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A B S T R A C T   

Electroencephalography (EEG) has been widely adopted by the developmental cognitive neuroscience commu
nity, but the application of machine learning (ML) in this domain lags behind adult EEG studies. Applying ML to 
infant data is particularly challenging due to the low number of trials, low signal-to-noise ratio, high inter-subject 
variability, and high inter-trial variability. Here, we provide a step-by-step tutorial on how to apply ML to classify 
cognitive states in infants. We describe the type of brain attributes that are widely used for EEG classification and 
also introduce a Riemannian geometry based approach for deriving connectivity estimates that account for inter- 
trial and inter-subject variability. We present pipelines for learning classifiers using trials from a single infant and 
from multiple infants, and demonstrate the application of these pipelines on a standard infant EEG dataset of 
forty 12-month-old infants collected under an auditory oddball paradigm. While we classify perceptual states 
induced by frequent versus rare stimuli, the presented pipelines can be easily adapted for other experimental 
designs and stimuli using the associated code that we have made publicly available.   

1. Introduction 

Developmental cognitive neuroscience seeks to understand how 
neural representations of the world change with maturation and expe
rience, and how individual differences in these representations affect 
later life outcomes. Electroencephalography (EEG) has become an 
increasingly important tool to address these questions. EEG measures 
the electrical activity on the scalp generated by population-level 
neuronal activity in the brain with millisecond resolution, which indi
rectly captures fine grained information on the temporal patterns of 
neuronal responses. Most studies have focused on the problem of 
comparing EEG activity between subject groups and experimental con
ditions by applying univariate statistical techniques to test for amplitude 
and timing differences in EEG responses. However, recent neuroimaging 
studies have highlighted the distributed nature of neural representations 
(Huth et al., 2012; Cichy et al., 2014), with even basic perceptual pro
cesses, such as phoneme categorization, shown to involve activation of 
multiple brain networks (Feng et al., 2021). Thus, instead of only asking 
whether a certain channel or time point shows amplitude differences 
across conditions, this distributed representation raises another impor
tant question, namely whether cognitive states can be distinguished 

based on the pattern of activity across multiple channels and time points. 
Machine learning (ML) is particularly suited for addressing the latter 

question. By extracting and combining discriminative EEG attributes, 
such as voltage amplitude at different time points or signals at different 
frequency bands, which are commonly referred to as features, ML en
ables learning of classifiers that can distinguish different experimental 
conditions based on patterns of the extracted features. ML has been 
widely applied to adult EEG data, and successful in distinguishing 
stimuli as subtle as distinct English letters (Wang et al., 2018), visual 
colors (Hajonides et al., 2021), and individual finger movements (Liao 
et al., 2014), but its adoption for infant EEG data has been limited. 

Initial applications of ML to infant EEG data have focused on clas
sification of infants into groups based on age (Ravan et al., 2011) or 
clinical diagnosis (Stahl et al., 2012a, 2012b). In this type of classifi
cation, correctly predicting group labels of the infants with high accu
racy is the primary goal. More recent studies have also used ML for 
cognitive state classification. Above chance accuracy indicates that the 
EEG timeseries contain the information necessary to discriminate 
different cognitive states. For this interpretation to be valid, the 
assumption is that the classifier relies on activity patterns generated by 
the brain to make predictions, as opposed to using noise or movement 
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artifacts that are correlated with stimulus (see Hebart and Baker, 2018 
for a discussion on cognitive interpretation of EEG classification). In this 
vein, several studies have classified EEG neuronal responses to varying 
visual stimuli in typically and atypically developing children (Bayet 
et al., 2020; Mares et al., 2020; Farran et al., 2020). In the auditory 
domain, one study has used ML to classify event related potential (ERP) 
responses to speech syllables vs. tones in children with tuberous sclerosis 
(O’Brien et al., 2020), and a recent study has examined phoneme rep
resentations in 3-month-old infants (Gennari et al., 2021). While interest 
in applying ML to infant data for classifying cognitive states is growing 
(Emberson et al., 2017), the additional challenges compared to adult 
data might have restrained ML’s adoption. 

Infant EEG classification has two key challenges. First, infant EEG 
data tend to have lower signal-to-noise ratio (SNR) than adult data due 
to several factors. To maximize signal once the cap is placed, electrodes 
are often readjusted, but infants are less tolerant of extensive electrode 
readjustments. Also, infants often make sudden unpredictable move
ments, which are less stereotyped than blink artifacts, and thus harder to 
remove (Georgieva et al., 2020). Finally, infants cannot be explicitly 
instructed to direct their attention to a given stimulus, making con
trolling for shifts in attention more difficult during the recording session. 

The other key challenge to infant EEG classification is the shorter 
study duration compared to adult data, which is largely due to infants’ 
limited attention span. The performance of a classifier heavily depends 
on the number of training samples available, i.e. number of trials for 
classifier learning in the context of EEG classification. Therefore, the 
performance of a classifier learned from a single infant dataset would be 
limited, given the typical lower number of trials and the lower SNR 
compared to adult data. One way to increase sample size is to pool data 
across infants, which relies on extracting common brain activity patterns 
across infants. However, infant EEG responses are particularly influ
enced by individual differences in brain morphology and maturation. 
Inter-subject variability could thus obscure the discriminative patterns if 
data are naively pooled (Saha and Baumert, 2020). 

In addition to determining whether information is present in the EEG 
responses to discriminate cognitive states, ML can further be used for 
identifying which brain attributes enable such discrimination. For 
instance, one could use classification accuracy to rank features. An 
example of this approach is time-resolved classification in which accu
racy is estimated for each time point (with respect to stimulus onset) by 
combining information across EEG channels to gain insights into 
response dynamics (Grootswagers et al., 2017). By aggregating signals 
across channels, this approach has shown increased sensitivity in 
detecting differences across conditions and participants compared to 
univariate analysis (Cauchoix et al., 2014; Bayet et al., 2018; Correia 
et al., 2015). Other recent approaches use the classifier model weights to 
infer significant features under a hypothesis testing framework (Taylor 
and Tibshirani, 2018; Candès et al., 2018). While using ML to find 
discriminant brain attributes is an important problem, as an introduc
tory tutorial to ML, we opt to focus on the most basic problem that ML 
addresses, namely separating samples of different classes with a single 
classifier. Interested readers can refer to e.g. (Belle and Papantonis, 
2021) for further details on how to identify relevant features under a 
classification framework, and a discussion on how careful experimental 
designs and follow-up analyses can be used to gain insights from clas
sification results is provided in Section 5. 

