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Abstract. Semaphorin 4D (Sema4D) is highly expressed 
in a variety of tumors and is associated with high invasion, 
poor prognosis and poor therapeutic response. However, the 
expression and role of Sema4D in leukemia remains unclear. 
The present study investigated the expression of Sema4D in 
pediatric leukemia and its effects in leukemia cells. The results 
demonstrated that Sema4D protein was highly expressed in 
peripheral blood mononuclear cells of patients with pedi‑
atric leukemia, and high levels of soluble Sema4D were also 
observed in the plasma of these patients. Sema4D knockdown 
induced cell cycle arrest in G0/G1 phase, inhibited prolifera‑
tion and promoted apoptosis in BALL‑1 cells, while Sema4D 
overexpression exhibited the opposite effect. In Jurkat cells, 

Sema4D knockdown inhibited proliferation and promoted 
apoptosis, while Sema4D overexpression decreased the 
abundance of the cells in the G0/G1 phase of the cell cycle and 
promoted proliferation. Sema4D overexpression also increased 
the migratory capacity of Jurkat cells and the invasive capacity 
of BALL‑1 cells. The phosphorylation level of PI3K was 
decreased in both Sema4D knocked‑down Jurkat and BALL‑1 
cells, and the phosphorylation level of ERK was decreased 
in Sema4D knocked‑down BALL‑1 cells. The phosphoryla‑
tion levels of PI3K, ERK and AKT were elevated in patients 
with pediatric leukemia, and were correlated to the increased 
Sema4D expression. Sema4D overexpression was associated 
with a shorter overall survival in patients with acute myeloid 
leukemia. Overall, the results of the present study indicated 
that Sema4D serves an important role in leukemia develop‑
ment by activating PI3K/AKT and ERK signaling, and it may 
be used as a potential target for the diagnosis and treatment of 
leukemia.

Introduction

Axon‑directing factor semaphorin 4D (Sema4D; also called 
CD100), which was first discovered in the immune system in 
1992 (1), is an important member of the IV subfamily of the 
semaphorin superfamily. It exists in membrane‑bound and 
soluble forms. Soluble Sema4D is produced by proteolytic 
cleaving of the Sema4D exodomain and is released into the 
circulation, where it can bind and activate various receptors, 
such as CD40, CD72 and Plexin‑B1 (2). Membrane Sema4D 
interacts with calmodulin via its C‑terminal domain, and the 
dissociation of this interaction induces its cleavage and release 
of soluble Sema4D (3), which can be promoted by the stimulator 
of interferon genes protein (4). Sema4D has been indicated to 
be involved in the regulation of the immune response in resting 
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T cells and participate in the activation of B lymphocytes and 
the activation and maturation of antigen‑presenting cells via 
the low affinity receptor CD72 (5). It has also been reported to 
be associated with the activation of neutrophils and dendritic 
cells (6,7), and promote eosinophil migration (8).

Sema4D is highly expressed in prostate, colon, oral, lung, 
pancreatic, breast and ovarian cancer, head and neck squa‑
mous cell carcinoma and soft tissue sarcoma compared with 
healthy tissues, and is involved in angiogenesis and invasion 
and migration of tumor cells (9‑20). Tumors overexpressing 
Sema4D have been indicated to be highly invasive with a 
poor prognosis and therapeutic response (10,12‑16,21,22). In 
chronic lymphocytic leukemia (CLL) cells, Sema4D has been 
indicated to sustain viability and enhance proliferation (23). 
The interaction of Sema4D with Plexin‑B1 has been revealed 
to promote survival and growth and inhibit apoptosis in B‑CLL 
cells (24). Soluble Sema4D has been demonstrated to enhance 
the metastasis of head and neck squamous cell carcinoma by 
interacting with its receptor Plexin‑B1, resulting in epithe‑
lial‑mesenchymal transition (25). A previous study utilizing a 
murine carcinoma model has indicated that antibodies against 
Sema4D induced an immune response in tumors via the 
activation of CD8 T lymphocytes (26). Although antibodies 
against Sema4D decrease proliferation, they have also been 
reported to enhance invasion and metastasis in a pancreatic 
neuroendocrine cancer mouse model and patients with pancre‑
atic neuroendocrine cancer (27).

