

At least four separate sets of differing diagnostic criteria are

currently in use for HP evaluation [7]. HP is traditionally divided

in acute, subacute and chronic forms although there is no

generally accepted definitions of these different and often

overlapping forms of HP [6,7], despite the long diagnostic history

of this disease. Substantial diagnostic problems are also encoun-
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tered with the severe fibrosing forms of HP which start to resemble

other forms of interstitial pulmonary fibroses and with the less

severe HP-like conditions which however do not fulfil all of the

diagnostic criteria [8].

Damp building-related illness (DBRI) is a much less well-

established illness than HP, even though a consensus exists that

dampness and mould in buildings are a risk factor for health [9–

11]. DBRI has been typically associated with prolonged exposure

to water-damaged buildings, as in the case of the HP only some of

those exposed will develop symptoms [12,13]. The DBRI-

associated symptoms tend to be diverse: fever, headache, myalgias,

and respiratory symptoms like cough that in some respects

resemble HP. After the initial phase an exposure to a damp

building can result in persistent respiratory symptoms, especially

asthma and increased sensitivity to quality problems in the indoor

air (possibly due to sensitization to the organic or inorganic

compounds associated with indoor air in damp buildings) even

though the primary source of the exposure has been eliminated

[14,15]. There are no well-defined diagnostic criteria for DBRIs,

and DBRI-specific diagnostic laboratory tests are lacking. Earlier

studies of our group have shown that exposure to conditions of

damp buildings increased lymphocyte levels in the BAL fluid of

DBRI patients [16]. There is no specific quantity or quality of

NIMPs which can be stated to designate an exposure state causing

significant health effects. In other words, no specific causal agents

of adverse health effects in damp buildings have yet been identified

conclusively [11,17].

Bronchoalveolar lavage (BAL) is widely used to obtain

diagnostic information about interstitial lung diseases (ILDs)

[18]. The BAL procedure provides unique insights into the

condition of the alveolar spaces and thus BAL findings, like

immune cell patterns, play an important role in supporting the

diagnosis of interstitial lung diseases when combined with other

clinical data and thoracic tomography [19].

Previous studies have reported that pulmonary disorders such as

idiopathic interstitial fibrosis, sarcoidosis and asthma alter the

protein composition of bronchoalveolar lavage [20,21]. Analysis of

BAL sample by two-dimensional gel electrophoresis has been

shown to be a useful way of studying the pathogenesis of lung

diseases [22–24].

This study originated from the clinical differential diagnostic

problems posed by DBRI on the one hand and on the other

agricultural NIMP exposures (AME) that often do not meet the

criteria for HP. The study had two goals, the first was to examine

the proteomic changes in alveolar lining fluid in conditions where

exposure to NIMPs had resulted in a pathologic condition in order

to discover possible diagnostic markers for this type of illness. The

second goal was to examine the relationship between HP, AME

and DBRI from a proteomic point of view.

We collected BAL fluid from patients with DBRI or AME with

symptoms and findings that mostly fall short of classic HP. In

addition, samples from HP patients were used as the reference

material of an established lung disease associated with inhaled

NIMPs, while samples from sarcoidosis (SARC) patients served as

the reference material for a lung disease in which there is no direct

association with NIMP exposure. Finally healthy non-smoking

subjects served as controls. The two-dimensional difference gel

electrophoresis (2D-DIGE) was used to identify the differences in

protein expression between BAL fluids from different patient

groups. Potential biomarker proteins were validated with Western

blotting. The results revealed a clear difference in the protein

expression patterns of alveolar lining fluid between DBRI and the

other NIMP exposure associated groups: AME and HP. Four

potential biomarkers (alpha-1-antitrypsin, galectin-3, histone H4,

semenogelin I) were identified and these may be useful in

monitoring the inflammatory state of the lung diseases after

NIMP exposure, although the markers do not appear to be specific

for illnesses associated with NIMPs.

Materials and Methods

Patients and collection of the BAL and plasma samples
BAL samples were from patients examined in the Finnish

Institute of Occupational Health (FIOH) in 1997–2008. The

patients had been sent to the occupational diseases clinic at the

FIOH because of suspicion of occupation related respiratory

diseases. The study targeted non-smoking patients with chronic

symptoms (for more than one year) compatible with DBRI (n = 17)

or symptoms related to agricultural exposure (AME, n = 9) for

NIMPs. Those patients who had been treated with oral steroids

during the past two months were excluded. An occupational

physician experienced in indoor air problems conducted a

retrospective evaluation of each patient’s exposure at work on

the basis of available documents in the patient records. For the

patients in the DBRI group, the documents included reports on

building structure damage and, in most instances, microbial

measurements of structural materials taken from the building. In

order to be included in the study, the exposure to NIMPs had to

be evaluated as being clear and significant. For the patients in the

agricultural exposure group, AME, the criterion for NIMP

exposure was handling of organic moldy material.

BAL fluids from patients with HP (n = 10) served as the

reference material for an established lung disease associated to

NIMPs, and sarcoidosis (n = 11), served as the reference material

for a lung disease with no direct association with NIMPs, these

specimens had been collected in an earlier study from the Meltola

Hospital (a former pulmonary hospital) [25]. For HP the

diagnostic criteria according to Terho [26] were used. In all of

the HP cases acute symptoms were present and the illnesses can be

considered to be in an acute phase [27]. The control group (CTR)

of this study comprised of healthy individuals from the personnel

of the Meltola Hospital (n = 16) and FIOH (n = 4) with no smoking

histories. All tested plasma samples (available from CTR, HP and

SARC groups) were from the Meltola Hospital. The remainder of

the healthy controls had been obtained at the FIOH in year 2001

(n = 4/20). Both of these samplings of healthy controls were used

in 2D-DIGE analysis. In the Western blot validation studies, six

BAL samples from healthy volunteers from FIOH with positive

smoking histories served as an additional control group for

monitoring the effect of smoking.