In this work, we present a step-by-step tutorial on how to apply ML 
for infant EEG classification. We begin with an introduction to the EEG 
classification problem and an overview of a standard classification 
pipeline. We then describe the type of features that are more widely used 
for EEG classification, namely raw timeseries, their short time Fourier 
transform (STFT), Pearson’s correlation, and weighted phase lag index 
(wPLI) (Imperatori et al., 2019), and discuss the rationale behind the use 
of each feature type. We also describe connectivity features based on 
Riemannian geometry, which provides a mathematically elegant way 
for handling inter-trial and inter-subject variability (Yger et al., 2017; 

Yair et al., 2019; Ng et al., 2016; Sabbagh et al., 2019). These features, 
while not exhaustive, cover the key aspects of brain response, namely 
temporal and frequency information within each brain region as well as 
interactions between brain regions. Note that estimations of all these 
features except raw timeseries require multiple time points, which is 
partly why we focus on the problem of classifying trials in this tutorial, 
as opposed to classifying each time point (as done in time-resolved 
classification). We further describe techniques for feature selection 
and the type of classifiers that are better suited for the sample-to-feature 
ratio typical in infant EEG data. Classifier learning with data from both 
single and multiple infants are discussed. Lastly, we describe how to 
evaluate classifier performance. As an example, we apply these pipelines 
to infant EEG data collected under an auditory mismatch response 
(MMR) paradigm. The MMR is an ERP component observed in response 
to a deviant stimulus following a string of common, or standard, stimuli, 
which is used widely in infant EEG studies to assess discrimination ca
pabilities (Cheour et al., 2000). Here, we do not classify the identity of 
the stimuli themselves (e.g. /ra/ vs /la/), but rather whether a deviant 
stimulus can be distinguished when embedded in a stream of standard 
stimuli (i.e. rare vs frequent stimuli). This classification task is difficult 
even with adult EEG data (Brandmeyer et al., 2013), which attains an 
accuracy of ~65%. While we focus on classifying MMR in this work, the 
presented pipelines are broadly adaptable to a variety of different 
stimuli and experimental designs. 

2. Methods 

2.1. EEG classification 

The goal of EEG classification is to determine the cognitive state of a 
subject based on some attributes of the EEG data within a short time 
window. As a toy example, let’s say a subject is shown either a cat or a 
dog over many trials, and we use the voltage amplitude of two channels 
A and B at the time of stimulus onset as the attributes to decide if the 
subject is looking at a cat or a dog for each trial. Pictorially, this problem 
can be conceptualized as finding a curve to separate two sets of points 
(green for cats and purple for dogs) on the xy-plane (Fig. 1). Each point 
corresponds to a trial and the xy coordinates correspond to the ampli
tude of channels A and B. After we find a curve that well separates points 
corresponding to dogs from those corresponding to cats, we can test this 

Fig. 1. Depiction of EEG classification. In this toy example, each point corre
sponds to a trial and the xy-coordinates correspond to voltage amplitude at 
channel A and B. The color of the point indicates the class to which that point 
belongs, and the blue curves correspond to examples of the infinitely many 
ways for separating the points. The goal is to learn a curve solely based on the 
training trials (green and purple points) where class labels are given, to separate 
the test trials (light green and light purple points) into their corresponding 
classes. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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curve with new points (Fig. 1), i.e., trials not used for finding the curve. 
If the curve does well in separating the new points, then this curve likely 
captures some true signal patterns hidden in the EEG data. In technical 
terms, the amplitude of channels A and B are referred to as features, and 
the curve is called the decision boundary. The points used for finding the 
decision boundary are referred to as training samples, and the new 
points not used for finding the decision boundary are referred to as test 
samples. If the decision boundary performs well on test samples, we say 
the corresponding classifier has high generalizability, which is a key 
property for evaluating a classifier. The main steps involved in EEG 
classification are summarized in Fig. 2, namely feature extraction and 
selection, classifier learning, and classifier evaluation. 

In real applications, we would typically extract many features to 
examine various aspects of brain response. Key aspects include the 
timing and amplitude of peaks and troughs of EEG timeseries, signals at 
different frequency bands, and interactions between brain regions. 
These aspects can be captured by standard features, such as EEG 
timeseries themselves, STFT of the timeseries, Pearson’s correlation 
between timeseries of the EEG channels, and wPLI (Imperatori et al., 
2019). Recently, connectivity features based on Riemannian geometry 
have also been adopted for EEG classification (Yger et al., 2017; Yair 
et al., 2019; Ng et al., 2016; Sabbagh et al., 2019). Each of these features 
will be described in Section 2.2. We note that we focus here on five 
representative features, but many other features could be extracted to 
capture similar aspects of brain response. 

After feature extraction, the next step is to divide the trials into 
training and test sets for classifier learning and evaluation, respectively. 
For typical infant EEG data, the number of features often exceeds the 
number of trials. Reducing the feature dimensionality by selecting the 
more discriminative features could ease classifier learning. For this, we 
present a common feature selection approach based on bootstrapping. 
Also, the number of trials is usually inadequate for exploiting deep 
learning. We thus describe the support vector machine (SVM) (Cortes 
and Vapnik, 1995), which has empirically shown robust performance for 
low sample-to-feature datasets. We focus on the task of binary classifi
cation where a given trial of an infant is classified as belonging to con
dition A or B using a single classifier. The trials can be from a single 
infant or from multiple infants, and we refer to training with single and 
multiple infants’ data as single infant classifier learning and multi-infant 

classifier learning, respectively. We also assume the number of trials in 
each class is the same, i.e. balanced classes. MATLAB scripts for 
extracting the aforementioned features as well as executing the classi
fication pipeline are provided on Open Science Framework along with 
the associated dataset (see featureExtraction.m, main*.m, and rieman
nian*.m). 

2.2. Feature extraction 

2.2.1. Timeseries 
The basis of using timeseries as features is that activation of different 

brain areas during task execution generates a specific spatiotemporal 
pattern of electrical activity across EEG channels. For instance, visual 
stimuli drive a large negative response in occipitotemporal channels, as 
well as a positive response at the vertex, which reflects signals from the 
occipitotemporal dipoles. Different experimental conditions could thus 
in theory be distinguished based on the response pattern with voltage of 
each channel at each timepoint of a trial taken as a feature. Hence, using 
timeseries provides features that capture information at millisecond 
resolution. 

An important parameter in using timeseries as features is the ex
pected duration of EEG responses, which defines the time length of a 
trial (see Section 3.2). While infants’ responses are typically slower than 
those observed in adults, evoked responses to visual or auditory stimuli 
can be quite fast. For example, by 12 months of age, visual responses to a 
variety of different objects can be classified by 100 ms following stim
ulus onset (Bayet et al., 2020). Responses to tasks that involve additional 
processing, such as the detection of deviance or a violation of expecta
tion, are typically slower. For example, even in adults, classification of 
the MMR peaks between 200 and 300 ms following stimulus onset 
(Brandmeyer et al., 2013). Hence, the expected response duration de
pends on the experimental conditions. Typically, we only have a rough 
estimate of the response duration, but setting the trial length slightly 
longer than the response duration would not be catastrophic since less 
relevant time points would be either discarded during feature selection 
or down-weighted during classifier learning (Sections 2.3 and 2.4). 

