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ABSTRACT: Myo-inositol hexakisphosphates (IHPs) or phytates are the
most abundant organic phosphates having the potential to serve as a
phosphorus reserve in soil. Understanding the fate of IHP interaction with
soil minerals tends to be crucial for its efficient storage and utilization as a
slow-release organic phosphate fertilizer. We have systematically compared
the effective intercalation strategy of a phytate onto Zn−Fe layered double
hydroxide (LDH) acting as storage/carrier material through coprecipitation
and anion exchange. Powder X-ray diffraction, X-ray photoelectron
spectroscopy, elemental analysis, thermogravimetric analysis, FTIR spectra,
and molecular modeling demonstrated the formation of phytate-intercalated
Zn−Fe LDH through coprecipitation with a maximum loading of 41.34% (w/w) in the pH range of ∼9−10 in a vertical alignment
through monolayer formation. No intercalation product was obtained from the anion exchange method, which was concluded based
on the absence of shifting in the XRD (003) peak. A change in the zeta potential values from positive to negative and subsequent
increase in solution pH, with decreasing phytate concentration, are suggestive of adsorption of IHP onto the LDH surface. The
batch adsorption data were best fitted with Langmuir isotherm equation and followed the pseudo-second-order kinetic model. The
maximum adsorption capacity was found to be 45.87 mg g−1 at a temperature of 25 ± 0.5 °C and pH 5.63.

1. INTRODUCTION
In the last few decades, the application of inorganic
phosphorus (P) fertilizers has witnessed an exponential
increase owing to its exceeding demand. Limited mineral
reserves and permanent P losses from leaching, runoff, soil
erosion, and fixation reactions have triggered great concern.1−4

Emphasis on the exploration of an abundant and sustainable
source of P for fertilizer applications are imperative. Organic
phosphates (OPs) account for ∼20−80% of the total
phosphorus content in the form of nucleic acids, phospholi-
pids, sugar phosphates, and inositol phosphates in most soils
and sediments, which could be a good choice of inorganic P
substitutes.3,5

Among all other forms, inositol phosphates make up half of
the organic phosphate.6 Myo-inositol hexakisphosphate (IHP)
or phytate (Figure 1), a 6-fold dihydrogen phosphate
monoester of inositol (a 6-fold alcohol of cyclohexane)7 is
the most abundant inositol phosphate8,9 in nature. It carries a
high negative charge owing to the presence of six phosphate
groups attached to the six carbon atoms of the inositol ring.
The presence of the six phosphate groups primarily contributes
to the strong chelating ability of IHP toward divalent and
trivalent metal ions, oxides, and clay surfaces in soil.2,8 The
structure of IHP is shown in Figure 1 presenting Mills
projection for IHP (1a), three-dimensional 1-axial−5-equato-

rial conformation for IHP7 (1b), and the optimized structure
of IHP in these two respective forms (1c and 1d). A number of
studies have reported the interaction of IHP with active soil
minerals including metal hydroxides (Al(OH)3),

8,10 metal
oxides (goethite),11 hematite,12 and kaolinite13,14 through
adsorption/desorption and surface precipitation. Preferential
accumulation of IHP in soil due to complexation with metal
ions and clay surfaces obstructs its biodegradation,5,6 causing P
scarcity and rendering all the participating elements unavail-
able for plant uptake. Thus, it holds remarkable potency in
understanding the interaction of IHP with potential storage
and carrier materials and its efficient loading and release for
utilization in phosphorus delivery.
Layered double hydroxides (LDHs) are a class of synthetic

clay materials analogous to naturally occurring hydrotalcite-like
clay minerals.15−18 They are structured with sheets of
dipositive and tripositive ions having charge-compensating
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anions residing in between the sheets along with hydroxide
ions and water molecules.19,20 They have an excellent ability to
incorporate a broad range of organic and inorganic anions
through intercalation into their basal layers. With their large
aspect ratio, LDH materials have proven to be very efficient
agents in storage and protection of the intercalated moiety in
their gallery region owing to their layered sheet structure and
subsequent slow delivery.21 Because of their nontoxic nature,
the LDHs are reported to have acted as slow-release agents in
agriculture21−24 and drug delivery.25−27 Not much work has
been reported showcasing the interaction of LDH components
with the IHP moiety for agricultural utilization. Wang et al.4

investigated the retention of IHP in soil to reduce P loss risk in
the presence of Mg−Al LDH. They witnessed the adsorption
of IHP on the LDH surface but no intercalation into the basal
layers. However, a number of studies have demonstrated
synthesis of IHP-intercalated LDH materials by different
routes for application in metal ion capture,28 corrosion
inhibition,29 and flame retardancy.30 An understanding of the
nature of interaction of IHP with LDH materials and detailed
study on the formation of a probable intercalation product of
IHP in LDH basal structures may provide a way for advanced
future application of these cost-effective and biofriendly
materials in retention and delivery of phytate ions as
agricultural products.
The present work demonstrates a systematic study for