Acute lymphoblastic leukemia (ALL), which affects 
80‑90 children per million annually in Italy (28), accounts 
for ~25% of childhood cancer deaths, representing the most 
common malignancy in children (29). The expression and 
function of Sema4D is still unclear in ALL, and the aim of 
the present study was to investigate the expression level of 
Sema4D in pediatric ALL and its potential association with 
ALL development.

Materials and methods

Sample collection. Leukemia, including ALL and acute 
myeloid leukemia (AML), was diagnosed according to stan‑
dard clinical and laboratory criteria (30). The present study 
included newly diagnosed patients with pediatric leukemia and 
healthy pediatric donors who presented no history of leukemia. 
The samples of the healthy group and the patient group in the 
experiment were collected from January 2018 to December 
2018 in Kunming Children's Hospital (Kunming, China). The 
age range of the healthy group was 1‑12 years old, including 
15 males and 13 females; the age range of the patient group was 
10 months to 13 years old, including 34 males and 27 females. 
The details of each patient group are presented in Table SI. 
Peripheral blood was collected from 18 patients with pediatric 
leukemia and 6 healthy children, and peripheral blood mono‑
nuclear cells (PBMCs) were isolated by density centrifugation 
at 2,000 x g for 10 min at 4˚C using Ficoll solution, followed by 
washing with PBS. Plasma was collected from 55 patients with 
pediatric leukemia and 22 healthy children for ELISA analysis. 
Of the 18 patients with pediatric leukemia whose PBMCs were 
isolated, the plasma samples of only 12 patients were included 
in the ELISA analysis, as the amount of plasma obtained from 
the remaining 6 patients was insufficient.

Determination of soluble Sema4D in plasma. Plasma was 
collected and stored at ‑80˚C after total blood was centrifuged 
at 2,000 x g for 10 min at 4˚C. Soluble Sema4D plasma levels 
were measured using Sema4D ELISA kit (cat. no. MBS705483; 
MyBioSource, Inc.) according to the manufacturer's instruc‑
tions. In brief, a microtitration plate coated with anti‑Sema4D 
antibodies was incubated with plasma samples or Sema4D 
protein standard for 2 h at 37˚C. It was then incubated with 
biotin‑conjugated anti‑Sema4D antibodies for 2 h at 37˚C. 
After being washed with the washing solution provided in the 
kit, it was incubated with HRP‑coupled streptavidin for 20 min 
at 37˚C. and then incubated with HRP substrate for 15 min at 
37˚C. Following termination of the reaction, the absorbance 
was measured at 450 nm.

Cell culture and lentiviral infection. Jurkat and BALL‑1 cell 
lines (Shanghai Yihe Applied Biotechnology Co., Ltd. China) 
were both cultured in RPMI‑1640 supplemented with 10% FBS 
and 1% penicillin and streptomycin (all from Gibco; Thermo 
Fisher Scientific, Inc.) at 37˚C with 5% CO2. The cell lines 
had been confirmed to be mycoplasma free and authenticated 
by STR profiling. Sema4D cDNA (Sema4D) and short hairpin 
(sh)RNA were subcloned into the lentiviral vector PWPI‑GFP 
(kindly provided by Dr John Basile, University of Maryland) 
to obtain lentiviral Sema4D overexpression (Sema4D) and 
shRNA (S4DshRNA) constructs, and the empty lentiviral 
vector PWPI‑GFP was used as negative control in further 
analysis. 293T cells (Institute of Medical Biology, Chinese 
Academy of Medical Sciences and Peking Union Medical 
College) were cultured in high glucose DMEM (Gibco; 
Thermo Fisher Scientific, Inc.) with 10% FBS and 1% peni‑
cillin and streptomycin at 37˚C with 5% CO2. Lentiviruses 
were produced by transfecting 293T cells (5x105  cells in 
six‑wells plates incubated overnight), with 1.5 µg lentiviral 
plasmid, 0.5 µg PVSVG plasmid and 1 µg PASPAX plasmid 
(kindly provided by Dr John Basile, University of Maryland) 
with Lipofectamine® 2000 (Thermo Fisher Scientific, Inc.). 
Viral supernatants were collected 72 h after transfection. 
Jurkat and BALL‑1cells were infected with lentiviruses at a 
MOI of 30 with 4 µg/ml polybrene (Beijing Solarbio Science 
& Technology Co., Ltd.) for 72 h before collection for subse‑
quent analysis.