While we focus on the problem of learning a single classifier to 
separate trials of different classes in this tutorial, it is worth noting that 
one could learn a separate classifier for each time point to examine 

Fig. 2. Classification pipeline. Features are first 
extracted from all trials, with trials divided into 
training and test sets. Bootstrap univariate 
feature selection is then performed by applying 
t-test to the training trials of each feature and 
estimating the percentage of bootstraps over 
which a given feature has p < 0.05, referred to 
as selection frequency, f. The set of features, S, 
with selection frequency greater a certain 
threshold, fth, are used for classifier learning. 
Labels of test trials, Ip, are then predicted using 
the learned classifier weights, w, and compared 
against the ground truth labels, lg, to evaluate 
the classifier’s performance. This procedure is 
repeated multiple times with random trial splits 
to assess variability in performance.   
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response dynamics and the time following stimulus onset when classes 
become distinguishable (Grootswagers et al., 2017). Further, we note 
that within and between subject variability in response onset, shape, and 
duration (Saha and Baumert, 2020) can make using timeseries as fea
tures difficult. While this variability may be relatively minor for evoked 
sensory stimuli that drive rapid time-locked responses, response vari
ability may be compounded for slower perceptual processes involving 
additional computation, such as the MMR. Thus, the same time point 
across trials and subjects do not necessarily correspond to each other, 
but such correspondence is important for using voltage at each time 
point as a feature for classifier learning. To deal with this temporal 
correspondence issue, one way is to “average” the voltage values within 
short time windows of each trial, and use the resulting averages as 
features. In fact, STFT can be viewed as an extension of this temporal 
averaging strategy, as discussed next. 

2.2.2. Short time Fourier transform 
To handle temporal variability in response, one strategy is to apply 

STFT to the timeseries, i.e. apply Fourier transform to short time win
dows within each trial, where the amplitude of each channel’s trans
formed timeseries at each time window and frequency bin is taken as a 
feature. The rationale behind using STFT stems from how EEG timeseries 
typically display repeated temporal patterns. By applying Fourier 
transform, we can estimate the frequencies at which these temporal 
patterns repeat. Past studies have shown that different frequency bands: 
delta (0–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (12–30 Hz), and 
gamma (30–100 +Hz), are involved in different mental processes, e.g. 
the alpha band has been shown to play a role in inhibition (Klimesch 
et al., 2007). Thus, patterns in the frequency spectrum can be useful for 
classification. Also, aggregating voltage over time samples temporally 
“smooths” out the response, which increases the response overlap across 
trials. To perform STFT, we used MATLAB’s spectrogram function with 
its default parameter values. The resulting STFT features provide a 
temporal resolution of ~100 ms for our data with a trial length of 
700 ms. 

2.2.3. Pearson’s correlation 
A common way to bypass the problem of drawing temporal corre

spondence across trials is to use functional connectivity between chan
nels as features. Functional connectivity is estimated based on the 
similarity between timeseries of the channels, i.e. whether the peaks and 
troughs line up. The assumption is that if the voltage patterns at chan
nels A and B are highly similar, then the brain areas from which these 
voltage timeseries originated interact with each other. Since all time 
points within a trial are typically used to estimate connectivity, the 
resulting features do not tell us at which time points the underlying 
brain areas are interacting with each other. Instead, we only know that 
some interactions likely occur within the duration of the trial if the 
estimated connectivity is large. 

The simplest connectivity feature is the Pearson’s correlation be
tween timeseries between all channel pairs for each trial. The basis of 
using connectivity for classification is that interactions between brain 
regions tend to change with different experimental conditions, espe
cially for tasks involving higher cognitive functions (Fries, 2015). A 
drawback of using Pearson’s correlation is that it is prone to volume 
conduction-induced false correlations (Bastos and Schoffelen, 2016). 
Specifically, signals from one source typically propagate to multiple 
channels, hence inducing false zero-lag correlations between spatially 
proximal channels (Bastos and Schoffelen, 2016). Since Pearson’s cor
relation is a zero-lag estimate of connectivity, i.e. temporal offsets be
tween timeseries are ignored, volume conduction-induced false 
correlations would obscure the differences in connectivity patterns be
tween experimental conditions. Further complexifying this problem is 
the inter-subject variability in volume conduction resulting from subject 
differences in brain morphology. The resulting subject-dependent false 
correlation patterns present a major challenge to pooling data across 

subjects for classifier learning (Saha and Baumert, 2020). To deal with 
volume conduction, a number of connectivity estimates have been 
proposed (Bastos and Schoffelen, 2016). Two of which are discussed 
next. 

2.2.4. Weighted phase lag index 
An important property of volume conduction is that channel mea

surements influenced by the same underlying source would have zero 
lag, as mentioned in Section 2.2.3 (Bastos and Schoffelen, 2016). Thus, 
one could deal with volume conduction by using connectivity estimates 
that are insensitive to zero lag correlation at the expense of discarding 
real zero lag interactions. One such connectivity estimate is wPLI, which 
is widely used in EEG research (Imperatori et al., 2019). Estimating wPLI 
involves first computing the cross-correlation between timeseries of two 
channels, i.e. correlations at different temporal offsets between the two 
timeseries. The imaginary component of the cross spectrum density (i.e. 
the Fourier transform of the cross-correlation) is then averaged over 
frequencies to estimate wPLI. Since the imaginary part of the cross 
spectrum density is zero when two timeseries have 0o phase (i.e. in 
synchrony with no temporal offset), wPLI is insensitive to zero lag cor
relations, such as those arising from volume conduction. 

2.2.5. Riemannian geometry-based connectivity 
The application of Riemannian geometry for EEG connectivity esti

mation and classification has been proposed (Yger et al., 2017; Yair 
et al., 2019; Sabbagh et al., 2019) to account for an often-neglected 
property of Pearson’s correlation matrices, namely that they live in 
the space of covariance matrices. In vector space, basic operations, such 
as subtraction between two vectors is their element-wise difference. 
However, in covariance matrix space, subtraction becomes a nonlinear 
operation (see Box 1). Since most classifier learning algorithms are built 
upon basic vector operations, we need to convert covariance matrices 
into vectors, which is where Riemannian geometry comes into play. In 
particular, if we subtract a covariance matrix from another covariance 
matrix using the “proper” subtraction operation for covariance matrix 
space, elements of the resulting difference matrix live in a vector space. 
To apply this concept to EEG classification, we first estimate two 
covariance matrices: one with pre-stimulus time points and another with 
post-stimulus time points. We then “subtract” the pre-stimulus covari
ance matrix from the post-stimulus covariance matrix, which has the 
additional benefit of removing trial-specific attentional drifts and other 
artifacts captured by the pre-stimulus covariance matrix. A complication 
is that the frame of reference for subtraction is governed by the 
pre-stimulus covariance matrices (see Box 1 and Supplementary Mate
rials). Since pre-stimulus covariance matrices vary across trials and 
subjects due to noise, attention drifts, and natural variability, the frame 
of reference would be different across trials, hence the resulting differ
ence matrices would not be comparable across trials and subjects. We 
thus need to bring all difference matrices to a common frame of refer
ence, which has the added benefit of further reducing inter-trial and 
inter-subject variability. For a more in-depth mathematical description 
of the Riemannian approach, please see the Supplementary Materials. 