In all cases the bronchoalveolar lavage was performed as

described in [28]. After pooling of the BAL fluid, a 20 ml sample

was separated and centrifuged at 1000 rpm for 5 minutes. The

supernatant was frozen at 220uC. Sample freeze-thaw cycles were

avoided by using sample aliquots. Both controls and disease

samples were stored similarly. The investigated BAL samples were

free of excessive blood- or epithelial contamination [25]. Patient

characteristics and additional information about the BAL fluid

content are given in Table 1. Major symptoms and high-resolution

computed tomography (HRCT) findings of the DBRI and AME

group patients are described in Table 2. Written consent for

participation in this study was obtained for the samples taken from

FIOH patients. The samples of patients from Meltola hospital

were originally intended for and used in a different study and

written or verbal consent was not required for this study. The

Coordinating Ethics Committee at the Hospital District of

Helsinki and Uusimaa reviewed and approved the study protocols
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including the use of the samples from the Meltola hospital (Diary

number 320/13/03/00/09).

2-DIGE and DeCyder analysis
Four-to six samples per study group were used in the 2D-DIGE.

About 10 ml of each BAL sample was concentrated with

ultrafiltration (Amicon Ultra-15 5000 MWCO, Millipore, Ireland)

to 100 ml. The sample was then depleted of albumin and

immunoglobulin G to facilitate higher sample loading, and to

improve detection of low-abundance proteins. This procedure was

done with the ProteoPrep Immunoaffinity Albumin and IgG

Depletion Kit (Sigma Aldrich, St. Louis, MO, USA) according to

the manufacturer’s protocol. After the determination of the

protein concentration (BioRad kit) BALF proteins were precipi-

tated with 2-D Clean-Up Kit (GE Healthcare) and dissolved to a

protein concentration of 2 mg/ml in 7 M urea, 2 M thiourea, 4%

CHAPS (Anatrace, Maumee, OH, USA) and 30 mM Tris-HCl,

pH 8.8. Then, 10 ml from each sample was pooled for the internal

Table 1. Patient characteristics.

Diagnosis DBRIa AMEb HPc SARCd Controls In total

No. of cases (%) 17 (25.4) 9 (13.4) 10 (14.9) 11 (16.4) 20 (29.9) 67

Male# (%) 3 (17.6) 3 (33.3) 8 (80) 4 (36.4) 9 (45) 27 (40.3)

Female# (%) 14 (82.4) 6 (66.7) 2 (20) 7 (63.6) 11 (55) 40 (59.7)

Age

Median 48 47 54 48 35 45

Mean (SD) 48 (8) 48 (6) 53 (10) 45 (13) 36 (9) 45 (11)

Range 34–61 41–57 33–68 27–65 22–52 22–68

Albumin mg/l BALfluid

Median 30 36 39 66 23 33

Mean (SD) 36 (22) 47 (29) 67* (63*) 82 (48) 23* (9*) 51 (24)

Cells610E6/l BALfluid

Median 122 278 280 114 125* 146

Mean (SD) 140 (73) 281 (127) 367 (340) 178 (111) 128 (61)* 200 (176)

Lymphocytes %

Median 20 28 52 35 18* 22

Mean (SD) 25 (16) 31 (26) 52 (21) 26 (15) 18 (9)* 29 (20)

Neutrophils %

Median 3* 2 2* 1* 1** 1

Mean (SD) 3 (3)* 6 (9) 3 (3)* 1 (1)* 2 (3)** 3 (5)

*Data available for $80% of samples.
**Data available for $75% of samples.
aDamp building-related illness.
bAgricultural type of microbial exposure.
cHypersensitivity pneumonitis.
dSarcoidosis.
doi:10.1371/journal.pone.0102624.t001

Table 2. Major symptoms and HRCT findings.

DBRI n=17 AME n=9

Cough 14 8

Dyspnea 13 8

Fever and chills 15 9

Duration of symptomsa

0–5 years 9 6

6–10 years 4 1

.10 years 4 2

Asthma diagnosis 8 2

HRCTb findings compatible with HPc/HRCT made none/12 3/9

abefore BAL procedure.
bHRCT= high-resolution computed tomography.
cHypersensitivity pneumonitis.
doi:10.1371/journal.pone.0102624.t002
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standard and 40 mg of BALF proteins were labelled using 200