Western blot analysis. Jurkat and BALL‑1 cells were lysed 
with RIPA buffer (Beijing Solarbio Science & Technology Co., 
Ltd.) containing protease inhibitors. Protein concentration was 
determined using the BCA method, and 50 µg protein/sample 
were separated by 10% SDS‑PAGE and transferred to PVDF 
membranes, which were blocked at room temperature for 
40 min using 5% BSA solution (Beijing Solarbio Science & 
Technology Co., Ltd.). The membranes were incubated at 
4˚C overnight with the following primary antibodies: Mouse 
anti‑Sema4D (1:1,000; cat. no. 610671; BD Biosciences), rabbit 
anti‑ERK (1:2,000; cat. no. 9126S), rabbit anti‑phosphorylated 
(p)‑ERK (1:2,000; cat. no. 4376S), rabbit anti‑AKT (1:2,000; 
cat. no. 9272S), rabbit anti‑p‑AKT (1:2,000; cat. no. 9611S), 
rabbit anti‑PI3K (1:2,000; cat. no. 4257S), rabbit anti‑p‑PI3K 
(1:2,000; cat. no. 4228S; all from Cell Signaling Technology, 
Inc.) and rabbit anti‑β‑actin (1:100,000; cat. no.  AC026; 
ABclonal Biotech Co., Ltd.). Following primary antibody 
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incubation, the membranes were incubated at room tempera‑
ture for 1 h with goat anti‑mouse lgG (H + L) (1:5,000; cat. 
no. 074‑1806) and goat anti‑rabbit lgG (H + L) antibodies 
(1:5,000; cat. no. 074‑1506; both from KPL). The protein signal 
was detected using SuperSignal reagent (MilliporeSigma) and 
quantified using ImageJ software v1.8.0 (National Institutes 
of Health).

Cell counting kit‑8 (CCK‑8) assay. Cell viability was analyzed 
by CCK‑8 assay (Tongren Institute of Chemistry). Jurkat and 
BALL‑1 cells (5x106) were lentivirally transduced for 72 h, 
and 5x104 cells/ml were seeded in 96‑well plates. At 1, 2, 3, 4 
and 5 days, cells were incubated with 10 µl CCK‑8 solution for 
2 h at 37˚C with 5% CO2 and the absorbance at 450 nm was 
measured.

Cell migration and invasion assay. Cell migratory capacity 
was detected by Transwell assay. The lentivirally transduced 
Jurkat and BALL‑1 cells were cultured to logarithmic growth 
phase, adjusted to 1x104  cells/ml with RPMI‑1640 basal 
medium containing 0.1% BSA (Beijing Solarbio Science & 
Technology Co., Ltd.), and placed on top of each compart‑
ment of 0.8 µm, 24‑well Transwell chamber (Corning, New 
York, USA), and RPMI‑1640 medium containing 10% FBS 
was added to lower chamber of the plates. After the cells 
were cultured for 24 h at 37˚C, the cell number in the lower 
chamber was counted using a hemocytometer. Cell invasive 
capacity was also determined by Transwell cell assay. A total 
of 100 µl 300 µg/ml Matrigel (BD Biosciences) were thawed 
at 4˚C overnight before being placed into the upper chamber 
and incubated at 37˚C for 1 h. The lentivirally transduced 
Jurkat and BALL‑1 cells were cultured to logarithmic growth 
phase, adjusted to 1x104  cells/ml with RPMI‑1640 basal 
medium containing 0.1% BSA and placed on top of each 
compartment. RPMI‑1640 medium with 10% FBS was then 
added to the lower chambers. After the cells were cultured 
for 24 h at 37˚C, the cell number in the lower chamber was 
counted using a hemocytometer.

Apoptosis analysis. Apoptosis was detected using PE 
Annexin V Apoptosis Detection Kit I (BD Biosciences). 
After lentiviral transduction for 72 h, Jurkat and BALL‑1 
cells were washed with pre‑chilled PBS and were adjusted to 
1x106 cells/ml with 1x Binding Buffer. The cells were incu‑
bated at room temperature with 5 µl PE Annexin V and 5 µl 
7‑AAD for 15 min before being analyzed by Attune NxT flow 
cytometry (Thermo Fisher Scientific, Inc.), and the data were 
analyzed using Treestar FlowJo version 10 software (Becton, 
Dickinson and Company).

