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The quintessential biological response to disease is inflammation. It is a driver and an

important element in a wide range of pathological states. Pharmacological management

of inflammation is therefore central in the clinical setting. Anti-inflammatory drugs

modulate specific molecules involved in the inflammatory response; these drugs are

traditionally classified as steroidal and non-steroidal drugs. However, the effects of

these drugs are rarely limited to their canonical targets, affecting other molecules and

altering biological functions with system-wide effects that can lead to the emergence

of secondary therapeutic applications or adverse drug reactions (ADRs). In this

study, relationships among anti-inflammatory drugs, functional pathways, and ADRs

were explored through network models. We integrated structural drug information,

experimental anti-inflammatory drug perturbation gene expression profiles obtained from

the Connectivity Map and Library of Integrated Network-Based Cellular Signatures,

functional pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and

Reactome databases, as well as adverse reaction information from the U.S. Food

and Drug Administration (FDA) Adverse Event Reporting System (FAERS). The network

models comprise nodes representing anti-inflammatory drugs, functional pathways,

and adverse effects. We identified structural and gene perturbation similarities linking

anti-inflammatory drugs. Functional pathways were connected to drugs by implementing

Gene Set Enrichment Analysis (GSEA). Drugs and adverse effects were connected based

on the proportional reporting ratio (PRR) of an adverse effect in response to a given

drug. Through these network models, relationships among anti-inflammatory drugs, their

functional effects at the pathway level, and their adverse effects were explored. These

networks comprise 70 different anti-inflammatory drugs, 462 functional pathways, and

1,175 ADRs. Network-based properties, such as degree, clustering coefficient, and

node strength, were used to identify new therapeutic applications within and beyond

the anti-inflammatory context, as well as ADR risk for these drugs, helping to select
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better repurposing candidates. Based on these parameters, we identified naproxen,

meloxicam, etodolac, tenoxicam, flufenamic acid, fenoprofen, and nabumetone as

candidates for drug repurposing with lower ADR risk. This network-based analysis

pipeline provides a novel way to explore the effects of drugs in a therapeutic space.

Keywords: anti-inflammatory drugs, network pharmacology, adverse drug reactions, pathways, systems

pharmacology, drug repurposing

INTRODUCTION

Inflammation is a complex phenomenon involving immune
cell recruitment in response to harmful stimuli as a protective
measure by the body. The recruitment process is achieved by a
wide variety of cytokines released by resident immune cells that
can be either pro- or anti-inflammatory. Inflammation begins as
an acute response aimed toward clearance of stimuli as well as
mediators in an effort to restore normal function. Inflammatory
mediators involved in an acute response are often short-lived,
leading to resolution of inflammation once the stimuli are
cleared (Cotran et al., 2015). However, acute inflammation can
shift to chronic inflammation if the stimuli are not removed.
An immune response resulting in an inflamed condition is
triggered by a wide variety of stimuli, such as pathogens,
damaged cells, or irritants (Ferrero-Miliani et al., 2007). As
such, inflammation is central to a myriad of pathological
manifestations that result in a collection of complex and non-
linear biological processes involved in an organism’s response to
stimuli (Vodovotz et al., 2010). Management of these processes
with anti-inflammatory drugs is an important part of medical
practice.

Even though interactions between molecules involved in the

inflammatory response give way to a complex system (Vodovotz

et al., 2008), most pharmacological drugs that deal with the

response do so by modulating concrete molecular targets along

the biochemical pathway of arachidonic acid to eicosanoids

(Haeggström et al., 2010). Traditionally, two classes of anti-
inflammatory drugs exist: corticosteroids and non-steroidal anti-
inflammatory drugs (NSAIDS) (Agambar and Flower, 1990;
Dinarello, 2010). The canonical targets through which these
drugs exert anti-inflammatory effects are phospholipase A2 and
cyclooxygenase (COX) 1 and 2 (Bozimowski, 2015).

However, anti-inflammatory drugs may have effects on
molecules beyond these canonical targets (Barnes, 2006; Palayoor
et al., 2012), and these off-site effects may have fortunate and
unfortunate consequences. The effects of drugs on unintended
targets can be the origin of adverse drug reactions (ADRs) and
side effects (Rudmann, 2013); however, effects on alternative
molecular and functional targets can lead to the repurposing of
a drug, in which the drug is used in an alternative therapeutic
application (Chartier et al., 2017). A successful pharmaceutical
drug will strike an adequate balance between its therapeutic
and unintended toxic effects. Drug repositioning can overcome
limitations in development pipelines by dealing with drugs that
have already been tested and marketed, reducing the risk of
failure at the development stage. Anti-inflammatory drugs have
been identified in drug repurposing studies (Strittmatter, 2014);

however, there has been no systematic analysis of their functional
and adverse effects.