2.3. Feature selection 

Feature selection is often performed prior to classifier learning, 
especially for datasets where the number of features is orders of 
magnitude higher than the number of samples. When the number of 
features exceeds the number of samples, one could always generate an 
overly complex surface that well divides the training samples of 
different classes but poorly classifies the test samples (Fig. 4a). Such a 
surface would likely be fitting measurement noise instead of learning the 
underlying “concept” that separates the classes. By removing features 
that show little discriminability, the dimensionality of the space over 
which we search for the optimal decision boundary would be reduced, 
which eases the data overfitting problem. A common technique for 
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removing features is univariate feature selection, which involves 
applying a t-test to training samples of each feature and retaining only 
those features that pass a certain p-value threshold. A threshold of 0.05 
is usually used since features with moderate discriminability when 
examined in an univariate manner could be useful for classification 
when combined, and their lower discriminability would be accounted 
for by lower classifier weights. A problem with using t-test directly is 

that small perturbations to the data could easily change the selected 
features in small sample settings. To increase stability of feature selec
tion, resampling is often incorporated, i.e. repeat feature selection with 
random subsamples of the data and see which features tend to be 
selected. In this work, we bootstrap the training samples 1000 times, 
compute the percentage of bootstrap samples for which each feature 
attains p < 0.05 (this percentage is commonly referred to as the 

Box 1  

Classifier learning often entails estimation of distance between samples with feature vectors assumed to live in Euclidean space (Sabbagh et al., 
2019), where the shortest distance between two samples is the length of the straight line joining them (Fig. 3a). However, covariance matrices 
live on a non-Euclidean curved surface (positive definite cone to be precise, which is a Riemannian manifold), so the shortest distance between 
two covariance matrices is not the straight-line distance (Fig. 3b). Nevertheless, a curved surface can be locally approximated by a tangent plane 
at a given point, i.e. analogous to how the earth is approximately flat locally and thus a local area can be mapped out with a flat 2D map. 
Therefore, we could estimate shortest distances between nearby points on a curved surface by projecting them to the tangent plane at a given 
point and computing their straight-line distances (Fig. 3c). This idea can be extended to covariance matrices, which is one of the key components 
of the Riemannian approach. In contrast to Pearson’s correlation, for each trial, we first estimate two covariance matrices: one with pre-stimulus 
time points and another with post-stimulus time points. We then “project” the post-stimulus covariance matrix onto the tangent space of the 
pre-stimulus covariance matrix using an operation called Log map. This projection is equivalent to subtraction in Riemannian geometry, so in 
effect, trial-specific attentional drifts and other artifacts captured by the pre-stimulus covariance matrix, are removed from the post-stimulus 
covariance matrix. However, since pre-stimulus covariance matrices typically vary across trials and subjects, the projections would be in 
different tangent spaces. We thus need to bring all projections to a common tangent space, which can be accomplished using an operation called 
parallel transport. Bringing all projections to a common space also reduces inter-trial and inter-subject variability.  

Fig. 3. Euclidean vs. non-Euclidean geometry. (a) In Euclidean space, the shortest distance between two points (red and purple dots) is the length of the straight line 
(blue dotted line) connecting them. (b) On non-Euclidean curved surface, the shortest distance between two points is the length of the curve (blue dotted curve) 
connecting them. (c) For points that are close to each other, we can approximate their shortest distance by finding the tangent plane (green rectangular surface) at 
one point (red dot), projecting the other point (purple dot) onto that tangent plane, and measure their straight-line distance (blue dotted line). We note that the 
displayed curved surface is for concept illustration purposes only, and does not correspond to the space of covariance matrices, which is a high dimensional cone. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Classifier learning. Each dot corre
sponds to a sample with its class label indicated 
by the color. Darker and lighter shade corre
sponds to training and test samples, respec
tively. (a) In high dimensions, especially when 
the number of features exceeds the number of 
samples, using an overly complex function and 
allowing the classifier weights to take on arbi
trarily large values would result in overfitting, i. 
e. fitting measurement noise, hence would not 
generalize well to unseen test samples. (b) SVM 
works by finding training samples that provide 
the largest margin between the classes. The 
solid line corresponds to the hyperplane that 
best separates the training samples under the 
SVM loss. (For interpretation of the references 
to color in this figure legend, the reader is 

referred to the web version of this article.)   
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selection frequency), and keep only features with a selection frequency 
greater than a certain threshold (Fig. 2). We note that the general 
approach of resampling to find stable features is not restricted to uni
variate statistical tests. This approach has indeed been applied to many 
other models, such as sparse regression and sparse graphical models 
(Sachdeva et al., 2021). 

For the choice of selection frequency threshold, we adopt two stra
tegies. First, we use a lenient threshold of 50% and let the process of 
classifier learning decide which features are less relevant. Second, we 
use an information criterion specifically designed for SVM (SVMIC) 
(Claeskens et al., 2008) to select an optimal threshold from a range of 
thresholds (30–70% at 5% increments). The idea behind using an in
formation criterion is to select a threshold that draws a balance between 
misclassification rate and number of features used, as described in 
greater detail in Box 2. Another way to automate the choice of selection 
frequency threshold is to perform nested cross-validation. Nested 
cross-validation involves subdividing the training samples of each 
training fold into internal training and test folds and finding the selec
tion frequency threshold that minimizes the average internal misclas
sification rate across internal test folds (see (Bishop, 2006) for details). 
This technique is thus using the generalizability of a classifier on unseen 
internal test samples as the way to control for overfitting. However, 
nested cross-validation combined with bootstrapping is often compu
tationally prohibitive. 

2.4. Support vector machines 

Recall classifier learning can be viewed as finding a curve that well 
separates two sets of points (Fig. 1). Since infinitely many curves can 
accomplish this goal, the question is how do we choose the “optimal” 
curve. To decide on a curve, we need to define what is optimal. For 
classification, low misclassification rate would be important but this 
criterion alone is often inadequate to find a generalizable curve, as 
discussed in Section 2.3. A criterion that constrains model complexity to 
control overfitting is also needed. 

One widely-used classifier that has empirically shown robust per
formance in low sample-to-feature settings is SVM (Cortes and Vapnik, 
1995). SVM finds samples, referred to as support vectors, that maximize 
the margin between the two classes and generates an optimal hyper
plane that lies between the margins (Fig. 4b). This hyperplane can be 
represented by a classifier weight vector that reflects the relevance of 
each feature for classification, and the product of a given feature vector 
by the classifier weights provides a continuous score of the degree to 
which the corresponding sample belongs to a certain class. Binarization 
of this score based on its sign provides the predicted class label. 

Details on the mathematics of SVM can be found in (Bishop, 2006), 
and an efficient implementation of SVM is available in MATLAB. In this 
work, we use fitcsvm.m with its default parameter settings for building 
SVM. We note that prior to classifier learning, we should normalize the 
features so that features with larger magnitude do not dominate the 

classifier learning. Typically, normalization is performed by removing 
the mean and dividing by the standard deviation of each feature, where 
the mean and standard deviation are estimated using only training 
samples to avoid peeking at test samples and introducing correlations 
between training and test sets, which might bias classification perfor
mance (see Section 2.5 for further discussion). 