Cell cycle analysis. After lentiviral transduction for 72 h, Jurkat 
and BALL‑1 cells were washed with pre‑chilled PBS, before 
being suspended in pre‑chilled PBS and fixed with ice‑cold 
absolute ethanol at ‑20˚C overnight. After being washed 
with ice‑cold PBS, the cells were incubated with 50 µg/ml 
RNase A and 65 µg/ml propidium iodide (BD Biosciences) at 
4˚C for 30 min before analysis by Attune NxT flow cytometry 
(Thermo Fisher Scientific, Inc.), and the data were analyzed 
using Treestar FlowJo version 10 software (Becton, Dickinson 
and Company).

Overall survival analysis. The analysis was performed on the 
GEPIA website (http://gepia.cancer‑pku.cn) using the median 
expression of Sema4D as cut‑off to differentiate low and high 
Sema4D expression groups and 95% confidence interval.

Statistical analysis. The statistical analysis was performed by 
SPSS software version 21.0 (IBM Corp.). Experimental values 
are presented as the mean ± SD. Statistical analysis in Fig. 1 
and Figs. 3‑6 was performed using one‑way ANOVA followed 
by Bonferroni's post hoc test. Statistical analysis in Fig. 2 was 
performed using two‑way ANOVA followed by Bonferroni's 
post hoc test. Statistical analysis in Fig. 7B was performed 
using unpaired two‑tailed Student's t‑test. The correlation 
between the level of p‑PI3K, p‑ERK or p‑AKT and Sema4D 
in Fig. 7C was evaluated using Pearson's correlation analysis 
(two‑sided). P<0.05 was considered to indicate a statistically 
significant difference.

Results

Sema4D is highly expressed in pediatric leukemia. To inves‑
tigate the expression level of Sema4D in pediatric leukemia 
cells, the mononuclear cell lysates of 18 patients with pediatric 
leukemia and 6 healthy children were subjected to western blot 
analysis. The clinical details of the 18 patients with pediatric 
leukemia are presented in Table SII. The results revealed 
that Sema4D was highly expressed in patients with pediatric 
leukemia compared with healthy participants (Fig. 1A). As the 
majority of patients were B cell‑ALL patients, it was subse‑
quently determined whether there were any differences in 
Sema4D expression level between B cell‑ALL and other types 
of leukemia. Therefore, patients were divided into either B 
cell‑ALL (B‑ALL) or non‑B cell‑ALL groups (Non‑B‑ALL). 
The analysis indicated that Sema4D expression level in both 
groups was significantly higher compared with that in the 
control group (P<0.01), and there was no difference in Sema4D 
expression level between the B‑ALL and Non‑B‑ALL groups 
(Fig. 1B).

As Sema4D can be cleaved to functional soluble Sema4D, 
which is secreted from cells (23), the level of soluble Sema4D 
in the plasma of patients with leukemia was examined. The 
plasma of 55 pediatric patients with leukemia and 22 healthy 
children was collected and analyzed by ELISA. The clinical 
details of the 55 pediatric patients with leukemia are listed in 
Table SII. The results revealed that the level of soluble Sema4D 
in the B‑ALL and Non‑B‑ALL groups was higher compared 
with that in healthy children (P<0.01 for B‑ALL; P<0.05 for 
Non‑B‑ALL), and there was no difference in Sema4D level 
between the B‑ALL and Non‑B‑ALL groups (Fig. 1C).

Taken together, the results indicated that Sema4D was 
highly expressed in patients with pediatric leukemia, and 
soluble Sema4D was released into the circulation in these 
patients. However, there was no difference in Sema4D levels 
between B‑ALL and other types of leukemia in both leukemia 
cells and plasma.