intercalation of IHP into Zn−Fe LDH structure through
coprecipitation and anion exchange methods. IHP-intercalated
LDH has the potential to act as a sustainable P storage and
delivery vehicle. The choice of cations for LDH synthesis was
done because eventual dissolution of LDH does not dispense
any harmful elements into the environment, and the elements
could be utilized by plants. Characterization techniques
including powder X-ray diffraction (PXRD), Fourier transform
infrared (FTIR) analysis, thermogravimetric analysis (TGA),
inductively coupled plasma− mass spectrometry (ICP−MS),

scanning electron microscopy− energy-dispersive x-ray analysis
(SEM−EDX), high-resolution transmission electron micros-
copy (HRTEM), and X-ray photoelectron spectroscopy (XPS)
were used for investigation of the structure of the obtained
products. A batch study for the adsorption of IHP on the
synthesized Zn−Fe−Cl LDH surface was carried out to gain
insight into the interaction of IHP with the LDH surface. A
measurement of zeta potential, solution pH, and spectrophoto-
metric assay was performed to gain understanding about its
underlying mechanism. To probe the minimum energy
structure of phytic acid for investigation of the intercalation
process, geometry optimization calculation of the molecule was
carried out using density functional theory (DFT).

2. METHODOLOGY
2.1. Materials. AR-grade chemicals including ZnCl2·6H2O

(CAS: 7646-85-7), FeCl3·6H2O (CAS: 10025-77-1), NaOH
(CAS: 1310-73-2), and NaCl (CAS: 7647-14-5) were
purchased from FINAR, Gujarat, India. Sodium phytate
(CAS: 17211-15-3, molecular weight: 923.81 g mol−1) was
purchased from SRL, Maharashtra, India. The water has been
purified by a Millipore water purification system (MΩ cm−1

conductivity, 18.2 Milli-Q Lab Water Solutions) and was used
for all the solution preparation and syntheses.

2.2. Synthesis of Parent Zn−Fe-LDH (ZLDH). Zn−Fe−
Cl LDH (ZLDH) nanomaterial was synthesized by copreci-
pitation,31,32 under a N2 atmosphere and at 70 °C reaction
temperature, followed by ultrasonication method with an aging
time of 17 h with a Zn/Fe molar ratio of 3:1. The product was
separated by centrifugation, washed repeatedly with ultrapure
water, and dried in a vacuum desiccator.

2.3. Intercalation through Coprecipitation. To inspect
the probable intercalation of IHP in the lamellar region of
LDH, the precursor solution in ultrapure water containing
ZnCl2 and FeCl3 in the ratio 3:1 was added to sodium phytate
solution (IHP source), with variable reaction parameters

Figure 1. Structure of IHP: Mills projection (a), three-dimensional 1-axial−5-equatorial conformation (b), and optimized structures in respective
forms (c,d).
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during the precipitation of the double hydroxides under a N2
atmosphere, with dropwise addition of 2 M NaOH solution.
The reaction temperature was set at 70 °C. The product
formed was aged in the mother liquid for 24 h. The products
(Table 1) were collected by centrifugation, followed by

repeated washing with ultrapure water, and then dried in a
vacuum desiccator. The final pH of each system was
monitored. The reaction volume in Table 1 refers to the
total volume of mixed metal solution and sodium phytate
solution, excluding the volume of NaOH.
The basal spacing (d) and interlayer spacing or the gallery

height (L) for the characteristic (003) plane of the products
from PXRD patterns were calculated.
The basal spacing (d) was calculated from Bragg’s equation.

=d
2sin (1)

The gallery height (L) was calculated from basal spacing
value by subtracting the value of LDH layer thickness taken to
be 0.48 nm for hydrotalcite-like materials.33,34

=L dGallery height ( ) basal spacing ( ) layer thickness
(2)

2.4. Intercalation through Anion Exchange. The
possible intercalation of IHP in the basal layers of synthesized
Zn−Fe LDH (ZLDH) was studied through anion exchange
with the interlayer Cl− ions of the LDH. Weighed quantities of
ZLDH were added to sodium phytate solution with varying
concentrations under a nitrogen atmosphere. The products
obtained were centrifuged and washed repeatedly with
ultrapure water. The supernatant was used for spectrophoto-
metric determination of IHP remained in solution. The
products (Table 2) were dried in a vacuum desiccator and
stored for further analyses.