2.5. Classifier evaluation 

To evaluate a classifier, we must apply it to test samples not seen 
during classifier learning to assess its generalizability. Otherwise, we 
could simply overfit all samples with a complex function to achieve high 
classification performance (Fig. 4a). We discuss here two scenarios: 
classifying samples from a single subject and classifying samples from 
multiple subjects. For the scenario with samples from a single subject, 
we have to split the samples into a training set for classifier learning and 
a test set for classifier evaluation. One way of splitting the samples is to 
apply K-fold cross validation, which proceeds as follows. First, we 
randomly split the samples into K (approximately) equal folds. We then 
use e.g. the first K-1 folds for classifier learning and apply the learned 
classifier to the left out test fold. This procedure is repeated K times with 
a different left out test fold each time to assess the variability in per
formance across samples. 

As a standard practice, K is often set to 4, 5 or 10, which provides a 
good balance between computational cost and variability assessment. 
The exact choice of K depends on the number of samples available. 
Setting K to 10 allots more samples for training, which might be 
necessary in small sample settings, i.e. hard to learn generalizable 
classifiers with too few samples. Another common choice is to set K to 
the number of samples, i.e. leave-one-out cross validation. However, 
besides higher computational cost since more classifiers will need to be 
learned, leave-one-out is more prone to overestimation of performance 
in the presence of spurious correlations across samples. Specifically, if a 
test sample is highly correlated with a training sample, then it is similar 
to having seen this test sample during classifier learning, which biases 
the classification evaluation. This problem is also present for smaller K, 
but to a lesser extent since not all samples are mutually and equally 
correlated with each other in real data. Taking the above example of a 
highly correlated sample pair, 10-fold cross validation might assign both 
samples to the test set thus unseen during training, which is not possible 
with leave-one-out cross validation. Hence, we opt to use K-fold cross 
validation for classifier evaluation. 

For the scenario with samples from multiple subjects, we should 
perform K-subject-fold cross validation. Specifically, instead of splitting 
samples into K folds, which would include samples from the same in
dividual in both the training and test folds, we split subjects into K folds, 
perform classifier learning on samples from training subjects, and apply 
the classifier on samples from test subjects. This way, correlations be
tween the training and test sets would be alleviated. The assumption is 
that subjects are not related, which is a typical recruitment criterion. As 

Box 2  

The idea behind using an information criterion is to select features not only based on misclassification rate but also consider model complexity 
(often a function of the number of features). The reason is that we can always decrease the misclassification of training samples by increasing the 
number of features in our classifier model (through lowering the selection frequency threshold) and overfitting the training samples with an 
overly complex function (Fig. 4a). To apply an information criterion in selecting the optimal selection frequency threshold, we compute its value 
for each threshold and select the threshold that minimizes the information criterion. This threshold would draw the best balance between 
misclassification and model complexity. For most information criteria, such as SVMIC, model complexity is approximated as a function of the 
number of independent features. However, features are often correlated, e.g. due to autocorrelations in timeseries and elements of a covariance 
matrix are mathematically inter-related (Ng et al., 2016). Hence, approximating the number of independent features by the total number of 
features used in the classifier often overestimates model complexity.  
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for the choice of K, we set K between 4 and 10 as opposed to the number 
of subjects (i.e. leave-one-subject-out) to reduce computational cost. 

After splitting samples into training and test sets and predicting the 
labels of test samples, we need to decide on a metric to evaluate clas
sification performance. Typically, classification accuracy is used, which 
is defined as the fraction of test samples correctly classified in a given 
test fold, and we compute accuracy for all test folds to estimate the 
variability in performance. Alternatively, we can concatenate sample 
labels of all test folds, estimate a single accuracy value, and repeat K-fold 
cross-validation multiple times to examine variability in performance. 
The latter approach has the advantage of considering all samples in 
estimating accuracy, but empirically, for each run of K-fold cross vali
dation, the single accuracy estimate and the average accuracy over test 
folds tend to be very similar. We note that in the case of binary classi
fication, if a classifier learns nothing, then it is equivalent to randomly 
guessing the class labels, i.e. a coin toss, hence chance level accuracy 
would be 50%. However, given finite samples, the estimated average 
accuracy across folds might not be exactly 50% for random classifica
tion. Hence, standard error of the estimated accuracy should also be 
considered when evaluating classifier performance. 

Another often-used metric for classifier evaluation is area under the 
receiver operating characteristic curve (AUROC). AUROC is estimated 
by computing the true positive rate (TPR) and false positive rate (FPR) at 
various thresholds on the classification scores (i.e. the degree to which 
samples belong to a given class, see Section 2.4) to generate a ROC. TPR 
is the number of positive samples correctly labeled as positive by the 
classifier divided by the number of positive samples in the data, and FPR 
is the number of negative samples incorrectly labeled as positive by the 
classifier divided by the number of negative samples in the data. AUROC 
ranges from 0 to 1 with chance level value being 0.5. The benefit of using 
AUROC is that it provides a threshold-insensitive metric for classifier 
evaluation. However, in applications where we need to provide a clear- 
cut binary label for each sample, we cannot use multiple thresholds and 
say a sample is class A if we use threshold a and class B if we use 
threshold b. Instead, we have to use the optimal threshold that best 
separates the training samples, in which case, accuracy would be more 
suited as the evaluation metric since it provides a direct assessment of 
how well the predicted labels based on the optimal threshold match the 
ground truth labels. 

3. Data set 

3.1. EEG data collection 

EEG data were generated as part of a project looking at age related 
changes in native phoneme discrimination (see Reh et al., 2021 for a 
detailed description of the study design). Data from forty 12-month-old 
infants were used for the present study (20 female, age in days: median 
= 364, min = 351, max = 418). An additional fourteen infants were 
tested but excluded due to failure to complete the study (n = 9), 
parental interference (n = 1), or failure to meet EEG data quality criteria 
(n = 4). Families were recruited from the Early Developmental Research 
Group participant database at the University of British Columbia. Par
ents gave written consent for their infant’s participation. Language 
exposure was assessed using a modified version of the language expo
sure questionnaire (Bosch and Sebastián-Gallés, 1997; Byers-Heinlein 
et al., 2017). Inclusion was restricted to those infants growing up in a 
monolingual English-speaking environment (defined as having at least 
90% English language input). The mean English language exposure was 
97%. 

During the EEG recording, infants were tested on their ability to 
discriminate between two native English phonemes, /ra/ vs /la/. Nat
ural tokens of the syllables [ra] and [la] were recorded by a male native 
English speaker, and a continuum of 200 speech sounds spanning the 
acoustic space between the two syllables was created using the program 
TANDEM-STRAIGHT (2008 ICASSP). Two tokens were selected from 

near the continuum ends for the current study; validation with a group 
of 10 adult native English speakers confirmed that the syllables were 
clearly discriminable as /ra/ and /la/ (Reh et al., 2021). Each syllable 
was 356 msec in duration. Discrimination was assessed using an ERP 
oddball paradigm, presented via Psychtoolbox-3 in Matlab (Mathworks, 
Inc.). 