Sema4D promotes proliferation. As the results indicated 
that Sema4D was highly expressed in pediatric leukemia, 
the potential role of Sema4D in leukemia development 
was subsequently investigated. To examine the function of 
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Sema4D, the Jurkat cell line, which originates from T cell 
ALL, and the BALL‑1 cell line, which originates from B cell 
ALL, were selected for the study. Sema4D overexpressing 
and S4DshRNA lentiviruses were transduced into Jurkat and 
BALL‑1 cells. Sema4D expression level in Jurkat and BALL‑1 
cells was detected by western blotting after transduction for 
72 h. The results indicated that Sema4D expression in both 
cell lines was reduced after transduction with S4DshRNA, and 
increased after transduction with the Sema4D overexpressing 
lentivirus compared with uninfected cells or cells infected with 
the empty vector (GFP) (Fig. 2A). The viability of Jurkat and 
BALL‑1 cells was assessed by CCK‑8 assay after transduction 
for 72 h. The results demonstrated that the viability of both 
Jurkat and BALL‑1 cells was significantly decreased after 

transduction with S4DshRNA (P<0.001 in Jurkat and P<0.01 
in BALL‑1), while it was significantly increased after trans‑
duction with Sema4D overexpression construct (both P<0.001) 
(Fig. 2B). The results suggested that Sema4D promoted the 
proliferation of Jurkat and BALL‑1 cells.

Sema4D modulates the G0/G1 phase of the cell cycle. 
Subsequently, the effect of Sema4D on cell cycle was exam‑
ined in Jurkat and BALL‑1 cells. The results revealed that the 
percentage of cells in the G0/G1 phase significantly increased 
after transduction with S4DshRNA (P<0.01), and significantly 
decreased after transduction with the Sema4D overexpression 
construct (P<0.05) in BALL‑1 cells (Fig. 3A and B). The cell 
percentage in the G0/G1 phase also significantly decreased 

Figure 1. Sema4D is highly expressed in pediatric leukemia. (A) Sema4D protein expression in peripheral blood mononuclear cells from 18 patients with 
pediatric leukemia and 6 healthy control children. The protein level of each blot was quantified relatively to the internal control β‑actin. (B) Quantification 
of Sema4D protein expression level in B‑ALL (n=10) and Non‑B‑ALL (n=8). (C) Soluble Sema4D level in the peripheral blood. Data are presented as the 
mean ± SD. *P<0.05; **P<0.01. ns, not significant; B‑ALL, B cell acute lymphocytic leukemia; Sema4D, semaphorin 4D. 
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Figure 2. Sema4D promotes proliferation. (A) Sema4D protein expression in Jurkat and BALL‑1 cells. (B) Viability of Jurkat and BALL‑1 cells. Viability is 
presented as the mean ± SD of three independent experiments. **P<0.01 and ***P<0.001 vs. GFP and S4DshRNA or GFP and Sema4D. GFP, green fluorescent 
protein; Sema4D, semaphorin 4D; S4DshRNA, Sema4D short hairpin RNA; OD, optical density. 

Figure 3. Sema4D modulates the cell cycle. (A) Representative flow cytometry plots of the cell cycle in Jurkat and BALL‑1 cells. (B) Bar graphs of cell cycle 
distribution. Data are presented as the mean ± SD of three independent experiments. *P<0.05; **P<0.01. GFP, green fluorescent protein; Sema4D, semaphorin 4D; 
S4DshRNA, Sema4D short hairpin RNA. 
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after transduction with the Sema4D overexpression construct 
in Jurkat cells (P<0.01), but was not altered after transduction 
with S4DshRNA, as the percentage of Jurkat cells in the G0/G1 
phase was already high (Fig. 3A and B). As a consequence of 
the decreased abundance of cells in the G0/G1 phase caused by 
Sema4D overexpression, the percentage of Jurkat cells in the 
S phase or BALL‑1 cells in the G2/M phase increased signifi‑
cantly compared with the control (P<0.01 for Jurkat; P<0.05 
for BALL‑1 cells). The results suggested that downregulation 
of Sema4D induced cell cycle arrest at the G0/G1 phase, and 
Sema4D modulated the G0/G1 phase of the cell cycle.

Sema4D inhibits apoptosis. The effect of Sema4D on apop‑
tosis was also investigated. In Jurkat cells, the number of 
apoptotic cells was significantly higher in the S4DshRNA 
group (P<0.001; Fig. 4A and B). Similarly, in BALL‑1 cells, 

the number of apoptotic cells was significantly higher in the 
S4DshRNA group (P<0.05) and was significantly lower in 
Sema4D overexpression group compared with the GFP control 
group (P<0.05) (Fig. 4A and B). These results indicated that 
Sema4D protected leukemia cells from apoptosis.