pmol Cy3 or Cy5 dyes (CyDye DIGE Fluor minimal dyes; GE

Healthcare) according to the Ettan 2-D DIGE instructions. The

Cy2 dye was used as an internal standard whereas Cy3 and Cy5

labellings were randomized evenly between study groups. For each

combined Cy3- and Cy5-labelled sample pair, 40 mg of Cy2-

labelled internal control sample was added prior to the quantita-

tive 2D-DIGE analysis. CyDye labelled protein samples were

separated by isoelectric focusing (IEF) using IPG strips (13 cm, pH

3–10 NL, GE Healthcare). The IEF strips were rehydrated 6

hours in 250 mL of the rehydration solution (7 M urea, 2 M

thiourea, 4% CHAPS, 0.04% bromophenol blue (BPB) containing

0.5% IPG buffer, pH 3–10 NL (GE Healthcare) and 1.2%

DeStreak reagent (GE Healthcare). Samples were absorbed onto

the IPG strips by cup-loading. IEF was performed using Ettan

IPGphor II (GE Healthcare) at 20uC using a limit of 75 mA/strip

as follows: 3 hrs at 150 V, 2 hrs at 300 V, a linear gradient from

300 V to 1000 V for 6 hrs, the 2nd gradient from 1000 V to

8000 V for 2 hrs and finally 2 hrs at 8000 V (total 29 000 Vhrs).

Strips were stored at 220uC and thawed at room temperature just

before the SDS-PAGE analysis. They were incubated first for

15 min in a buffer containing 50 mM Tris–HCl (pH 6.8), 6 M

urea, 2% SDS, 0,04% BPB and 30% glycerol with 1%

dithiothreitol (DTT), followed by a 15 min equilibration in the

same buffer with 2% iodoacetamide (IAA) instead of DTT. The

two-dimensional SDS-PAGE was run on Criterion PreCast gels

(10–20% gradient Tris–HCl gels, BioRad) in a Criterion Dodeca

Cell (BioRad) with 200 V for approximately 75 minutes. Gels

were scanned between low fluorescence glass plates using an Ettan

DIGE Imager (GE Healthcare) at wavelengths of 480 nm for Cy2,

540 nm for Cy3 and 680 nm for Cy5 with 100 mm pixel size. After

scanning, the gels were fixed in 30% ethanol, 1% acetic acid and

silver stained [29]. The cropped images of 2-D DIGE gels were

analyzed for differences in protein expression by means of internal

Cy2 labelled standard using DeCyder 2D 7.0 software (GE

Healthcare). Gel spots with at least a 1.5-fold spot volume ratio

change and a Student’s t-test p value below 0.05 were picked for

identification.

Protein identification
Significantly up- or down-regulated protein spots were in-gel

digested as previously described [30]. In brief, the protein spots

were excised from the gels, reduced with dithiothreitol, and

alkylated with iodoacetamide before in-gel digestion with trypsin

(modified sequencing grade porcine trypsin, 0.04 mg/ml, Promega,

Madison, WI, USA) for 16 h at +37 uC. After removing the

supernatants to fresh tubes, the remaining peptides were extracted

twice from the gel pieces by using 100 ml of 5% formic acid in

50% acetonitrile (ACN). The extracts were then dried in a vacuum

centrifuge, and dissolved in 2% formic acid. Each peptide mixture

was analyzed with an automated nanoflow capillary LC–MS/MS

using CapLC system (Waters, Milford, MS, USA) coupled to an

electronspray ionization quadrupole time-of-flight (Q-TOF) mass

spectrometer (Waters). Reversed phase separations were accom-

plished with a 75 mm615 cm NanoEase Atlantis dC18 column at a

flow rate of 200 nl/min. Solvent A was 0.1% formic acid in 5%

ACN, and solvent B 0.1% formic acid in 95% ACN. The peptide

separation was achieved with a linear gradient of 0–60% of solvent

B in 30 min.

The obtained mass fragment spectra were analyzed with in-

house Mascot v.2.1 (Matrix Science Ltd., London, UK) and

searched against human or mammalian entries in the NCBInr

database. One missed cleavage was allowed, and searches were

performed with fixed carbamidomethylation of cysteines, and

variable oxidation of methionine, histidine, and tryptophan

residues. A fragment tolerance of 0.2 Da and parent tolerance of

0.5 Da were used with trypsin as the specified digestion enzyme. A

minimum number of two matched peptides or a Mascot score

higher than 70, was considered significant.

DeCyder Extended Data Analysis and GO classification
DeCyder Extended Data Analysis software (Version 7.0, GE

Healthcare) was used for multivariate analysis of protein expres-

sion and protein Gene Ontology –classification based on the

DeCyder 2D 7.0 software data of identified proteins. Protein spots

not presented in at least 75% of the spot maps were removed from

the analysis. Protein enrichment analysis was performed with a

functional annotation tool: DAVID Bioinformatics Resources 6.7.

(http://david.abcc.ncifcrf.gov/).

Western blot
The relative protein expression of semenogelin I, histones 2B

and 4, alpha-1-antitrypsin and galectin-3 in BALF (62 samples)

and in plasma (37 samples) were evaluated by Western blot

analysis to validate proteins identified from 2-DIGE and DeCyder

analysis.

Volumes of 15 ml of BALF samples or 1.5 ml of plasma were run

on 10–20% Tris-HCl Criterion gradient gels (Bio-Rad) at 100 V

for 5 minutes, and 200 V for 60 minutes in running buffer

(Biorad) of 25 mM Tris pH 8.3, 192 mM glycine and 0.1% SDS.