2.5. Sorption Experiments. To probe the nature and
underlying mechanism for the interaction of IHP with
synthesized ZLDH, sorption experiments were carried out.
2.5.1. Preparation of IHP Stock Solution. A stock solution

(5 mM) of sodium phytate was prepared in ultrapure water

and diluted to get the desired concentration. Calibration curves
for phytate were obtained by measuring the absorbance at 500
nm. Hydrochloric acid (HCl) and sodium hydroxide (NaOH)
solutions were used to adjust the pH in the desired range of
investigation.
Sorption studies were done using batch experiment

methods. The ZLDH sample (200 mg) was weighed and
suspended in half the solvent (ultrapure water) of the total
fixed volume of the IHP solution (30 mL). The suspension was
ultrasonicated for homogenization, and then, the other half of
the adsorbate solution was added to it with required IHP
concentration. The resultant solution was shaken for 24 h to
achieve equilibrium at a temperature of 25 ± 0.5 °C. The
experiment was conducted with different initial adsorbate
concentrations for isotherm studies and at different reaction
times for kinetics studies. After each experiment, half of the
aliquot was withdrawn, centrifuged, and filtered through a 0.22
μm membrane filter and used for spectrophotometric
determination of IHP as described by Agostinho et al.35 The
other half was used for the investigation of the zeta potential
values. The pH changes after sorption at different time
intervals were investigated to evaluate the nature of the
interaction taking place. Post experimental ZLDH samples
were dried in a vacuum desiccator and stored for further
analyses. The effect of pH on the sorption nature was studied
with constant IHP concentration in the LDH suspension,
followed by observation of changes in the zeta potential values.
The amount of IHP sorbed was calculated by the difference in
phytate concentration measured before and after adsorption
equilibrium was reached.
The amount of IHP sorbed at equilibrium was calculated

from eq 3.

=Q
C C V

m
( )t

e
0

(3)

where Qe is the maximum sorption capacity (mg g−1); C0 (mg
L−1) and Ct (mg L−1) are the initial and equilibrium IHP
concentration, respectively; V is the volume of the solution
(L); and m is the weight of the sorbent (g).36,37

The sorption isotherms were fitted with the Langmuir and
Freundlich model. The linear forms of the Langmuir model,
the Langmuir Linearization 1 plot of Hanes−Woolf plot (eq
4), and the Freundlich model (eq 5) are represented with the
following equations.

= +C
Q K Q

C
Q

1e

e L m

e

m (4)

= +Q K
n

Cln ln
1

lne F e (5)

where Qm (mg g−1) and KL (L mg−1) are constants
corresponding to adsorption capacity and net enthalpy of
adsorption, respectively, and Kf and n are the constants
representing the adsorption capacity and intensity of
adsorption, respectively.38

Lagergren pseudo-first-order (eq 6) and pseudo-second-
order (eq 7) kinetic models were fitted to simulate the
sorption kinetics data.

=q q q k tln( ) lnte e 1 (6)

Table 1. Products Obtained during the Precipitation of IHP
with LDH Precursors

products
obtained

Zn2+/Fe3+/IHP
ratio

reaction
volume
(mL)

IHP
quantity
(M)

aging
time
(h) final pH

Z1 3:1:1 120 0.025 24 ∼9−10
Z2 3:1:0.4 120 0.01 24 ∼10−11
Z3 3:1:0.4 60 0.01 24 ∼8−10
Z4 3:1:0.4 60 0.025 24 ∼7−8
Z5 3:1:0.4 60 0.03 24 ∼7−8

Table 2. Products Obtained after the Exchange Experiment
of IHP with ZLDH

products
obtained

temperature
(°C)

ZLDH amount
(mg)

IHP quantity
(M)

exchange
time

ZAP1 75 300 0.01 5 min
ZAP2 75 300 0.01 30 min
ZAP3 75 300 0.05 24 h
ZAP4 75 300 0.1 6 h
ZAP5 75 300 0.1 24 h
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= +
q

t
q k q

t 1

t e 2 e
2

(7)

where qe (mg g−1) and qt (mg g−1) are the amount of IHP
sorbed per unit mass of ZLDH at equilibrium and time t,
respectively; K1 (min−1) is the pseudo-first-order rate constant;
and K2 (g mg−1 min−1) is the second-order constant for
sorption.39

