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In this paper, the unusual reactivity of the complex Zn(II)-1,4,7-trimethyl-1,

4,7-triazacyclononane (2) in the transesterification of the RNA-model substrate,

HPNP (3), is reported. The dependence of the reactivity (k2) with pH does not follow

the characteristic bell-shape profile typical of complexes with penta-coordinated metal

centers. By the contrary, two reactive species, featuring different deprotonation

states, are present, with the tri-aqua complex being more reactive than the

mono-hydroxy-diaqua one. Apparently, such a difference arises from the total complex

charge which plays an important role in the stability of the transition state/s of the

reactions. Relevant insight on the reaction mechanism were hence obtained.

Keywords: RNA, monometallic Zn(II)-complexes, azacrown, phosphate cleavage, phosphoesterase models,

kinetics

INTRODUCTION

Phosphate diesters have a fundamental importance in the chemistry of life in particular because
they constitute the backbone of essential biomolecules as DNA and RNA. Their hydrolytic stability
is very high. When the sole P-O cleavage by water is considered, the half-life of DNA is estimated
to be in the order of magnitude of millions of years, at 25◦C and pH 7, and that of RNA is around
a hundred years (Wolfenden et al., 1998; Schroeder et al., 2006). Still, the hydrolytic processing
of nucleic acids occurs in living organism in few milliseconds, thanks to the enzymes devoted to
this task, as nucleases and phosphatases (Westheimer, 1987; Kamerlin et al., 2013). Most of them
contain metal ions, as Mg(II), Ca(II), and Zn(II), in their active sites.

In the attempt to reproduce the activity, and possibly the proficiency of enzymes, chemists have
focused their attention on the creation of artificial nucleases (Morrow et al., 2008; Aiba et al., 2011;
Lassila et al., 2011; Lönnberg, 2011; Mancin et al., 2012; Diez-Castellnou et al., 2017a). Despite
the significant effort invested in understanding the mechanism of the enzyme catalyzed reaction
(Korhonen et al., 2013; Erxleben, 2019) and, therefore, in creating efficient artificial hydrolytic
agents, the enzyme reactivity is still unrivaled and several questions remain to be addressed.

A better understanding of the roles played by the metal ion in promoting the hydrolytic cleavage
of phosphate esters could be achieved using simple mono- or bi-metallic complexes as models. In
particular Zn(II), while not being Nature’s first choice, is likely the metal ion most widely employed
in artificial systems (Mancin and Tecilla, 2007). This is due to several reasons: (i) the possibility
to produce well defined and relatively stable complexes with neutral ligands; (ii) the absence of a
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relevant redox chemistry; (iii) a good Lewis acid acidity; (iv) a
modest field effect that allow the easy reorganization of the ligand
shell to match the ligand or reaction requirements.

Design and investigation of bimetallic systems is often difficult
since the possible formation ofµ-hydroxo bridges may affect and
even cancel their reactivity (Mancin and Tecilla, 2007). Mono-
metallic Zn(II) complexes, on the other hand, produce usually
modest rate accelerations when compared to the corresponding
bimetallic ones. Still, they allow more detailed investigations of
the cleavage reaction providing a simple and better definedmodel
(Bonfá et al., 2003).

In this perspective, we report here a detailed investigation of
the reactivity of the Zn(II) complexes of 1,4,7-triazacyclononane
(1) and of its methyl derivative 1,4,7-trimethyl-1,4,7-
triazacyclo-nonane (2) toward the hydrolysis of the RNA
model 2-hydroxypropyl-p-nitrophenylphosphate (HPNP, 3)
(see Scheme 1). We found that the reactivity of 2 follows an
unprecedented behavior featuring three pH dependent reactivity
breaks, providing new insight on the reactivity of these systems.

RESULTS

HPNP cleavage rate in the presence of the two Zn(II) complexes
was measured at 40◦C. Kinetic experiments were performed in
pseudo-first order conditions (i.e., in the presence of an excess of
metal complex over the substrate, whose concentration was fixed
at 20µM) bymonitoring the formation of 4-nitrophenolate by its
UV-Vis absorption at 400 nm.

The complexes were prepared in situ by mixing a solution of
Zn(NO3)2 with the corresponding ligand, in buffer. TACN and
his derivatives have a high affinity for Zn(II). Indeed, the values
reported in literature for the complex formation constants assure
that, in the experimental condition here used, the complexes are
fully formed (Yang and Zompa, 1976).