A pool of all of the BALF or plasma samples was used as an

internal standard on each gel to provide a reference from which to

normalize the results. Two different molecular weight markers,

Dual Color (Biorad) and MagicMark (Invitrogen, Carlsbad, CA,

USA), were used in order to improve detection and analysis of

protein bands. Proteins were transferred to polyvinylidene

difluoride membranes (Millipore, Billerica, MA, USA) using the

Criterion Blotter (Biorad) at 300 mA for 2 h in transfer buffer

(25 mM Tris, 192 mM glycine, 20% methanol). Membranes were

blocked with 5% skimmed milk in PBS, and incubated in a tube

roller for 18 h at +4uC with polyclonal primary antibodies histone

H4 (HIS4, anti-rabbit, dilution 1:500) from Cell Signaling

Technology, histone H2B (HIS2B, anti-rabbit, 1:2000) and

semenogelin I (SEM, anti-rabbit, 1:1000) from Abcam, galectin-

3 (GAL3, anti-rabbit, 1:500) from Santa Cruz Biotechnology Inc

and anti-a1-antitrypsin (a1AT, anti-mouse, 1:4000) from AbFron-

tier. The Histone H2B antibody produced at best a weak signal in

Western blots made from BAL samples. Only results obtained with

the histone antibody H4 are shown for BAL samples. The H4

antibody did not produce any signal with the plasma samples (data

not shown). Immunoblots were stained with polyclonal goat anti-

rabbit or anti-mouse peroxidase-conjugated immunoglobulins

(Dako Cytomaton, Glostrup, Denmark) and visualized with

chemiluminescent HRP-substrate ECL detection reagent (Perkin

Elmer, Waltham, MA, USA). The blots were imaged with

ImageQuantLAS 4000 mini, software version 1.0 (GE Health-

care). Quantitation of the protein bands on immunoblots was

accomplished by calculating the intensities of the bands with image

analysis software v.7.0 ImageQuant TL from GE Healthcare.

Statistical analyses were performed using GraphPad Prism 5

software (GraphPad Software). A Mann-Whitney U test was used

to compare the differences between the groups, since neither BAL

nor plasma data is not normally distributed. A p value of ,0.05

was considered to be statistically significant.
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ELISA measurements
IgG ELISA assay for the BAL samples was performed following

the manufacturers instructions (eBioscience, San Diego, CA,

USA). ELISA assay detected the total amounts of IgG.

Results

Proteomic analysis of bronchoalveolar lavage after
exposure to inhaled NIMPs

Screening of potential biomarkers was performed for a total of

24 BAL samples from the healthy control (CTR n = 6) and four

disease groups (AME n = 5, DBRI n = 5, HP n = 4, and SARC

n = 4). DeCyder software detected on average 2000 spots per

DIGE gel. A total of 63 proteins spots and 34 different proteins

were identified from the selected gel spots (Figure 1 and Table S1),

which were differentially expressed (Students t –test ,0.05, a fold

change #21.5 or $1.5) between CTR versus one or all of the

study groups (AME, DBRI, HP, SARC). Some of the differences

were obtained also from the comparisons between DBRI versus

AME. According to the Gene Ontology classification, most of the

proteins were grouped as belonging to the extracellular region.

One third of the proteins were associated with antigen binding.

Identified proteins were also associated with protein binding,

serine-type endopeptidase activity, ferric iron binding and DNA

binding (Figure 2A). The outcome of the classification of proteins

in biological processes pointed to the following categories: immune

response, function of platelets, cellular iron ion homeostasis,

transmembrane transport and response to reactive oxygen species

(Figure 2B). Based on the protein enrichment analysis, extracel-

lular secreted proteins, especially plasma proteins, were abundant

among the identified proteins from the BAL samples (Table S2).

Most of the proteins were also classified as glycoproteins, a

common property of human biofluid proteins, and they contained

a signal peptide for secretion.

Differences in protein expression pattern of damp
building-related illness in comparison to the other NIMP
exposed groups

A hierarchical clustering was performed for the 63 identified

proteins to compare the protein expression patterns between the

experimental groups (Figure 2C). The CTR, DBRI and SARC

study groups formed one main cluster with the other main cluster

being comprised of AME and HP. Control and DBRI formed

their own subgroup which excluded SARC, i.e. evidence that

there was a similar overall protein expression patterns between

these two groups. Marked upregulation of proteins was observed

in the AME and HP experimental groups, and this feature

distinguished these two groups from the other main cluster. The

clustering of the spot maps according to the variance of their

protein expression was performed with principal components

analysis (Figure 2D). The homogeneity or heterogeneity of the

protein abundance within and between the study groups is

visualized in the format of a heatmap in Figure S1. The

lymphocyte percentage of BAL samples chosen for DIGE analysis

from DBRI group differed from the control samples (Student’s t -

test ,0.05), but not from the other disease group samples (Figure

S2).

The proteins, which have 1.5 times lower or higher expression

in study groups compared to control group are represented in

number sets by the Venn diagram (Figure S3). Information about

the identified proteins is shown in table S1.

Haptoglobin (HPT, this abbreviation refers to the abbreviation

used in Table S1), histone variants, immunoglobulin G (IGHG2,

IGHG1) and semenogelin (SEMG1) were overexpressed in all

disease groups. None of the identified proteins were less abundant

in DBRI as compared to CTR group. Two proteins, a component

of the class I major histocompatibility complex, beta-2-micro-

globulin (B2MG) and an intracellular cholesterol transporter,

epididymal secretory protein E1 (NPC2) were downregulated in

AME, HP and SARC compared to control group.

Peroxiredoxin 5 (PRDX5) appeared to be underexpressed in

SARC patients. Apolipoprotein A1 (APOA1) was upregulated in

all microbial-associated lung conditions, but not in SARC.

None of the proteins in DBRI group seemed to be characteristic

to that particular condition. The expression of protein S100-A8,

which is a part of calprotectin, an acute phase reactant in

inflammation, was elevated only in AME as compared to healthy

persons. The amounts of complement factor B (CFAB) selenium

binding protein (SBP1) and hemopexin (HEMO) were markedly

increased, whereas those of superoxide dismutase (SODC) and

thioredoxin (THIO) were reduced in HP compared to control.

However, the levels of these proteins in AME and HP did not

differ significantly from most of the other disease groups (data not

shown).

Pulmonary surfactant proteins have been linked to innate

immunity of the lung helping to prevent the infection and

inflammation. However, no statistically significant differences in

the expression of the identified surfactant proteins (SP-A and D)

were detected between studied samples.