During recording, infants were seated on their parent’s lap in a dimly 
lit, sound attenuated chamber (IAC Acoustics). A single syllable, serving 
as the standard, was presented in repetition at a rate of 1 Hz. Following 
at least 4 repetitions of the standard syllable at the start of the experi
ment, the deviant syllable randomly occurred ~18% of the time, with 
the caveat that a deviant syllable never immediately followed another 
deviant. To explore possible directionality effects in discrimination, the 
deviant was counterbalanced, with half the infants hearing /ra/ as the 
standard and half hearing /la/. A total of 300 stimuli were presented, 
lasting approximately 5 min. Auditory stimuli were presented via a 
Fostex 6301NE speaker at a volume level of 70 dB. During the study, a 
short cartoon (containing no human characters or mouth movements) 
was presented on a Samsung 24” LCD monitor positioned in front of the 
infants to help them stay still and engaged. If excessive movement was 
disrupting the recording or the infant attempted to pull on the EEG cap, 
a research assistant blew bubbles to distract the infant. Throughout the 
experiment, parents listened to masking music through headphones. 

Infant electrophysiological responses were measured using a 
Hydrocel Geodesic 64-channel cap (Philips-Electrical Geodesics, Inc.). 
To reduce infant fussiness during cap application, the facial channels 
(61–64) were removed from the cap by the manufacturer. Thus, only 
channels 1–60 are included in the present dataset. Prior to recording, 
infants’ head circumference and distance from nasion to inion and ear to 
ear were measured to select and correctly place the EEG cap. Electrode 
impedances were measured at or below 50 kΩ. During recording, the 
EEG data were acquired using the Net Amps 400 amplifier (Philips- 
Electrical Geodesics, Inc.), sampled at a rate of 1000 Hz and referenced 
to the vertex (Cz). 

3.2. EEG data preprocessing 

We opted to perform minimal data cleaning to avoid introducing bias 
or altering the EEG data in a way that influences the classification per
formance. Raw EEG data were exported to .mat files and initial pre
processing was executed using BEAPP (Levin et al., 2018). The 
PrepPipeline toolbox was used to remove line-noise (via the cleanline 
function (Mullen, 2012)), detect and interpolate bad channels, and 
re-reference the EEG data to the average reference (Bigdely-Shamlo 
et al., 2015). To more accurately detect noisy channels, PrepPipeline 
iteratively alternates between robust average re-referencing and detec
tion and interpolation of bad channels relative to this average reference. 
Data were discarded if more than 10 channels were identified as bad. 
Following data re-referencing, the EEG data were bandpass filtered from 
0.1 to 100 Hz. BEAPP uses the EEG lab function eegfiltnew, which ap
plies a hamming windowed sinc Finite Impulse Response (FIR) filter to 
the data. The EEG timeseries were then split into 700 ms long trials, with 
syllable onset at 100 ms from the beginning of the trial. The length of 
this time window was informed by univariate analysis, which found 
evidence for MMR between 200 and 400 ms post-stimulus onset (Reh 
et al., 2021). A wider window was used to account for individual dif
ferences in processing speed. In addition, baseline data was included to 
provide contrast with the brain response, which could be exploited to 
improve connectivity estimation (see Section 2.2.5). Trials containing 
voltage deviations of larger than 200 uV were discarded. The average 
trial attrition rate was 9%, with a mean of 50 deviant trials retained (min 
= 35, max = 57). For each subject, the number of standard trials 
included was matched to the number of deviants to balance the classes. 
Preprocessed time segments of standard and deviant trials have been 
made publicly available on Open Science Framework. 
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4. Results 

We applied the presented classification pipelines (see main*.m and 
riemannian*.m) to EEG data from forty 12-month-old infants to predict 
whether an infant is hearing a standard vs. a deviant sound in a classical 
auditory oddball paradigm. For each infant, we paired each deviant trial 
with the immediately preceding standard trial to ensure balanced clas
ses, resulting in approximately 50 standard trials and 50 deviant trials 
per infant. We opted to use the immediately preceding standard trial 
since the noise background of the immediately preceding standard trial 
would be the most similar to that of the given deviant trial. If deviant 
stimulus has no effects, this choice of standard trials should make clas
sification most difficult and least biased compared to other choice of 
standard trials (see Section 5 for discussion on classification bias due to 
attention drifts and other artifacts). Each trial comprised 700 ms time 
segments from 60 EEG channels, from which we extracted various fea
tures including the timeseries themselves, STFT, Pearson’s correlation, 
wPLI, and Riemannian geometry-based connectivity. To illustrate the 
challenges in classifying infant data, we first performed classification 
using SVM with feature selection on each infant’s data separately, i.e. 
the case of low SNR and low number of samples. For evaluation, we 
performed 10-fold cross validation and used accuracy as the evaluation 
metric. The average accuracy across infants is shown in Fig. 5a (see  
Fig. 7 for accuracy of each infant). For the majority of infants, the ac
curacy is 50% or below, which illustrates the difficulty level of this 
classification task, especially given the low SNR and limited number of 
samples. 

To increase sample size, we pooled data across infants. For evalua
tion, we again used 10-fold cross validation, but instead of leaving out 
10% of the trials, we randomly left out 10% of infants for each fold to 
avoid correlations between samples in the training and test sets. To 
illustrate that classification accuracy tends to vary with different infant 
splits, we explicitly plotted with separate bars results from 5 runs of 10- 
fold cross validation (Fig. S2). The average accuracy across subject-folds 
is at chance level for all methods except Riemannian geometry-based 
connectivity, which is slightly above 50%. This result suggests that 
increasing sample size alone is inadequate, likely since the SNR is too 
low for each trial to be classified. 

To increase SNR, we adopted the strategy used in traditional EEG 
analysis, namely averaging the trials of each infant. However, due to 
attention drifts among other factors, trial averaging could introduce 

classification bias. In particular, averaging temporally adjacent trials 
using a sliding window strategy would lead to bias since trials at the 
beginning of the experiment are quite distinct from those at the end, as 
shown in Fig. 5b. In particular, temporally-close trials tend to cluster 
together, which indicates they have similar feature vectors, whereas 
temporally-distant trials tend to fall in different clusters. Therefore, we 
opted to average H= 10 trials sampled at an (approximately) uniformly 
spaced time interval, i.e. deviant trials h, h+ 5, …, h+ 40, and h+ 45 
were averaged for h = 1–5, and the same for standard trials. Setting H to 
10 reduces the number of trials unused, i.e. 50 mod 10 = 0. Average 
accuracy over 20 runs of 10-fold cross-validation with H set to 10 is 
shown in Fig. 6a. We note that only the Riemannian approach benefited 
from using SVMIC to choose the optimal selection frequency threshold 
(Fig. S3). The reason is due to the need for estimating the number of 
independent features when using SVMIC (see Box 2). Specifically, 
bringing covariance matrices to vector space has the effect of decoupling 
the connectivity features (Ng et al., 2016). Hence, the number of Rie
mannian geometry-based connectivity features would be a closer esti
mate of the number of independent features compared to the contrasted 
features. In particular, timeseries and STFT are prone to correlation 
between nearby time points. Elements of Pearson’s correlation matrices 
are mathematically inter-related (Ng et al., 2016), and the same goes for 
cross spectral density matrices, which are intermediaries of wPLI esti
mation. Therefore, we report accuracy based on using SVMIC for only 
the Riemannian approach. We also note that the other option for H is to 
set it to 5, but was empirically found to provide inadequate SNR for 
classification (Fig. S4). Further, we tested 4-fold cross-validation 
(Fig. S5), which resulted in similar accuracy for timeseries, lower ac
curacy for STFT, wPLI, and the Riemannian approach, and higher ac
curacy for Pearson’s correlation but still near chance level. The reason 
for the decrease in accuracy with 4-fold cross-validation was likely due 
to fewer training samples per fold for classifier learning. 