2.6. Characterization. The FTIR spectra of the samples
were recorded in an FTIR spectrometer (Agilent Model no:
Cary 630, USA; SL. no. MY20192018) in the range of 400−
4000 cm−1. The TGA thermograms of the samples were
obtained using a thermogravimetric analyzer (Hitachi
STA7300, USA) in the temperature range of 25−700 °C at
a heating rate of 10° per minute under a N2 atmosphere. The
PXRD analyses of the samples were performed in an X-ray
diffractometer (Bruker Model D8 Advance A25, Germany)
using monochromatic Cu Kα radiation (λ = 1.54056 Å). The
X-ray photoelectron spectra were recorded using ESCALAB Xi
+ model (Thermo Fisher Scientific, Pvt. Ltd., UK). The
HRTEM micrograph of samples was recorded using an
electron microscope (JEOL-JEM 2100, Japan) with an
accelerating voltage of 200 kV. The SEM−EDX analysis was
performed using a JEOL JSM-IT300 Scanning Electron
Microscope. ICP−MS analysis was performed for quantifica-
tion of the P content in phytate-loaded samples using ICP-
Mass spectrometer (Agilent 7900, US). The ζ potential
variations of the investigated samples were measured using the
Anton Paar Particle Analyzer Litesizer 500 (Anton Paar, US).
For all the analytical purposes, spectrophotometric methods
were employed using a Multiskan SkyHigh Microplate
Spectrophotometer (A51119700DPC, Thermo Fisher Scien-
tific, Pvt. Ltd., UK) in the range of 300−800 nm.

2.7. DFT Calculations. The structure of myo-inositol
hexakisphosphate in the form of phytic acid was optimized in
the ground state using the B3LYP functional and 6-31G(d)
basis set (Table S1). The choice of phytic acid instead of
phytate anion was made for simplicity of optimization. Along
with geometry optimization, vibrational frequency calculations
have been performed to characterize the nature of stationary
point, and no imaginary frequencies have been observed. The
minimum energy structure was obtained without applying any

symmetry restrictions. All calculations were performed using
Gaussian 09 software package.40 The distances between
oxygen atoms from the optimized structure were calculated
and are given in Table S2.

3. RESULTS AND DISCUSSION
3.1. Characterization of Parent Zn−Fe LDH. The

parent Zn−Fe LDH (ZLDH) was characterized prior to
other intercalates for reference. The XRD spectra for ZLDH
confirm the presence of layered structure formation with well-
defined sharp and intense peaks characteristic of LDH
materials at lower 2θ value and less intense peaks at higher
2θ values41 (Figure 2a). Peaks observed at the (003), (006),
(012), (009), (015), (110), and (113) planes establish the
formation of highly -crystalline LDH structure (JCPDS-00-
048-1026).42 The basal spacing (d003) is calculated to be 0.778
nm, a value typical of Cl−-intercalated LDH.43,44 The ratio of
Zn/Fe from the EDX spectra is observed as 2.57 (Figure S1a
and Table S3). The XPS survey spectrum shows (Figure S2a)
the presence of all required elements. Characteristic peak
(Figure S3) at binding energy (eV) values of 1021.5 and
1044.8 for 2p3/2 and 2p1/2 states, respectively, shows the
presence of Zn2+.45,46 Peaks at 710.718 and 723.68 eV with
satellite peaks at 717.65 and 732.84 eV confirm the presence of
Fe3+.47 The SEM micrograph for ZLDH shows the formation
of a multilayer stacked structure with intensely agglomerated
particles (Figure 3a). The formation of nanosized particles
(with an average diameter of ∼20 nm) with an aggregated
nature is established by the HRTEM images (Figure 3b).

3.2. Coprecipitation Behavior of IHP in Zn−Fe
Precipitates. Coprecipitation is a one-pot method for the
synthesis of LDHs, with simultaneous precipitation of
M(OH)2 and M(OH)3 by addition of a precipitating reagent.
It is convenient for large-scale LDH production and for
intercalation of a variety of anionic groups in the LDH lamellar
structure, especially complex organic moieties.
The formation of intercalated products was investigated with

the PXRD technique to observe the changes in crystal pattern
of the LDH structures. The shifting of the (003) reflection in
the X-ray diffractogram, responsible for change in basal spacing
(calculated from eq 1, given in Table 3), was primarily
monitored for the observation of intercalation of IHP in the

Figure 2. PXRD patterns for (a) ZLDH, (b) Z1, (c) Z2, (d) Z3, (e) Z4, and (f) Z5; (i) A1, (ii) A2, (iii) A3, (iv) A4, and (v) A5 [* = ZnO and ° =
ZnFe2O4].
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LDH layers. The basal spacing is correlated to the thickness of
a single metal hydroxide layer, which depends upon the size
and orientation of the intercalated species. In Figure 2, the
shifting of (003) and (006) planes to lower 2θ value is
observed for Z1-Z5. The product Z1 exhibits the highest shift
for the (003) plane from 11.4° in ZLDH to 6.44° 2θ angles
giving a basal spacing (d003) of 1.375 nm. This infers to an
expansion of the LDH sheets with increased interlayer spacing
owing to the successful insertion of an IHP moiety into the
lamellar region. The final pH of the Z1 medium was measured

to be ∼9−10. In the case of Z2 and Z3, a d003 shift of 1.24 and
1.184 nm were observed, respectively. Small d-spacing shifts
were observed for Z4 and Z5 samples, and the values resemble
the d-spacing values for phosphate-intercalated LDHs.4 The
interlayer spacing calculated from eq 2 is highest for Z1 sample
followed by Z2 > Z3> Z4> Z5 (Table 3). The basal repeat
distance “c” and supercell parameter “a” are calculated as c =
3d003 and a = 2d110