Validation of potential indicators for NIMP associated
lung diseases

The original reason for the study was to identify markers for

diseases associated with the exposure to NIMPs, however, we did

not find this type of marker (i.e. those displaying consistent

increases over control levels in the DBRI, AME, and HP but not

the SARC group; preferably so that the marker would not be

implicated in other inflammatory conditions). In the validation

study we concentrated on those markers that increased with

reasonable robustness compared to the healthy controls. An

additional restriction for western blot validation was provided by

the availability and functionality of antibodies. Four proteins were

chosen for immunological validation and quantitation: alpha-1-

antitrypsin, galectin-3, histone H4 and semenogelin 1 (Figure 3).

Alpha-1-antitrypsin (A1AT) is a protease inhibitor; its levels may

increase in the lungs during the inflammation and dysfunction of

this protein has been claimed to be associated with several

respiratory conditions. All the patient groups had significantly

elevated A1AT levels as compared to healthy controls according to

immunoblot quantitation results. The highest amounts of A1AT

were detected in samples from HP patients (Figure 3C).

Galectin-3 has important roles in the innate immunity response

such as the activation and chemoattraction of inflammatory cells.

The levels of this protein were upregulated in HP and AME

groups based on DeCyder analysis (Figure 3A, Table S1),

indicating that it is one of the proteins acting similarly in these

two hierarchical linked groups. Immunoblot revealed that there

were significant changes between the experimental groups and

healthy controls. The highest levels of galectin-3 were seen in

AME patients (Figure 3C). There were no significant changes

between the experimental groups (AME, DBRI, HP, SARC),

when they were compared to each other.

Semenogelins are proteins which are known to participate in the

formation of sperm coagulum. However, semenogelins have also

been reported to be present in the lungs and in small cell lung

carcinoma [31]. Based on DeCyder analysis, the level of

semenogelin was upregulated in all of the studied disease patient
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groups (Figure 3A, Table S1). The immunoblot validation verified

that the levels of semenogelin were markedly increased in AME,

HP, and sarcoidosis patients as compared healthy controls. In the

DBRI group, there was no significant difference in semenogelin

abundance as compared to healthy controls (Figure 3C). The

difference between DBRI and AME/HP was significant

(p = 0.0009 for DBRI vs. AME and p = 0.0001 for DBRI vs. HP).

Histones are core components of nucleosomes and can boost

inflammatory response by functioning as endogenous danger

signals in our immune system [32]. Histone variants H2B and H4

were upregulated in all previously mentioned experimental

groups, albeit less in DBRI according to differential expression

analysis (Figure 3A, Table S1). The detected histones in BAL

samples were aberrant in size. The spots of 20–25 kDa and 40–

45 kDa size were identified as histones H4 and H2B in 2DE-

DIGE gel analysis in the human BALF samples. The immunoblot

based quantitation analysis of histone H4 in BAL fluid was

performed on a protein band of approximately 50 kD (H2B was

not measurable, see materials and methods). This aberrant size

histone detection with the histone primary antibody used was

confirmed by mass spectrometric analysis for this particular band

from the immunoblot membrane. The increased amount of

histone H4 in BAL fluid was associated with AME, HP and SARC

(Figure 3C). The difference between DBRI and AME/HP was

Figure 1. The false color image of two-dimensional DIGE gel of BAL. The gel image represents the Cy3 labeled (red), Cy5 labeled (blue) and
Cy2 labeled (yellow) patient samples. The latter is a pooled sample, which served as an internal standard. Spot abbreviations refer to the identified
proteins listed in Table S1. Molecular weights are shown on the right edge of the gel and the pI range on the top part of the SDS-PAGE.
doi:10.1371/journal.pone.0102624.g001
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statistically significant (p = 0.01 for DBRI vs. AME and p = 0.0031

for DBRI vs. HP).

All the patients in the studied groups were nonsmokers. We also

investigated the effect on smoking on the proteins selected for

validation. Western blotting based validation was performed for

six BAL samples obtained from healthy controls with smoking

backgrounds. Only the levels of galectin-3 were elevated in a

group of smokers as compared to controls (CTR), p = 0.0482 (data

not shown).

To study the immunoglobulin response in lungs of patients

exposed to microbial particles the concentration of total IgG was

measured with ELISA assay from native BAL. The elevated

immunoglobulin levels were observed in BAL fluids from the

AME, HP and SARC groups (Figure S4).

Elevated histone levels in plasma samples of
hypersensitivity pneumonitis and sarcoidosis

Histone H2B and galectin-3 levels were also analyzed from

plasma samples of patients from control, HP and SARC groups.

Validation of other chosen protein markers produced inconsistent

results (data not shown), possibly due to interference of the similar

size serum albumin or to low levels of target protein. There were

no significant differences between the groups in galectin-3 levels,

however, H2B levels were markedly higher in plasma of HP and

SARC (Figure 4). Between HP and SARC there were no

significant differences in the abundance of H2B. In plasma, the

size of the histone H2B detected was 17 kDa, the predicted size of

histone when it is a part of the nucleosome.

Discussion

The results from the 2D gel analysis and the immunoblot

validation studies point to a substantial difference in protein

expression between the DBRI group and the AME/HP group.

Similar protein expression patterns of AME and HP samples

suggest there is a close association between AME and HP, while

the protein expression pattern of DBRI resembled more that of

healthy individuals and the SARC group.