With trial averaging and data pooled across infants, average classi
fication accuracy rose above chance level for some of the features 
(Fig. 6a). While the average accuracy across 20 runs of 10-fold cross 
validations remained at chance level with timeseries as features, average 
accuracy of STFT increased to 54%. The accuracy with using Pearson’s 
correlation remained slightly below chance level likely due to volume 
conduction differences across infants overwhelming the connectivity 
patterns, whereas using wPLI, which is insensitive to volume conduc
tion, achieved an average accuracy of 57%. Using Riemannian 

Fig. 5. Classifier learning with trials from each infant. (a) Average accuracy across infants displayed. Error bars correspond to standard errors. (b) STFT features of all 
trials projected to 2D space using UMAP (which is similar to principal component analysis for combining features into two dimensions but tends to better highlight 
clusters) to demonstrate temporal correlations across trials. The number corresponds to trial number and lighter color corresponds to later time in the experiment. A 
given number would appear twice: one corresponds to standard stimulus, the other corresponds to deviant stimulus. The ellipses are drawn based on the mean and 
standard deviation of the feature values for every 10 trials in temporal order. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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geometry-based connectivity also achieved an average accuracy of 57%, 
demonstrating benefits of accounting for attention drifts and inter- 
subject variability. To test whether accuracy is statistically above 
chance level, we applied Fisher’s Exact test to the test folds of each run 
with the ground truth class labels as the reference, and computed the 
proportion of test folds that are significant at p < 0.05. For timeseries 
and Pearson’s correlation, 0% of the test folds were significant. In 
contrast, 35%, 85%, and 45% of the test folds have accuracy signifi
cantly above chance for STFT, wPLI, and the Riemannian approach, 
respectively. Further, to assess whether the increased accuracy with 
wPLI and the Riemannian approach are statistically significant, we 
applied McNemar’s test to each test fold of each run, and computed the 
proportion of test folds for which the increased accuracy is significant at 
p < 0.05. wPLI and the Riemannian approach are significantly more 
accurate than timeseries, STFT, and Pearson’s correlation for 9% and 
12% of test folds, respectively, on average (Fig. 6b). The low proportion 
of test folds deemed significant was likely due to the low number of 
samples in each test fold for applying McNemar’s test. We note that 
Wilcoxon sign rank test is also widely-used for comparing accuracy 
across methods. This approach involves either taking the accuracy of 
each fold as a sample or taking the average accuracy of each run of K- 
fold cross-validation as a sample. However, the correlation across folds 
and runs of K-fold cross-validation violates the independent sample 
assumption in applying Wilcoxon sign rank test, hence the p-values 
would be underestimated. Indeed, standard errors of the accuracy esti
mates (i.e. error bars in Fig. 6a) are also underestimated due to corre
lation across folds and runs, hence why we applied Fisher Exact test to 

the test folds of each run to assess whether accuracy is significantly 
above chance level. 

We further assessed the performance of multi-infant classifier 
learning at the individual infant level by extracting the predicted trial 
labels of each infant and estimating a separate accuracy value for each 
infant (i.e. instead of averaging accuracy across subject-folds). Except 
for using Pearson’s correlation, classifier learning with trials pooled 
across infants substantially increased accuracy over classifier learning 
with trials from each infant (Fig. 7). Importantly, the proportion of in
fants with accuracy above chancel level increased from 0.4 to 0.75 for 
wPLI, and 0.55 to 0.80 for Riemannian-based connectivity features, 
demonstrating the benefits of pooling trials across infants, provided that 
volume conduction and other sources of inter-subject variability are 
properly accounted for. 

5. Discussion 

We described in this introductory ML tutorial the steps involved in 
classifying infant EEG data, namely feature extraction, feature selection, 
classifier learning, and classifier evaluation. Applying the described 
pipeline achieved above chance level accuracy on a difficult task, 
namely separating infant neural responses to rare vs. frequent auditory 
stimuli. While similar studies have been carried out with data from 
adults (Brandmeyer et al., 2013), this work is, to our knowledge, the first 
demonstration of MMR classification with infant data. Average classi
fication accuracy, while not high, was above chance, which is consistent 
with accuracy levels seen in previous infant EEG studies (Bayet et al., 

Fig. 6. Classifier learning with trials pooled across infants. (a) Average accuracy over 20 runs of 10-fold cross validations displayed. Error bars correspond to 
standard errors across runs. (b) McNemar’s test is applied to each left out fold to test if labels of each reference method is significantly more accurate than the other 
methods. The proportion of folds across the 20 runs that are significantly more accurate with the reference method are displayed. 

Fig. 7. Accuracy breakdown at single infant level. x- and y-axis correspond to accuracy attained with single infant and multi-infant classifier learning, respectively. 
Each dot represents an infant. The red dotted lines correspond to chancel level accuracy. Dots above the gray dotted line implies increased accuracy with multi-infant 
classifier learning and vice versa. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2020). For the current task of MMR classification, wPLI and the Rie
mannian approach achieved the best classification performance, 
attaining an average accuracy of 57%. Also, the proportion of infants 
with above chance classification accuracy was > 75%, which is quite 
high and similar to that reported in infant fNIRS studies (Emberson 
et al., 2017). Considering the computational cost, if the goal is to test 
whether connectivity can distinguish different experimental conditions, 
we would recommend testing wPLI first, which is faster to compute and 
focuses on non-zero-lag similarity between EEG timeseries hence 
insensitive to volume conduction. If accuracy is insufficient, then the 
Riemannian approach could be explored. Although the Riemannian 
approach only estimates zero-lag correlation, it implicitly accounts for 
volume conduction and explicitly accounts for trial-specific confounds 
as well as inter-trial and inter-subject variability (Sabbagh et al., 2020). 

Infant data have certain characteristics that make application of ML 
difficult, namely the relatively low SNR, low number of trials per infant, 
high inter-subject variability, and high inter-trial variability. We out
lined strategies to address each of the above issues, but steps taken to 
reduce one problem may exacerbate another. For example, averaging 
trials improves SNR but at the expense of lowering the number of trials. 
Nonetheless, with the “right” balance, we found that incorporating some 
trial averaging does improve performance for the current classification 
task. Previous work on infant classification used a similar approach 
(Bayet et al., 2020; Gennari et al., 2020), suggesting that trial averaging 
could be beneficial to deal with the amount of noise in typical infant EEG 
data. 