48 for the samples and are listed in Table 3.
A broadening of peak corresponding to the (01l) plane around
mid-two theta angles refers to stacking faults occurring due to
the simultaneous formation of LDH and rearrangement of the
bulky phytate anion.49 The merging of the (110) and (113)
planes in the diffractograms of the intercalated structures also
signifies a disorganization of the layered structure.50 Other
literature also suggest the shifting of the (003) plane toward
lower 2θ angles with broadening of the XRD peaks and
disruption in layered structures upon insertion of organics.51

Moreover, the increase in gallery height and emergence of halo
and amorphous peak refer to partial delamination of the LDH
structure.
The appearance of an additional peak assigned to the ZnO

phase in the diffractogram of the Z2 sample may be ascribed to
an increase in solution pH (∼11). The formation of ZnO
phase arises during coprecipitation at pH exceeding 10.52

However, the products with lesser final pH values exhibit
reduced d-shifting values, indicating incomplete and lower
extent of intercalation (Z4−Z5). The solution pH was
governed by the rate and duration of addition of metal salt
solution and NaOH, in addition to the initial IHP
concentration and quantity of the reaction volume. Lower
reaction volume was observed to exhibit greater pH
fluctuations. Coprecipitation at pH greater than 11 led to the
loss of LDH structure and formation of oxide phases [Figure
2i−iv]. At pH ∼11−13, mixed metal oxide phase is observed
without the formation of hydrotalcite phase [Figure 2iii,iv]. On
further increasing the pH, formation of only ZnO phase is
observed [Figure 2i,ii]. This occurs due to the preferential
formation of ZnO and dissolution of Zn(OH)2 at high pH
conditions.53 Coprecipitation in the presence of abundant
Na2(CO3)2 solution in similar reaction conditions as Z1 did
not result in IHP-intercalated product, as carbonate ions
compete for the basal layers, which have higher affinity
compared to IHP (Figure 2v). Furthermore, addition of
Na2(CO3)2 leads to an increase in the solution pH, which
subsequently resulted in the appearance of a mixed oxide phase
in the diffractogram.

Figure 3. SEM (a,c) and HRTEM (b,d) micrographs for ZLDH and
Z1, respectively.

Table 3. Values of Crystal Parameters for the Intercalated
Samples

samples
d003 (c0)
(nm)

interlayer
spacing (L)
(nm)

“c”
parameter
(nm)

d110 (a0)
(nm)

“a”
parameter
(nm)

ZLDH 0.778 0.298 2.334 0.155 0.310
Z1 1.375 0.895 4.125 0.150 0.300
Z2 1.242 0.762 3.726 0.151 0.302
Z3 1.184 0.704 3.552 0.151 0.302
Z4 0.895 0.415 2.64 0.150 0.300
Z5 0.880 0.400 2.685 0.152 0.304

Figure 4. Proposed orientation of the IHP inside the LDH interlayer spacing.
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The obtained basal spacing value (1.375 nm) for Z1
coincides well with the reported phytate-intercalated LDH.29

The interlayer spacing from eq 2 is calculated to be 0.895 nm,
lesser than the highest O−O bond distance (from C2−C5)
found as 1.022937 nm from the optimized phytic acid
structure. This indicates that IHP is intercalated in a vertical
monolayer formation in the LDH interlayers, cross-linking the
LDH sheets through electrostatic bonding with the phosphate
groups (Figure 4) but in a tilted way to accommodate itself. As
shown in Table S2, IHP may orient in C1−C3, C2−C5, or
C3−C6 opposite endings, giving an O−O distance higher than
the gallery height of Z1.
The XPS survey spectrum for Z1 exhibits P 2p peak at a

binding energy value of 132.21 eV, implying successful loading
of IHP into LDH (Figure S2b). From ICP−MS analysis, the
percentage loading of IHP was calculated to be 41.34% (w/w).
The O 1s XPS spectra for Z1 (Figure S5b) deconvoluted to
three peaks at binding energy values of 528.84, 530.13, and
531.64 eV, respectively, assigned to lattice O2, surface −OH,
and nonbridging oxygen (P−O, Zn−O), which further
confirms the insertion of the IHP moiety.42 The appearance
of a peak for Cl in the survey spectrum indicates that some
quantity of Cl− ions was inherently intercalated in the
interlayers along with IHP. The absence of a Na peak in the
survey spectrum of Z1 refers to the absence of pure phase
phytate salt, indicating complete insertion.
The SEM image for Z1 (Figure 3c) shows the formation of a