Figure 2. Protein classification and study group clustering. Classification of the proteins for the different gene ontologies: (A) molecular
functions and (B) biological processess. The groups including $4 proteins from the set are depicted in the picture. (C) The hierarchical clustering of
the study groups is displayed in the form of a heatmap. A dendrogram at the top of the heatmap represents a hierarchy of studied groups based on
the degree of similarity in their protein expression. The heatmap shows the mean of a proteins expression on all analysed spot maps in that particular
experimental group. The protein expression levels of 63 identified proteins in the study groups are compared to levels of internal standard, red colour
indicating upregulation and green colour indicating underregulation. Data clustering is based on Pearson distance (Pearson correlation, average
linkage). (D) The clustering of the spot maps according to the variance of their protein expression was performed with principal components analysis.
The first principal component (PC1) explained 59.8% of the variance and the second (PC2) 12.8%. Cumulative variance 90% was reached after 7
components.
doi:10.1371/journal.pone.0102624.g002
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Comparing then NIMP associated illnesses in order to

understand the differences in proteomic outcome, they share a

similar general pattern of symptom free periods followed by

exacerbations when exposed to the appropriate NIMPs. In this

study the time from the start of symptoms to the BAL procedure

for DBRI and AME were comparable. The main difference is that

in DBRI, the exposures are known to be substantially less intense

than those experienced by subjects in the HP or AME groups and

this could be a part of the explanation. The major symptoms for

both DBRI and AME were fairly similar in this study, but there is

a difference in that asthma is more often present in DBRI. In the

literature HP is associated with a limited set of symptoms (fever,

cough, dyspnoea) while the symptoms of DBRI are very variable

and include symptoms from the upper airways, the nasal area, eyes

and skin. A relatively obvious explanation for the differences

between DBRI and HP is that they could affect separate parts of

the airways, HP is known to affect the alveolar spaces while DBRI

seems to affect the more proximal airways.

This study intended to resolve the diagnostic problems

associated with DBRI and AME in our clinic. In order to provide

reference material from HP and SARC, which are rarely

encountered at the FIOH clinic, we used BAL samples collected

from an earlier study [25]. HP is becoming a rarity in Finland and

we consider ourselves fortunate to have access to these samples.

The samples have been collected using an identical protocol to

that used in the FIOH. All the samples have been stored and

Figure 3. Immunoblot validation of protein markers in BAL. (A) Differential expression analysis based on DeCyder data for chosen protein
markers. Every dot indicates the identified protein spot and its expression level in that particular study group. The difference in protein expression
(average expression) between the groups is visualized with a continuous curve. Histone and semenogelin plots contains more than one curve due to
several protein spot identification for histones H4, H2B (n = 3) and semenogelin I (n = 2) as shown in Table S1. (B) Images of immunoblot membranes
and (C) immunoblot based validation results for protein markers. The number of samples in validation: CTR n= 19, AME n= 7–9, DBRI n = 17, HP n= 9,
SARC n=8. The means (black lines) are shown in scatter plots. *Indicates statistical significance, which is shown between experimental and control
group, at the level of p#0.05, **p#0.01 and, ***p#0.001.
doi:10.1371/journal.pone.0102624.g003

Figure 4. Immunoblot validation of protein markers in plasma.
The immunoblot and validation analysis for (A) galectin-3 and (B)
histone H2B from plasma samples. The number of samples in validation:
CTR n= 16, HP n= 10, SARC n=11. The means are shown in scatter
plots. *Indicates statistical significance, which is shown between
experimental and control group, at the level of p#0.05, **p#0.01
and, ***p#0.001.
doi:10.1371/journal.pone.0102624.g004
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handled similarly and they have not been thawed and re-frozen,

which has been shown to affect the stability of the proteins most

[33]. There are substantial differences in the storage times between

the samples from FIOH and those from the Meltola Hospital.

However, no significant difference between the levels of validated

proteins was observed between the healthy control samples from

FIOH and those from Meltola Hospital (data not shown). It should

also be noted that the protein expression pattern in the HP group

mirrored that of the closely related AME group. If protein

degradation were to be an important factor then one would not

expect the protein levels in the HP and SARC groups to be greater

than those in the DBRI group. Our protein identifications also

seem to be comparable with the 2-DE results reported earlier from

BAL collected from patients with interstitial lung disease [23]. We

are thus confident that differences in the storage times did not

influence the results in any substantial manner.

In general, there was less extensive lymphocytosis in the DBRI

samples than in the case of AME and HP (Table 1). The total cell

numbers and proportion of lymphocytes exceeded the normal

range only in half of our studied DBRI research samples.

However, samples chosen for DIGE analysis from DBRI group

did display lymphocytosis comparable to the AME and HP groups

(Figure S2) indicating that additional factors other than the

numbers of inflammatory cells were responsible for the difference

between the DBRI and AME/HP groups. Thus the proteomic

analysis suggests that the DBRI, at least its usual clinical

presentation, is distinct from HP and HP-like conditions.

However, it is possible that the proteomic pattern in an initial

phase of DBRI display more similarities with HP and AME, in

addition the exposure to damp buildings can sometimes cause

clinical HP [16].

We have earlier shown that DBRI is associated with a

lymphocytosis in BAL fluid [16]. In this study the relative lack

of protein changes in DBRI, although lymphocytosis was present,

can be seen to be in parallel with an earlier report where no HP

ensued in asymptomatic dairy farmers although they demonstrat-

ed increased BAL lymphocyte levels because of exposure to moldy

hay [34]. Thus the lymphocytosis in DBRI can be seen as a non-

pathologic response to inhaled NIMPs, not associated to an illness

like HP.