To deal with the low number of trials per infant, we pooled trials 
across infants. However, inter-subject variability, which is especially 
high in infant data due to differences in brain maturation and 
morphology during development (Gao et al., 2014), might obscure the 
discriminative EEG patterns. Particular to the current classification task, 
the MMR, also termed the mismatch negativity due to the negative 
voltage observed in adults (Näätänen et al., 2019), has a positive voltage 
in early infancy (Dehaene-Lambertz and Gliga, 2004). Studies suggest 
that this voltage switch is dependent on both brain maturation (Trainor 
et al., 2004; Kushnerenko et al., 2007; Cheng et al., 2013) and the dif
ficulty of the experimental task (Cheng et al., 2015). Hence, an infant 
may display either a positive or negative mismatch response, which 
might explain the small number of infants for which accuracy was 
actually higher with classifiers learned from their own trials without 
pooling (see Fig. 6). Nevertheless, by accounting for inter-subject vari
ability using wPLI and parallel transport, pooling trials across infants 
provided higher accuracy on average. 

In addition to inter-subject variability, we must contend with high 
inter-trial variability in infant EEG data. The timing of stimulus-driven 
brain activity is less precise in infancy. Typically, infants have greater 
variability in response onset and duration than adults (de Haan, 2007). 
Over the first year of life, as myelination increases and neuronal 
response properties become increasingly selective, responses become 
more stereotyped. However, a large degree of inter-trial variability re
mains even in adult data. This inter-trial variability is another reason 
why averaging trials helps improve classifier performance. 

Accuracy for single infant classifier learning was below chance on 
average, suggesting that the classifier discovered non-random patterns 
in the trials that led to misclassification. In particular, EEG timeseries are 
autocorrelated (Linkenkaer-Hansen et al., 2001), and the amount of 
autocorrelations might be exacerbated in infant data due to more 
attention drifts, habituation to the stimuli, and changes in SNR resulting 
from increased infant movements and fussiness over time. Thus, 
temporally adjacent trials might mistakenly get classified to the same 
class even when they belong to different classes (Li et al., 2020). In fact, 
trials being not truly independent presents a potential pitfall in EEG 
classification. As seen in Fig. 4b, trials are clustered by their temporal 
order within the experiment. If two sets of stimuli are presented one 
after the other instead of being interspersed, a classifier might use 
temporal order instead of stimulus-induced response patterns to 

separate the trials (Li et al., 2020). Hence, careful experimental design is 
needed to reduce the effects of correlated samples on classification. 

Given the complexity of cognition, any of the described features (and 
many more) could contain information required to classify different 
stimuli. In the case of the MMR, its neural underpinnings have been 
extensively explored. Previous studies have shown differences in the 
timeseries domain (with the classic ERP description of the mismatch 
negativity) (Näätänen et al., 2019), changes in oscillatory activity 
(Fuentemilla et al., 2008; Hsiao et al., 2009), and differences in con
nectivity between brain regions (Hsiao et al., 2009; Mamashli et al., 
2019). Each of these features enables us to examine neural processes 
from a different angle, and their relative performance partly depends on 
the classification task and partly depends on which confounds dominate. 
For example, timeseries over short windows would be well suited for 
stimuli that evoke rapid responses, and Pearson’s correlation would not 
be suited if large inter-subject variability in volume conduction patterns 
is present. Important to note is that features failing to classify (as was the 
case here for timeseries) does not imply that those features are not 
relevant for the given cognitive task (i.e. we should not accept the null). 
Rather, discriminant patterns in those features could be obscured by 
noise. 

While the described classification pipeline does not reveal the spe
cific time points or connections that support classification, a number of 
follow-up analyses can be performed to address this question. For 
example, one can permute the class labels to generate a null distribution 
for each feature’s classifier weight, and check which features have 
classifier weights (without label permutation) significantly higher than 
their respective null. In fact, techniques for estimating p-values under 
the classification setting without label permutation have been proposed 
(Taylor and Tibshirani, 2018; Candès et al., 2018). Also, specific to using 
timeseries as features, one could perform time-resolved classification to 
determine when classes become distinguishable (Grootswagers et al., 
2017) as well as test if a classifier trained on one time point can 
generalize to other time points to gain insights on whether certain ac
tivity patterns recur in time (Kim et al., 2014). 

Another approach to gain insights from classification results involves 
correlating accuracy with behavioral scores as well as contrasting ac
curacy across groups. This approach has been used in adults to examine 
how phoneme processing is influenced by language background 
(Brandmeyer et al., 2013). The results of this study revealed that, despite 
a high level of English proficiency and experience, classification accu
racy for English phonetic contrasts was lower for native Dutch speakers 
than English speakers across all contrast difficulties, highlighting the 
importance of early language experience on the tuning of phoneme 
representations. 

Further, insights into cognitive processes can be drawn from care
fully designed experiments. While we focused on binary classification, 
classification over additional stimulus categories (N-way classification) 
can provide further insights into infants’ mental operations. For 
example, studies with adults have classified the entire phoneme space 
(Moses et al., 2016). Using a confusion matrix, one can visualize the 
pattern of mistakes made by the classifier, e.g. if the classifier is more 
likely to incorrectly classify phonemes with similar articulatory dy
namics (i.e. to confuse a stop consonant ‘b’ for another stop ‘d’, as 
opposed to a fricative ‘f’). The underlying assumption is that classifi
cation accuracy will decrease for stimuli with similar neural represen
tations. This is the core idea behind representational similarity analysis 
(Kriegeskorte et al., 2008), which has been used to explore categorical 
representation in the brain (e.g. for object recognition (Kaneshiro et al., 
2015)). 

Moreover, one could gain insights by investigating a classifier’s 
generalizability to unseen classes. In this case, either binary or N-way 
classification can be used to train a classifier on EEG data in response to 
a given stimulus set. The trained classifier is then tested on data from a 
different stimulus set, to see how well the classifier generalizes to the 
new stimuli. This strategy can be used to determine whether 
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classification patterns are being driven by perceptual properties that are 
unique to a given stimulus set, or by more abstract properties (e.g. 
category membership, articulatory dynamics, etc). For example, if a 
classifier trained to categorize EEG data evoked by ‘b’ and ‘d’ is able to 
accurately classify data evoked by the stimuli ‘m’ and ‘n’, it suggests that 
the brain encodes information at the level of the place of articulation 
(Gennari et al., 2021). 

To conclude, ML enables many new questions to be addressed. 
Instead of asking simply whether the EEG response to A differs signifi
cantly from the EEG response to B at any given channel or cluster of 
channels using standard group analysis, one can investigate whether the 
mental representations (captured by the EEG response patterns as a 
whole) contain information to distinguish different stimuli. In addition, 
one can explore how experience shapes these representations. For 
example, the above chance accuracy with multi-infant classifier learning 
provides evidence that infants share a common underlying EEG activity 
pattern in response to an auditory MMR. This in itself is not a surprise, 
given the extensive work on the MMR in infants and adults (Näätänen 
et al., 2019). However, the question becomes more interesting when 
considering the language domain more broadly. The current data set 
contains only data collected from infants growing up in a monolingual 
English-speaking environment. With the presented classification pipe
lines, one could probe how well the classifiers trained with data from 
this cohort are able to classify data from infants growing up in either 
bilingual households or in a different language environment entirely (e. 
g., Japanese where /ra/ vs /la/ are not distinguished). In addition, one 
can look at these questions from a developmental perspective, and begin 
to explore if, and when, during language development these represen
tations begin to diverge for infants growing up in different language 
environments. ML thus provides the developmental cognitive neuro
science community new tools to answer questions beyond those possible 
with traditional group analysis. 
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