less aggregated deformed sheet-like morphology, whereas
formation of a less agglomerated nanostructure was shown
by the HRTEM micrograph (Figure 3d), indicating insertion
of IHP inside the LDH layers.
The formation of intercalated product Z1 is further

supported by the FTIR spectra (Figure 5). Peaks typical of

layered structure appeared at ∼3400 cm−1 due to stretching
vibration of metal hydroxides and trapped H2O molecules, at
∼1643 cm−1 due to bending vibration of the interlayer H2O
molecules and around 500−800 cm−1 due to the M−O
stretching vibration for Z1 in reference to ZLDH. Character-
istic peaks owing to P�O, P−O−C, and PO3

3− stretching
modes are observed around 1152, 1087, and 1000,
respectively, for Z1 implies the binding of the phytate

moiety;28 signifying intercalation of IHP in the interlayer of
the LDH. The FTIR spectra for Z2−Z5 are given in Figure S7.
The TGA and derivative thermogravimetry (DTG) thermo-

grams in Figure 6 demonstrate the comparative weight loss
profiles of Z1, Z2, and A4 with ZLDH as the reference. It can
be observed that both Z1 and Z2 exhibit two distinct breaks,
similar to ZLDH, at temperature ranges 100−250 and 250−
700 °C. In case of ZLDH, the first weight loss stage is observed
because of desorption of the physically adsorbed water,
whereas the second weight loss occurs due to the
dehydroxylation of the LDH layers and decomposition of the
interlayer anions, a pattern typical of LDH structures.29 The
first break observed for Z1 can be ascribed to the evaporation
of water, and the second break denotes the disruption of the
hydroxide layers and intercalated IHP anion. The IHP-
intercalated sample Z1 retained larger weight (77.185%)
compared to that in ZLDH (61.2%), probably owing to the
formation of a thermally stable cross-linking network by IHP
with LDH layers at higher temperatures.30 The weight loss
profile for Z2 can be described similar to that of Z1, but Z2
retained less weight (65.94%) partially due to the existence of
mixed phase structures. The thermogram for sample A4 shows
typical weight loss profile for mixed metal oxides, exhibiting
one distinct break owing to the evaporation of the water
molecules on the exterior of the metal oxide structures.54 This
further confirms the formation of a mixed oxide phase rather
than an LDH phase, as indicated by the PXRD patterns
(Figure 2iv).

3.3. Interaction through Anion Exchange. Intercalation
of IHP in the LDH lamellar region through ion exchange with
precursor Cl− ions was investigated with varying parameters
(Table 2). The intercalation process was inspected by
monitoring the shift in the characteristic (003) reflection in
the X-ray diffractogram of the exchange products. The sharp
and symmetric reflections in the PXRD patterns for ZLDH
(Figure 2a) are lost after exchange experiments with the IHP
moiety. The XRD patterns (Figure 7) exhibit a broad, halo,
and amorphous peak in the (01l) 2θ region. It can be inferred
to the probable dissolution of the LDH component in the
solid−liquid interface55 and possible binding with the highly
charged phytate ion. However, the absence of the (003) peak
shifting to lower 2θ angles signifies no expansion in the LDH
interlayer spacing by insertion of the IHP moiety replacing the
existing Cl− ions. This accordingly suggests that the formation
of IHP-intercalated Zn−Fe LDH through ion exchange could
not be achieved. Nevertheless, likely interaction of ZLDH with
phytate ions without intercalation may be incurred as observed
from the PXRD patterns.
As the IHP moiety is expected to interact through its

phosphate groups with the LDH component, the peaks
corresponding to P−O bond stretching are monitored in the
FTIR spectra of the exchange products. The appearance of
new peaks assigned to P�O, P−O−C, and M−O are
observed as shown in Figure 8, further suggesting the
interaction of IHP with LDH. The bands correlated to the
P�O and P−O−C vibrational modes experienced a shift from
the original wavenumber in its sodium phytate structure
(Figure 5). This can be ascribed to the formation of the inner-
sphere complex at the LDH surface as phosphate groups are
cited to bind to metal ions at hydroxide surface through inner-
sphere complex formation.2

The XPS survey spectrum for ZAP1 and ZAP5 further
confirms the presence of P in the LDH surface (Figure S2c,d).