It would definitely be interesting to compare the proteomic

changes of a NIMP exposure in those persons that did develop an

illness with those that did not. There are however a number of

practical and ethical considerations which would make this an

extremely difficult proposition. In fact the study mentioned earlier

[34] is the only one where BAL has been obtained from this type

of healthy NIMP exposed individuals. Thus our study is limited to

pathologic conditions associated with the exposure to NIMPs, not

the normal response to inhaled NIMPs.

Samples from patients with sarcoidosis served as a reference for

a lung disease which has no direct association with NIMP

exposure. However, an epidemiologic relationship has been

observed between rural living and sarcoidosis [35]. According to

DeCyder data the protein expression pattern of SARC resembled

more that of control and DBRI than AME and HP, whereas the

levels of immunoblot validated proteins showed similar kinds of

elevation in both SARC and HP groups. This apparent

discrepancy could be explained by the fact that the DeCyder

process does not necessarily identify all proteoforms, which can be

detected by antibody-based methods.

When collecting a BAL specimen from a patient with interstitial

lung disease active lung infections are avoided as they will make

the interpretation of the results almost impossible. Accordingly,

there was no significant neutrophilia associated with any of the

groups (Table 1). This more or less excludes the possibility that the

measured changes were influenced by infections. Albumin levels

did vary between the groups and was highest in the SARC group

and the lowest in the CTR group (Table 1). It is well known that

albumin levels increase in interstitial lung inflammations and can

be seen to validate the selection of the patient groups [36,37].

Immunoglobulin G levels are often used in clinical practice to

help in the evaluation of the BAL samples. In our study, the IgG

expression levels were high in the patients exposed NIMPs in

agricultural environment and in patients suffering from sarcoidosis

or hypersensitivity pneumonia as compared to healthy persons.

These results are consistent with the earlier results reported in the

literature [38] and indicate that the BAL fluid samples used were

truly representative.

In the validation study, we selected the markers that increased

with reasonable robustness relative to the healthy controls. The

selected proteins included one novelty and other proteins

‘‘without’’ novelty i.e. molecules that could be considered as being

established inflammatory markers. The proteins were validated

from BAL samples of all five study groups, and from the plasma

samples available from CTR, HP and SARC groups.

The most interesting finding was the detection of semenogelin I

in BAL fluid in AME and HP, and also in sarcoidosis patients.

Attempts to validate the semenogelin from plasma gave inconsis-

tent results, possibly due to too low levels of the target protein.

Semenogelin I and II are the major products secreted from the

glandular epithelium of the seminal vesicles and the epididymis,

that together with fibronectin, give rise to the gel-like coagulum of

the newly ejaculated semen [39]. In addition, fragments of

semenogelin have been claimed to possess antimicrobial effects

[40,41] and heparin binding properties in human seminal plasma

[42]. It has also been observed that semenogelin has a high zinc

ionbinding capacity thus possibly functioning as a regulator for

zinc homeostasis [43]. Semenogelin expression has also been

observed in non-genital tissues including trachea and bronchi [44].

Semenogelin I and II were identified in asthmatic chronic

rhinosinusitis nasal lavage fluid, but were not observed in allergic

rhinitis nasal lavage fluid [45]. There are also studies pointing to

the involvement of semenogelins in different type of cancers such

as small cell lung carcinoma [31,46,47]. Our observation seems to

be the first demonstration where semenogelin is identified in

bronchoalveolar lavage fluid of interstitial lung disease patients

and patients exposed to inhaled non-infectious microbial particles.

One possible role for semenogelin is its regulation of mucus

viscosity which could be seen as a component of microbial

defence. For example, changes in mucus viscosity may impair

mucus clearance in the airways and lungs. Deficient mucus

clearance is associated to lung bacterial infections and other

respiratory diseases [48]. Regulation of zinc homeostasis is another

possible mechanism of action. The lungs are directly exposed to

higher oxygen concentrations than most other tissues and it has

been shown that depletion of labile zinc renders airway epithelial

cells highly susceptible to the apoptosis induced by oxidants

[49,50]. The allergic inflammation is also linked to perturbation in

zinc homeostasis [51].

For histone component H4, significantly increased expression in

BAL fluid was associated with AME, HP and SARC patient

samples. Interestingly, the levels of other histone variant, H2B

were increased in plasma samples of HP and SARC patients,

whereas H4 we could not detect from plasma. Histones form the

core component of the nucleosome, which is the central part of

double-represented histones H2A–H2B and H3–H4 [52]. The

small amounts of nucleosomes found in serum of healthy persons

are attributable to release upon physiological cell death. Elevated
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levels of nucleosomes are observed in blood in diseases in which

enhanced cell death has been reported to be present [53]. Elevated

levels of histones have been observed in association with a

common lung disease, chronic obstructive pulmonary disease

(COPD) [54]. Histones function as damage associated molecular

patterns (DAMPs) which trigger inflammation and they have been

shown to play a central role in hyperinflammatory syndromes,

mediating death in a mouse model of sepsis [32,55]. Based on the

present results of elevated histone levels in BAL and plasma it can

be speculated that histones may play a role in the pathogenesis of

interstitial lung diseases or conditions associated with inhaled

NIMPs.

The size of detected histones in BAL samples were aberrant,

which might be due to altered post-translational modification of

these proteins. Post-translational modification of histones by

phosphorylation, acetylation, methylation and ubiquination are

processes which regulate chromatin structure and gene expression.

Histone 4 has also been shown to be modified by SUMO (Small

Ubiquitin-like Modifier), which can modulate deacetylase activity

and thus influence transcriptional repression [56]. The attached

SUMO proteins can increase the molecular weight of the other

proteins depending on their number in the linked chain [57]. It

needs to be clarified whether inhaled NIMPs can cause the

appearance of aberrant size histones in BAL fluid and possible

activation of post-translational modification.