Sema4D promotes the migratory and invasive abilities of 
leukemia cells. To evaluate the effects of Sema4D on cell 
invasion and migration, Jurkat and BALL‑1 cells were trans‑
duced with Sema4D overexpression construct or S4DshRNA, 
and their migratory and invasive abilities were examined by 
Transwell assay. In Jurkat cells, no difference was observed in 
the invasive ability among the GFP control, S4DshRNA and 
Sema4D overexpression groups (Fig. 5A), while the migratory 
ability increased significantly in the Sema4D overexpression 
group compared with the GFP control (P<0.05; Fig. 5C). In 

Figure 4. Sema4D inhibits apoptosis. (A) Representative flow cytometry plots of the apoptosis analysis. (B) Bar graphs of cell counts. Data are presented as 
the mean ± SD of three independent experiments. *P<0.05; ***P<0.001. GFP, green fluorescent protein; Sema4D, semaphorin 4D; S4DshRNA, Sema4D short 
hairpin RNA. 
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Figure 5. Sema4D promotes cell invasion and migration. (A) Jurkat cells invasive ability. (B) BALL-1 cells invasive ability. (C) Jurkat cells migratory ability. 
(D) BALL-1 cells migratory ability. Data are presented as the mean ± SD of three independent experiments. *P<0.05; ***P<0.001. GFP, green fluorescent 
protein; Sema4D, semaphorin 4D; S4DshRNA, Sema4D short hairpin RNA. 

Figure 6. Sema4D induces phosphorylation of PI3K, ERK and AKT. (A) Protein expression and phosphorylation of PI3K, ERK and AKT in Jurkat and 
BALL‑1 cells with β‑actin as internal control. (B) Ratios of p‑PI3K/PI3K, p‑AKT/AKT and p‑ERK/ERK in Jurkat and BALL‑1 cells. Data are presented as the 
mean ± SD of three independent experiments. *P<0.05; **P<0.01; ***P<0.001. GFP, green fluorescent protein; Sema4D, semaphorin 4D; S4DshRNA, Sema4D 
short hairpin RNA; p, phosphorylated. 
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BALL‑1 cells, compared with the GFP group, the invasive 
ability increased significantly in the Sema4D overexpression 
group (P<0.001; Fig. 5B), while no difference was observed 
in the migratory ability among the GFP control, S4DshRNA 
and Sema4D overexpression groups (Fig. 5D). As Jurkat and 
BALL‑1 cell lines originate from T‑ALL and B‑ALL, respec‑
tively, their different migratory and invasive capabilities may 
be due to their original characteristics. Overall, these data 
suggested that Sema4D moderately promoted the invasive and 
migratory ability of ALL cells.

Sema4D activates the PI3K, ERK and AKT proteins. As the 
results had indicated that Sema4D promoted proliferation and 
inhibited apoptosis, it was subsequently investigated how these 
effects were mediated. PI3K, AKT and ERK proteins, which are 
widely expressed in a variety of tumor tissues (31‑35), promote 
cancer development by mediating activation of downstream 

effectors (31,36‑39). The role of Sema4D in activating PI3K, 
AKT and ERK was examined in Jurkat and BALL‑1 cells. In 
Sema4D‑overexpressing BALL‑1 cells, the phosphorylation 
level of PI3K was significantly increased compared with 
the GFP control cells (P<0.01; Fig. 6). However, potentially 
owing to the high endogenous expression of Sema4D in both 
Jurkat and BALL‑1 cells, Sema4D overexpression did not 
consistently elevate the phosphorylation level of PI3K, ERK 
and AKT.

In Sema4D knocked‑down BALL‑1 cells, the phosphoryla‑
tion level of PI3K and ERK significantly decreased compared 
with the GFP control cells (P<0.001 for PI3K and P<0.01 
for ERK; Fig. 6A and B). In Sema4D knocked‑down Jurkat 
cells, the phosphorylation level of PI3K was also significantly 
decreased (P<0.05; Fig. 6A and B). The alteration in the AKT 
phosphorylation level was not statistically significant in both 
Jurkat and BALL‑1 cell lines. The Sema4D knockdown results 

Figure 7. Phosphorylation of PI3K, ERK and AKT is correlated with the expression of Sema4D in patients with pediatric leukemia. (A) Protein expression and 
phosphorylation of PI3K, ERK and AKT proteins in peripheral blood mononuclear cells from 18 patients with pediatric leukemia and 6 healthy control chil‑
dren. β‑actin was used as an internal control. (B) Quantification of the total p‑PI3K, p‑ERK and p‑AKT levels in patients with leukemia and healthy controls. 
(C) Correlation between Sema4D expression and p‑PI3K, p‑ERK and p‑AKT levels in leukemia and healthy groups. Data are presented as the mean ± SD. 
**P<0.01. ns, not significant; p, phosphorylated; Sema4D, semaphorin 4D.
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indicated that Sema4D mediated the activation of PI3K and 
ERK in ALL cells.