Large-scale datasets related to drugs are common and contain
information on chemical structures, adverse effects in the
clinical setting, and system-wide effects from high-throughput
drug screening projects. The magnitude of these datasets
requires alternative analytical strategies from those of traditional
pharmacological approaches, which can generate hypotheses and
guide adequate experimental designs. In this context, network-
based models can be useful (Hopkins, 2008).

A biological network is a mathematical model in which
biological elements, such as molecules, are represented as nodes
(also known as vertices), and defined relationships between these
elements are represented as links (or edges) (de Anda-Jáuregui
et al., 2015). As a mathematical object, networks (also known
as graphs) can be analyzed using well-established algorithms
(Albert and Barabási, 2002; Barabási et al., 2011); in this
sense, they offer a general framework for the study of natural
phenomena. A biological network will have, based on the existing
relationships between the elements that compose them, structural
and topological characteristics that reflect underlying biological
properties (Barabasi et al., 2004).

Network pharmacology expands on the network biology
paradigm to address the problem of identifying pairs of drugs
and targets that are clinically successful, maximizing therapeutic
effects and minimizing toxicity (Harrold et al., 2013). It provides
a framework which may be used to overcome limitations of other
methods for drug exploration such as those based on phenotypic
effects or those based only on chemical structure; it serves as
a tool to integrate knowledge from the pharmacological and
genomic spaces (Zhao and Li, 2010). Network pharmacology
is becoming more relevant as the traditional single target
pharmacological model shifts toward a model that (1) considers
the perturbation of multiple biological entities in a disease
(Kibble et al., 2016) and (2) considers functional targets as
more suitable than molecular targets for effective drug therapies
(Hopkins, 2008).

Pharmacological phenomena fundamentally involve
interactions between elements of different origin and nature;
for example, interactions between a drug and its biological
targets or observable biological effects, either therapeutic or
toxic. With this in mind, a suitable network model to study the
pharmacological space can be a bipartite network, in which nodes
represent elements of two distinct classes and relationships
exist only between elements of different classes (Guillaume and
Latapy, 2006).

In this work, we modeled the relationships among anti-
inflammatory drugs, their effects at the gene perturbation and
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pathway perturbation level, and their associated adverse reactions
from a network perspective. Based on the topological properties
derived from these networks, we propose strategies to prioritize
anti-inflammatory drug repurposing, quantify potential side
effect risk, and identify possible pathway perturbation-related
mechanisms associated with side effects in the context of
specific anti-inflammatory drug sets This provides a toolset to
identify anti-inflammatory drugs that are candidates with better
repurposing opportunities.

MATERIALS AND METHODS

In this work, anti-inflammatory drugs were identified, and
chemical structures, gene perturbation profiles, and ADR report
data were collected. Using these data, similarity matrices and
bipartite networks were generated. Figure 1 illustrates our overall
workflow.

Data
List of Anti-inflammatory Drugs
Anti-inflammatory drugs were identified using the anatomical
therapeutic chemical (ATC) classification system. Drugs with
ATC codes M01A (anti-inflammatory and antirheumatic
products, non-steroids), H02AB (corticosteroids for systemic
use, plain), and N02BA (salicylic acid and derivatives) were
selected. Drug names were normalized to the official DrugBank
name or generic names to be consistent and comparable across
various datasets in the current study. Our in-house drug-name
normalization pipeline was used as previously described (Hur
et al., 2014). The chemical structures of the anti-inflammatory
drugs of interest were retrieved from PubChem (Kim et al., 2016)
and DrugBank (Wishart et al., 2008) databases in simplified
molecular-input line-entry system (SMILES) format.

Drug-Gene Perturbation Profiles
Two large-scale drug-perturbation gene expression datasets
containing genome-wide transcriptional expression data from

cultured human cell lines treated with bioactive small-molecules
were included. The first dataset is the Connectivity Map (CMap,
version 02), with over 7,000 expression profiles representing
1,309 compounds in five cultured human cell lines that were
measured using Affymetrix human genome U133A (HGU133A)
arrays. The second is the L1000 dataset from the Library of
Integrated Network-based Cellular Signatures (LINCS) project
(Duan et al., 2014), which measured gene expression changes
after treatment of 83 human cells with over 20,000 small-
molecule compounds using the L1000 platform (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL20573). The LINCS
L1000 dataset is composed of two publicly available releases
with Gene Expression Omnibus (GEO; https://www.ncbi.nlm.
nih.gov/geo/) accession numbers GSE92742 (LINCS phase I) and
GSE70138 (LINCS phase II), which were merged into a single
LINCS dataset in our study.