Figure 5. FTIR spectra for (a) ZLDH, (b) sodium phytate, and (c)
Z1.
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This critically indicates specific interaction occurring between
the IHP moiety and the LDH component. The lowering of the
peak intensity for Zn and Fe is observed because of the
incurred change in the chemical environment around the metal
ions due to the interaction with IHP. The shifting of the Zn 2p
and Fe 2p peaks to higher binding energy values shows the
adsorption of phytate at the surface through inner-sphere
complex formation56 (Figure 9), as already suggested by FTIR
spectra. The increase in binding energy values signifies a
lowering of electron density around the atoms.57 Here, the
LDH surface acted as Lewis acid and drew electron density
from the negatively charged O atom of phytate group.57 The
deconvoluted XPS spectra of C1 s (sample ZAP5) exhibited
characteristic peaks at 288.44, 286.13, and 284.69 eV binding

energy values, interpreted as C�O, C−O, and C−C (H),
respectively.58,59 The XPS spectra of O 1s demonstrate a shift
of 1.174 eV in the binding energy, essentially signifying the
existence of adsorption.60

As is evident from the results, intercalation of the IHP
moiety into the LDH interlayer spacing did not occur through
anion exchange. Surface adsorption occurred between the
highly charged anion and the positively charged LDH basal
layers. This can be inferred to the complex size and very high
charge density of IHP, for which the anionic moiety binds to
the surface of the LDH without entering into the preformed
LDH lamellar region.
The surface adsorption of IHP at the LDH surface is thus

established from the facts mentioned above. The pattern and

Figure 6. TGA and DTG thermogram for (a) ZLDH and (b) Z1, (c) Z2 and (d) A4.

Figure 7. (Left) PXRD patterns for (a) ZAP1, (b) ZAP2, (c) ZAP3, (d) ZAP4, and (e) ZAP5; (right) PXRD of the ZLDH samples post sorption
experiment for varied time with an initial IHP concentration of 0.0248 mM.
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mechanism of adsorption are further probed by conducting
batch sorption experiments.

3.4. Sorption Isotherm and Kinetics. The sorption
process was carried out with different initial IHP concen-
trations (∼0.02−0.2 mM) at a temperature of 25 ± 0.5 °C.
The adsorption capacity at equilibrium (Qe) is observed to
increase with time (Figure S8). In Figure 10a,b, the fitting of
the sorption data is shown in linear form of Langmuir and
Freundlich isotherm models, respectively. Table 4 represents
the corresponding parameters from the isotherm and kinetic
models and their correlation coefficients (R2) with related
standard errors (S.E.) for each parameter. Langmuir model
fitted the experimental data best by linear analysis from the
values of R2 and related SE for each parameter (Table 4). The
experimental data simulated with a pseudo-second-order
kinetic model gave a good fit with R2 = 0.99993 showcasing

the adsorption process of IHP on Zn−Fe LDH to be in
accordance with the pseudo-second-order rate eq (Figure 10c).
The PXRD patterns (Figure 7) of the products obtained after
sorption kinetic experiments exhibit a peak in good
correspondence with the parent ZLDH, with peak positions
and intensity remaining unchanged. This indicates no
altercations in the LDH structures during the experiments.
The diffraction patterns demonstrate evident difference from
that obtained from anion exchange products. The lowering of
intensity and peak broadening did not arise in the present case
due to the use of lower IHP concentration and room
temperature condition in kinetic experiments.

3.5. Zeta Potential (ζ) Measurement. The variation in
zeta potential values of the ZLDH suspension before and after
treatment with IHP as a function of pH is represented in
Figure 11a. The zeta potential of the LDH suspension prior to
treatment with IHP kept on decreasing with increasing pH.
This occurs because of the OH− groups present at the edges.
Due to the protonation of the OH− ions at lower pH, the
edges become positively charged, and with positive basal
surface, the whole particle represents a high positive ζ value.
At higher pH, deprotonation of the OH− groups occurs,

changing the sign on the edges to negative, resulting in
flocculation occurring between the positively charged basal
surface and negatively charged edges. Therefore, the ζ values
lowered in higher pH values and eventually became negative at
pH ∼ 12, giving an isoelectric point (IEP) value at pH ∼ 11.
The low ζ value at pH 2 might result from dissolution of LDH
in a highly acidic medium. The addition of highly negative IHP
in all pH values led to inversion of the zeta potential and gave
successively increasing�ζ values evidencing the adsorption of
IHP occurring at the LDH surface due to electrostatic
attraction arising between the highly negative IHP moiety
and positively charged LDH basal surface.

Figure 8. FTIR spectra for (a) ZAP1, (b) ZAP2, (c) ZAP3, (d)
ZAP4, and (e) ZAP5.