With both the complexes 1 and 2, the pseudo-firsts order
rate constants (kobs) measured increase linearly with the Zn(II)
complex concentration in the interval investigated (0–0.4mM).
Apparent second order rate constants (i.e., k2 = kcat/KM in
the Michaelis-Menten formalism) can be obtained by linear
regression fitting of the kobs vs. [complex] data.

Figure 1 reports the pH dependence of the apparent second
order rate constants measured for the two complexes. As
expected, the pH has a strong influence on the reaction rates
suggesting, as generally observed with similar systems, that
the deprotonation of metal bound-species has a relevant role
in the reaction.

At a first sight, both the profiles show the bell-shape
characteristic of metal complexes with two metal bound
water molecules. Indeed, kinetic data for complex 1 were
fitted with Equation (1), which accounts for the reactivity
of a species with three protonation states where only the
second one is active (Supplementary Material). The fit
provides the pKa values of 8.13 and 11.28, respectively
for the first and second deprotonation. The second
order rate constant (kZn) for the reaction of the active

Abbreviations:HPNP, 2-hydroxypropyl-p-nitrophenylphosphate.

FIGURE 1 | pH dependence of the second order rate constants (k2) for the

transesterification of HPNP catalyzed by complex 1 (•) and 2 (2) at 40◦C.

mono-deprotonated catalyst’s species with the substrate is
0.064 M−1 s−1.

The values of pK1
a and kZn obtained are in line with those

reported in literature for complex 1 (Bonfá et al., 2003). The
formation of the bis-deprotonated species and the consequent
drop of the catalysts reactivity at higher pH have never been
reported for 1, but a similar behavior is well-known for similar
complexes of tridentate ligands, as 1,5,9-triazacyclododecane
(Livieri et al., 2007).

The fitting of the kinetic data for complex 2 with Equation
(1) gives very poor results (see Supplementary Information).
A closer inspection of the profile of complex 2 reveals that
it does not follow exactly a bell-shape. Indeed, k2 smoothly
increases from pH 8 to pH 9.5, with a reactivity similar to
that of complex 1, suggesting that the first deprotonation is
occurring in this range. When the pH reaches the value of
9.5, a stronger, reactivity increase is observed and k2 reaches
values 4-fold larger than the maximum one reached by complex
1. Eventually, the reactivity starts to drop above pH 11.0. A
good fit of the data was obtained by using Equation (2), which
was written for a reactivity model that involves a species with
four protonation states and with two of them, the second
and the third, reactive (Supplementary Material). Note, one of
the referees pointed out that highly correlated parameters are
obtained in the case of 5 variables fitting. As discussed, reliability
of the reactivity and acidity parameters obtained is however
supported by the comparison with the pH reactivity profile of
complex 1.

The results of the fittings are reported in Table 1. The
three pKa values obtained (7.7, 10.2, and 11.6) are separated
respectively by 2.5 and 1.4 pKa units, with the first pKa value
quite close to the corresponding one measured for 1. Also the
kZn value for themono-deprotonated species is on the same order
of magnitude to that measured for 1 (0.025 M−1 sec−1) but that
of the bis-deprotonated species (k’Zn) is considerably larger (0.27
M−1 sec−1).
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SCHEME 1 | Zn(II) metal complexes used in this work and RNA-model substrate, HPNP.

TABLE 1 | Kinetic parameters from pH rate profiles.

Complex pK1
a pK2

a pK3
a kZn (M−1

·s−1) k
′

Zn (M−1
·s−1)

1 8.13 11.28 - 0.064 -

2 7.71 10.18 11.6 0.025 0.27

Conditions: [HPNP] = 2.0·10−5 M, [buffer] = 5.0·10−2 M, at 40 ◦C.

DISCUSSION

The presence of a third metal bound water molecule
in complex 2 is confirmed by the crystal structure
obtained by Trogler and coworkers (Silver et al., 1995)
for the complex [Zn(Me3tacn)(H2O)3]

2+ (2·3H2O)2+

where the Zn(II) ion adopts an octahedral environment,
coordinated to three nitrogens of the macrocycle and also
to three aqua ligands. In addition, Spiccia and coworkers
(Fry et al., 2003) reported the crystal structure for the
related complex [Zn2(Me3tacn)2(H2O)4(PhOPO3)]

2+(22
·4H2O·PhPO4)

2+ where the Zn(II) ion is coordinated to three
nitrogen atoms from N,N,N-trimethyl-1,4,7,-triazacyclononane,
two water molecules and one oxygen from phenyl phosphate.
These structures support our hypothesis that in complex
2, formed by Zn(II) with the ligand 1,4,7-trimethyl-1,4,7-
triazacyclononane, the coordination number of the metal ion
is 6, as the accessible surface of the metal ion is large enough
to allow coordination of two water molecules and of the
substrate simultaneously. Unfortunately, no crystal structures
are available for complex 1 to confirm its preference for the
coordination number 5 at the metal ion, as suggested by
kinetic experiments. The flexibility of the Zn(II) ion, which
does not have a defined coordination geometry, is well-known
(Sigel and Bruce Martin, 1994).