Phosphorylation of PI3K, ERK and AKT is correlated with 
the expression of Sema4D in pediatric leukemia. In order 
to ascertain the clinical relevance of PI3K, ERK and AKT 
pathways, the expression and phosphorylation levels of PI3K, 
ERK and AKT were analyzed by western blotting in 18 pedi‑
atric leukemia samples, in which the expression of Sema4D 
had been examined (Fig. 1A and B). Since no difference was 
observed in the expression level of Sema4D between the 
B‑ALL and Non‑B‑ALL groups, both groups were analyzed 
together regarding the expression and phosphorylation of 
PI3K, ERK and AKT. There was no significant difference 
in the expression level of PI3K, ERK and AKT between 
patients with leukemia and healthy control subjects (data not 
shown). The total phosphorylation level of PI3K and ERK 
in the leukemia group was significantly higher compared 
with the healthy control group (P<0.01), and the total phos‑
phorylation level of AKT in the leukemia group was higher 
compared with the healthy control group (all normalized to 
β‑actin), but with no statistical significance (Fig. 7A and B). 
The relative phosphorylation level normalized to total PI3K, 
ERK and AKT was not significantly different between the 
groups (data not shown). Therefore, the results indicated that 
the total phosphorylation level of PI3K, ERK and AKT was 
enhanced in pediatric leukemia. The correlation of Sema4D 
expression with the phosphorylation level of PI3K, ERK and 
AKT was further analyzed, and the results indicated that 
Sema4D expression was significantly correlated with p‑PI3K 
and p‑ERK (P<0.001 for p‑PI3K; P<0.0001 for p‑ERK) 
and moderately correlated with p‑AKT (P=0.0042), and the 

expression level of Sema4D and the phosphorylation level of 
PI3K, ERK and AKT were higher in patients with leukemia 
compared with healthy subjects (Fig. 7C). The expression of 
Sema4D was not correlated with the expression of PI3K, ERK 
and AKT proteins (data not shown). The results depicted in 
Figs. 6 and 7 suggested that Sema4D activated the PI3K, ERK 
and AKT pathways in leukemia cells.

Sema4D overexpression is correlated with poor prognosis 
in AML. As there were no ALL data in the GEPIA website, 
overall survival was only analyzed in patients with AML, and 
it was revealed that high expression of Sema4D was associated 
with shorter overall survival in patients with AML (Fig. 8). 
Therefore, Sema4D may be a poor prognostic biomarker in 
leukemia.

Discussion

Sema4D is highly expressed in several tumor tissues, including 
breast, lung, colorectal, prostate, oral and pancreatic cancer, 
head and neck squamous cell carcinoma and soft tissue 
sarcoma (10,12,13,16,17). Although Sema4D is expressed in 
B‑CLL (40), its expression in other leukemia types has not 
been reported. Therefore, the expression of Sema4D in pedi‑
atric leukemia was examined in the present study. The results 
demonstrated that there was high expression of Sema4D in 
PBMCs and a high level of soluble Sema4D in the plasma of 
patients with pediatric leukemia, with no difference between 
B‑ALL and Non‑B‑ALL groups. As Non‑B‑ALL mainly 
included AML and T cell‑ALL, the data suggested that the 
expression of Sema4D was upregulated in B‑ALL and other 
types of leukemia as well. Therefore, Sema4D may serve an 
important role in the development of leukemia.