The levels of galectin-3 were elevated in all of the studied lung

diseases, with the highest expression of galectin-3 being observed

in AME patients. Interestingly in DBRI, the galectin-3 levels were

increased with a higher degree of statistical significance than for

alpha-1-antitrypsin, which is a well-known indicator of lung

inflammation. In contrast, there were no significant differences in

galectin-3 levels compared to healthy controls in plasma samples

of HP and SARC patients. Galectins are highly conserved family

of lectins, which have binding affinity for b-galactosides [58].

During the tissue damage cytosolic galectins are passively released

by dying cells or actively secreted by inflammatory activated cells

[59]. Galectin-3 is considered as a potential damage associated

molecular pattern (DAMP) and can also act as pattern recognition

receptors (PRR), which binds to the glycans present on the cell

walls of microorganisms [59]. Galectin-3 is involved in many

innate immune response activating processes: chemoattraction of

monocytes and macrophages [60], oxidative burst of neutrophils

[61] and mast-cell degranulation [62]. Earlier studies have been

shown increased levels of galectin-3 linked to inflammation or

microbial infection in lungs. It was also reported to play an

essential role in the development of lower airway hyperrespon-

siveness [63–66]. In acute inflammation, galectin-3 is increased

and seems to have a pro-inflammatory role. However, if the

inflammation progresses to a more chronic stage, galectin-3 has

been reported to facilitate the walling-off process of tissue injury

with fibrogenesis and organ scarring [67]. There are reports where

galectin-3 has been utilized as a marker to follow the inflammatory

activity of a disease or used as a factor for prognosis in cancers or

chronic heart failure [68–70]. Serum levels of galectin-3 have been

used to monitor the inflammatory stage of inflammatory bowel

disease [71]. Our finding that the expression of galectin-3 is

increased in HP and SARC in BAL is in line with its role in

inflammation.

The BAL levels of alpha-1-antitrypsin (A1AT) were elevated in

all groups with illnesses including DBRI. We could not detect

A1AT from plasma possibly due to too low levels of the target

protein. A1AT is an inhibitor of serine proteases and it is one of

the plasma proteins which make up the acute phase proteins. One

important physiological function of antitrypsin is to protect the

lower respiratory tract against proteolytic destruction by human

leukocyte elastase (HLE) [72]. A1AT deficiency may cause severe

emphysema [73]. Patients with A1AT deficiency are also known to

be hyperresponsive to organic dust exposure [74]. Recently, A1AT

has been shown to have anti-inflammatory and tissue protective

properties independent of its protease inhibitory effects [75,76].

A1AT appears to be antibacterial and to act as an inhibitor agent

in viral infections [77,78]. It is mainly synthesized in liver, but

interstitial A1AT in lungs is primarily produced by lung type II

alveolar epithelial cells [79]. A1AT has been detected and found to

increase in BAL of patients with interstitial lung disease in

previously published proteomic studies of lung diseases [80–82]

and its levels increase in association with different pulmonary

exposures [83].

The healthy lung is classically thought to be sterile but recent

studies have suggested that the lung possesses its own microbiome

[84,85], thus lung is in continuous interaction with microbial

structures of its own microbiome. It has been demonstrated that

there are differences in microbial composition of the airway flora

between healthy lungs and those with chronic lung diseases, such

as asthma, chronic obstructive pulmonary disease as well as cystic

fibrosis [85–87]. In the future, it would be interesting to study the

possible alterations in the lung microbiome associated with

exposure to NIMPs and its contribution in protection or

progression of this type of lung diseases.

Conclusions

Taken together, the results from the 2D-gel analysis and the

validation studies suggest that at least the typical case of DBRI,

where the main symptom is asthma and/or an increased sensitivity

to poor indoor air quality, is not closely related to AME and HP.

This result was somewhat unexpected as all of these conditions are

associated with the exposure to NIMPs and that the symptoms

between the DBRI group and the AME group are rather similar.

A possible explanation for the difference of DBRI and AME is that

they affect separate parts of the airways, HP is known to affect the

alveolar space while DBRI seems to affect the more proximal

airways. We could detect increases in the levels of several proteins

of interest that could be considered as markers of inflammation.

Increases in the levels of some indicators of inflammation (alpha-1-

antitrypsin, galectin-3) could also be demonstrated in the DBRI

group. However, none of the identified proteins can be considered

as being specific for illnesses associated with NIMPs. One of the

novel findings was the high levels of semenogelin detected in BAL

fluid from patients suffering from HP or AME. The detectability of

histones (H2B) in plasma in HP and SARC suggest H2B to be a

marker for the inflammation in the lungs. In future, prospective

studies it would be interesting to analyze histones in blood also in

DBRI and AME groups. As histones have been claimed to possess

a pathogenic role in severe inflammations (sepsis) development of

histone specific therapies and monitoring may be beneficial. The

study also demonstrates the advantages of using of bronchoalve-

olar lavage samples for proteomic studies of changes in alveolar

lining fluid associated to exposure of non-infectious microbial

particles. Viewed from a clinical point of view, these results suggest

that the BAL analysis of protein markers (including semenogelin I,

H4 and total IgG) could be helpful in the differential diagnosis

between DBRI and HP, especially when lymphocytosis is present

in the BAL fluid. Furthermore, the determination of galectin-3

levels in BAL fluid might be useful for evaluating the condition of

DBRI patients.
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