Potentiometric titration data available are also quite scarce. In
the case of complex 1, precipitation above pH 8 prevented the
determination of the acidity of the metal bound water molecules.
Kinetic experiments, as already mentioned, confirm a pKa value
around 8 for the first water molecule (Bonfá et al., 2003). In the
case of complex 2, Trogler and coworkers reported the values of
10.9 and 12.3 (Silver et al., 1995). Such values appear surprisingly
high when compared with complex 1 and with other Zn(II)
complexes of macrocyclic polyamides (Kimura et al., 1990; Koike
et al., 1990, 1991, 1992; Kimura and Koike, 1991). Indeed, one
would expect that electron-donating methyl group will lower

the acidity of the substituted metallic complex with respect to
the unsubstituted one (Canary et al., 1995). Interestingly, the
similarity of these values with those here reported for the second
and third pKa is clear (Fry et al., 2005).

Focusing the attention on the hydrolytic reactivity of the
two complexes, it is relevant to note that the pH profiles
obtained confirm the coordination of the substrate to the
complex. No other possible mechanism, as general base catalysis
or nucleophile catalysis, would account for the reactivity
decrease observed at high pH values. There are three kinetically
equivalent mechanisms that have been proposed to explain
the pH dependence observed for the metal catalyzed HPNP
transesterification (Korhonen et al., 2013; Diez-Castellnou et al.,
2017a). In the first, the reaction involves the deprotonation of
the substrate’s hydroxyl group by a metal bound hydroxide,
which acts as a general base, simultaneously to the nucleophilic
attack on the phosphorus atom (Scheme 2A). In the second,
the substrate alcoholic group is bound to the metal ion and
deprotonates before the nucleophilic attack (Scheme 2B). This
mechanism is indistinguishable from the others because the pKa

values of metal bound water molecules and alcoholic hydroxyls
are similar (Kimura et al., 1995; Livieri et al., 2007). In the third
mechanism (Scheme 2C) the substrate deprotonation occurs
before metal coordination and the deprotonation of a metal
bound water molecules decreases (or hamper) the interaction of
the metal with the substrate.

Several experimental evidences strongly support the last
mechanism (2C) in the case of catalysts that have coordination
sites available on the metal ion to accommodate only the
substrate (Morrow et al., 2008; Korhonen et al., 2013; Diez-
Castellnou et al., 2017a). On the other hand, it is quite likely
that when the catalyst have more coordination sites, the substrate
alkoxide will bind to the metal ion, turning the reaction
mechanism into path 2B (Livieri et al., 2007). In this mechanism,
the metal ion plays two opposite roles: (i) it increases the
reactivity of the substrate toward the nucleophilic attack, acting
as a Lewis acid, (ii) it decreases the reactivity of the nucleophile,
by decreasing its pKa.

A few years ago, we calculated the kZn values for the
HPNP cleavage promoted by several mononuclear Zn(II)
complexes of polyamine ligands (Figure 2) (Bonfá et al., 2003;
Bonomi et al., 2013). In the case of triamine complexes,
we found a positive correlation of the reactivity with the
pKa of the first deprotonation of a metal bound species.
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SCHEME 2 | Proposed mechanisms for the metal catalyzed HPNP

transesterification reaction: (A) the substrate deprotonation by a metal bound

hydroxide occurs simultaneously to the nucleophilic attack on the phosphorus

atom; (B) the substrate alcoholic group is bound to the metal ion and

deprotonates before the nucleophilic attack; (C) the substrate deprotonation

occurs before metal coordination and the deprotonation of a metal bound

water molecule decreases the interaction of metal with the substrate.

FIGURE 2 | Plot of log kZn vs. pKa for the transesterification of HPNP

catalyzed by Zn(II) complexes in water. Red triangles represent the reactivity of

complexes 1 and 2, circles (©) are cyclic triamine ligands (a-f), squares (�)

linear triamine ligands (g-i), see ref Bonfá et al. (2003) and Bonomi et al. (2013).