To understand the role of Sema4D in the development of 
leukemia, its effects on proliferation, apoptosis, cell cycle, inva‑
sion and migration were examined in the present study. The 
results demonstrated that in BALL‑1 cells, Sema4D knock‑
down induced cell cycle arrest in the G0/G1 phase, increased 
apoptosis and inhibited proliferation; on the contrary, overex‑
pression of Sema4D promoted cell division and proliferation 
and inhibited apoptosis. In Jurkat cells, Sema4D knockdown 
inhibited proliferation and promoted apoptosis, while Sema4D 
overexpression resulted in a decreased abundance of cells in 
the G0/G1 phase and promoted proliferation. Taken together, 
these data suggested that Sema4D promoted proliferation and 
inhibited apoptosis in leukemia cells. Sema4D overexpression 
promoted the migratory ability of Jurkat cells and the inva‑
sive ability of BALL‑1 cells. Sema4D enhanced the invasive 
and migratory abilities of leukemia cells, although the effect 
was dependent on the cell origin. These results on the effect 
of Sema4D on invasion and migration are consistent with a 
previous study in breast cancer (20).

Sema4D has been indicated to phosphorylate tyrosine 
kinase receptors [protein‑tyrosine kinase 2‑beta (Pyk2) or 
Src] and ERK1/2, and phosphorylated Pyk2 and Src further 
activate the PI3K/AKT signaling pathway and mediate cell 
invasion and migration  (41). AKT is widely expressed in 
different types of tumors, such as colorectal, pancreatic, 
gastric and non‑small cell lung cancer cell (31,32,34,35). It has 
been indicated to associate cancer‑promoting molecules and 

Figure 8. High Sema4D expression is associated with shorter overall survival 
in AML. Analysis of the association between Sema4D RNA expression 
level and overall survival of AML patients using GEPIA website. The AML 
dataset was divided into low and high expression groups according to the 
median value of Sema4D expression. Sema4D, semaphorin 4D; AML, acute 
myeloid leukemia; HR, hazard ratio.
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downstream signaling molecules in tumor development (42). It 
has also been demonstrated to promote cell proliferation and 
inhibit apoptosis (31), and promote metastasis by regulating 
Bcl2 and focal adhesion kinase expression (43‑45). The results 
of the present study revealed that knockdown of Sema4D 
inhibited the phosphorylation PI3K and AKT in both Jurkat 
and BALL‑1 cell lines, suggesting that Sema4D activated the 
PI3K/AKT signaling pathway, which was also supported by 
the fact that the phosphorylation of PI3K and AKT was corre‑
lated with Sema4D expression in pediatric leukemia samples.

ERK, which is a downstream protein of a variety of growth 
factors  (37‑39), has been indicated to be activated in oral, 
colorectal and gastric cancer (46‑49). It transfers extracellular 
signals to the nucleus to regulate cell proliferation, differentia‑
tion and survival. The results of the current study revealed that 
the phosphorylation level of ERK was significantly decreased 
in Sema4D knocked‑down BALL‑1 cells. The phosphoryla‑
tion level of ERK was also increased in patients with pediatric 
leukemia and was correlated with the expression level of 
Sema4D. This indicated that Sema4D activated ERK signaling 
in leukemia cells.

As the activation of PI3K, AKT and ERK is important in 
regulating cell proliferation, invasion, migration and apop‑
tosis (31,42‑45), we speculate that Sema4D promoted leukemia 
development via activating the PI3K/AKT and ERK pathways.

Soluble Sema4D, which is released by proteolytic cleavage 
of the extracellular domain of transmembrane Sema4D, has 
been indicated to be involved in infectious and inflamma‑
tory diseases (2) and heart failure (50). The finding of high 
levels of soluble Sema4D in the plasma of patients with 
pediatric leukemia is consistent with results in human head 
and neck cancer (25,51), suggesting that Sema4D may be a 
potential biomarker for cancer diagnosis. Soluble Sema4D 
has also been reported to participate in cancer development 
by inducing metastasis (25), inhibiting differentiation (52) and 
suppressing the immune response (53). However, the role of 
soluble Sema4D in leukemia remains unknown, and further 
studies are required.

In conclusion, the results of the present study demonstrated 
that Sema4D was upregulated in the PBMCs of patients 
with pediatric leukemia and soluble Sema4D was similarly 
increased in the plasma of these patients. Sema4D was 
revealed to modulate the cell cycle, promote cell prolifera‑
tion and invasion and inhibit apoptosis in ALL cells. It was 
indicated to serve an important role in leukemia development 
via regulating the PI3K/AKT and ERK signaling pathways. 
Sema4D may serve as a novel target for leukemia diagnosis 
and treatment.
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