Figure 9. XPS spectra for shifting of (a) Zn 2p for ZLDH and ZAP5; (b) Fe 2p for ZLDH and ZAP5; (c) O 1s for ZLDH and ZAP5; and (d) C 1s
deconvoluted spectra for ZAP5.
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Figure 10. Sorption isotherm for IHP (a) Langmuir linear model (Langmuir linearization 1 plot of Hanes−Woolf plot), (b) Freundlich linear
model, (c) pseudo-first-order sorption kinetic model, and (d) pseudo-second-order sorption kinetic model for IHP on ZLDH.

Table 4. Linear Isotherm and Kinetic Parameters for IHP Adsorption by ZLDH

model parameters units value S.E.

Langmuir linear model Qm mg g−1 45.87 0.00108
KL L mg−1 0.0613 003017
R2 _ 0.98293 _

Freundlich linear model KF _ 3.6683 0.17983
N _ 1.6312 0.06393
R2 _ 0.92853 _

pseudo-first-order kinetic model qe mg g−1 17.558 0.5768
k1 min−1 0.021 0.00424
R2 _ 0.7463 _

Pseudo-second-order kinetic model qe mg g−1 94.25 3.2042 × 105

k2 g (mg min)−1 0.00625 0.00436
R2 _ 0.99993 _

Figure 11. Zeta potential variation for (a) ZLDH suspension as a function of pH (with and without IHP) and (b) IHP concentration. [Inset:
variation of pH of the LDH suspension after treatment with IHP solution with time].
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Figure 11b shows the variation of ζ values with an increasing
IHP concentration. A shift of the ζ value from +37.4 to −48.9
mV demonstrates (without outer interference of pH) that
adsorption of IHP on LDH surface is a major contributing
factor in altering the LDH surface to negative, and adsorption
of IHP on LDH occurs through inner-sphere complex
formation without the involvement of interlayer water
molecules.61,62 This fact is further supported by the pH values
observed after sorption of IHP on the LDH suspension
(recorded at definite time intervals, without tempering the
initial pH of 5.63 of the system in the batch kinetic
experiment).
From Figure 11 (inset), it is evident that the pH of the

system shifted from 5.63 to 7.01 in 300 min. It can be deduced
that the adsorption of IHP on the LDH surface occurs through
ligand exchange route,4 and the binding occurs through its
PO4

3− groups. During the interaction of the IHP moiety with
the LDH metal centers, the OH− ions and H2O molecules are
exchanged from the surface and released into the solution
medium leading to the formation of inner-sphere complexes.
This coincides well with the results obtained from the FTIR
and XPS investigations. Moreover, the increased OH− in
solution as adsorption proceeds eventually increases the pH
values in the medium, as observed from Figure 11 (inset).

+ +M OH (IHP) M (IHP) OH

During the observation of the effect of IHP sorption with
varying pH, the extent of sorption was found to decrease with
increasing pH (Figure S9). This may be inferred to the fact
that in higher pH, there would be fewer positive charges on the
surface of ZLDH. Due to the deprotonation of basal OH− of
LDH, there would be greater OH− in solution, which would
compete with dissolved phytate under alkaline conditions. This
corroborates the mechanism proposed by studying the zeta
potential variations.

4. CONCLUSIONS
The investigation of intercalation of IHP in the Zn−Fe
interlayers through coprecipitation and anion exchange
method was performed with PXRD, FTIR, TGA, XPS,
SEM−TEM, and ICP−MS analyses of the obtained products.
Formation of IHP-intercalated Zn−Fe LDH with maximum
d003 shift (1.375 nm) in PXRD spectra with a loading of
41.34% (w/w) was achieved through coprecipitation method
in the pH range of ∼9−10. The expansion of the interlayer
region was accompanied by a deformation of the conventional
layered structure due to disordered stacking of the exfoliated
nanosheets accommodating the rearranging IHP moiety in the
basal spacing. The orientation of IHP in accordance with the
stacking layers was evident to be in vertical alignment forming
a monolayer between the basal surfaces by bonding through
the PO4

3− groups. Intercalation of IHP onto the layers of
synthesized Zn−Fe LDH through anion exchange was not
observed at all as suggested by the PXRD data. But the
evidence from FTIR and XPS data, spectrophotometric assay,
and measurement of variation of system pH and electrokinetic
potential conveys rapid adsorption of IHP on the synthesized
LDH surface through monolayer formation. The existence of
electrostatic attraction and inner-sphere complex formation
through ligand exchange mechanism were observed to be
responsible for the sorption of IHP on ZLDH surface. The
batch sorption experimental data followed pseudo-second-

order kinetic model and gave a good fit with the Langmuir
isotherm with a maximum adsorption capacity of 45.87 mg g−1.
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