The dashed line shows the linear fit of the reactivity data for the complexes of

cyclic triamines (slope = 0.80). The reactivity of 1 and 2 was corrected to

account for the temperature difference by matching the reactivity of 1 with the

reported data (ref. Bonfá et al., 2003).

Such a behavior suggested that, among the two concomitant
and counterbalancing effects active, the loss of reactivity of

the nucleophile prevails over the Lewis acid activation of
the substrate.

When the reactivity of complexes 1 and 2 is analyzed in
this perspective, interesting insight is provided. The reactivity
of complexes 1 and 2a (Scheme 3) is in line with that of
other triamine complexes (Figure 2). On the other hand,
the reactivity of mono-deprotonated complex 2b is about 10
times smaller than that expected for a complex of a triamine
ligand with that pKa. This suggest that a further effect is at
play in this case besides substrate Lewis acid activation and
nucleophile reactivity modulation. Significant modifications of
the coordination geometries in the two complexes 2a and 2b,
which could justify their different reactivity, are unlikely as
confirmed by DFT optimization of the complex geometries
(see Supplementary Material). The other relevant differences
between the reactive protonation states of complex 2 are
essentially two. First, in complex 2a there is a metal bound water
molecule, which could provide intramolecular H-bonds or acid
catalysis. Since this water molecule is turned into an hydroxide
in 2b, its positive effect on reactivity would be canceled. If this
was the case (or if a general base catalysis mechanism was active),
however, reactivity of 2a would be greater than that of 1 and of
the other triamine complexes. The second difference is in the total
charge of the reactive species, which is 0 in the ternary complex
of 2a with HPNP and−1 in the case of 2b. Upon the nucleophilic
attack of the substrate alkoxide, additional negative charge builds
up in the phosphoryl group and this is electrostatically disfavored
by the overall complex charge, resulting into a lower reactivity.
Indeed, we earlier reported as the insertion of an additional
positive charge in the ligand structure, located in close proximity
to the reaction site, can increase the reactivity of a mononuclear
Zn(II) complex up to one order of magnitude. This is in good
agreement with the 10-fold rate decrease estimated for complex
2b (Bonomi et al., 2009).

CONCLUSIONS

In conclusion, in this paper we have demonstrated as even small
modifications in the structure of the ligands, as the insertion of
methyl groups in the nitrogen atoms of triazacyclononane, may
have a relevant effect on the ability of the corresponding Zn(II)
complex in promoting the phosphoryl transfer reaction. The
complex 2 is, at the best of our knowledge, the only monometallic
Zn(II) catalyst of HPNP cleavage that is active in two different
protonation states. Such a reactivity is due to the peculiar
ability of 1,4,7-trimethyl-1,4,7-triazacyclononane to increase the
number of coordination sites to 6 on the metal ion with respect
of other similar ligands. The most relevant result of this study is
however the mechanistic information obtained. The reactivity
of complex 2 further supports mechanism 2B as the most
likely in the case of complexes where enough solvent-occupied
coordination sites on the metal are available. It also confirms that
hydrolytic reactivity of these systems is the result of a delicate
counterbalance between Lewis acid and electrostatic activation
of the substrate (and stabilization of the transition state) and the
decrease of the nucleophile reactivity. Several evidences obtained
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SCHEME 3 | Proposed structure of the pre-reactive complexes of 1 and 2 with HPNP.

with model systems, and confirmed by our results, suggest that
optimum reactivity should be obtained when the nucleophile is
not bound to the metal ion and the overall complex charge is as
great as possible (Tirel et al., 2014; Tirel andWilliams, 2015). This
explains also the greater reactivity usually observed with trivalent
cations, as well as the detrimental effect of negatively charged
ligands (Mancin et al., 2012). Metal ion coordination of the
nucleophile may however be necessary to increase the fraction of
nucleophile available at physiological pH and to provide a better
preorganization of the latter for the attack to the phosphorous
atom. The need to consider of all these factors explains the
difficulties in reproducing enzymes’ proficiency with simple
models. Indeed only a precise spatial organization of multiple
active species can optimize the positive effects while minimizing
the detrimental one. It is hence not surprising the fact that
only by using sophisticated supramolecular architectures,
where several beneficial factors can be implemented,
remarkable reactivities were obtained (Manea et al., 2004;
Feng et al., 2006; Bonomi et al., 2008; Gruber et al., 2011;
Diez-Castellnou et al., 2014).

Equations

k2 = kZn





[1]total
[H+]
K1
a

+ 1+
K2
a

[H+]
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