Probe data were aggregated to the gene level when applicable
(HGU133A platform). In cases of more than one experimental
condition involving a drug of interest, we merged perturbation
profiles using the Kruskal–Borda merging algorithm (Iorio
et al., 2010) to generate a consensus profile. Considering the
use of different quantification platforms for both datasets,
analyses using these were conducted independently for the
first CMap dataset (hereafter referred to as CMap) and the
dataset belonging to the LINCS project (hereafter referred to as
LINCS).

Drug Adverse Reaction Information
Pharmacovigilance information from the Food and Drug
Administration (FDA) adverse event reporting system (FAERS)
(FDA, 2014) from 2012 to the third quarter of 2016 was used. The
FAERS data were downloaded and processed using the FAERS
package (https://github.com/mlbernauer/FAERS). Drug names
were normalized to generic names using the FAERS package as
well as our name-normalization pipeline. Drugs with multiple
single active ingredients were excluded from further analyses.
ADRs were normalized to the MedDRA release 20.0 preferred

FIGURE 1 | Methodological pipeline. The workflow used here consists of the following steps. First, drugs with anti-inflammatory therapeutic indications were

identified. Their chemical structures, drug perturbation profiles, and adverse drug reactions (ADRs) were then collected from databases, along with functional pathway

information. These collected data were used to construct similarity matrices (based on chemical or gene perturbation), drug-pathway perturbation networks, and

drug-ADR networks.
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terms (PTs) and mapped to MedDRA higher level terms (HLT)
(https://www.meddra.org/).

Pathway Collection
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
(Kanehisa et al., 2014), as well as Reactome (Fabregat et al.,
2016) and BioCarta (Nishimura, 2001) databases retrieved from
the Broad Institute’s Molecular Signature database (Subramanian
et al., 2005) category C3 were used.

Similarity Matrices Construction
Drug-Drug Structural Similarity
Drug structures in SMILES format were used to obtain a
unique atom pair library (Chen and Reynolds, 2002) for each
anti-inflammatory drug. For each pair of anti-inflammatory
drugs, Tanimoto similarity was calculated using the ChemmineR
package in R (Cao et al., 2008).

Drug-Drug Gene Perturbation Profile Similarity
For each collection of drug perturbation profiles (CMap and
LINCS), similarity in gene-level effects between drugs was
analyzed. To do so, Spearman similarity between the ranked gene
perturbation profiles was calculated for each pair of drugs. The
CMap set and the LINCS set were analyzed separately.

Non-supervised Hierarchical Clustering
Drugs were clustered hierarchically in both the structural
and perturbation profile similarity matrices. Briefly, a set of
dissimilarities were generated from the matrices, and each
element (drug) was assigned to a cluster; iteratively, each pair
of most similar clusters was merged, until a single cluster was
obtained. Clustering was performed using the complete linkage
method with the hclust function in the R stats package (version
3.4.2).

Bipartite Network Construction
Drug-Pathway Perturbation Network
Any drug may potentially have effects beyond their canonical
targets. Some of these effects manifest in the perturbation
of system-scale biological pathways, which are evident as a
significantly coordinated change in the genetic expression of
the molecules involved in it. To identify possible system-wide
effects of anti-inflammatory drugs, bipartite networks of drugs
and pathway perturbations were constructed. For each gene
perturbation profile associated with a drug in our datasets, we
used a gene set enrichment analysis (GSEA) (Subramanian et al.,
2005) to identify the pathways exhibiting significant alterations
attributable to anti-inflammatory drug treatment. The fast GSEA
(FGSEA) (Sergushichev, 2016) implementation was used with
50,000 permutations per analysis, with a significance cut-off set
as an adjusted p < 0.1.

Results of the enrichment analysis were integrated into a
bipartite network composed of anti-inflammatory drugs and
significantly enriched pathways in at least one drug. An edge was
established between a drug and a pathway if the drug treatment
resulted in significant enrichment of the pathway (adjusted p <

0.1). The edges in this network were unweighted, as any pathway
with an adjusted p value below the threshold was determined to
be significantly enriched.

Drug-ADR Network
ADRs were linked to those drugs most likely to produce them.
The proportional reporting ratio (PRR) (Evans et al., 2001) is a
statistical measure of relative risk for a given ADR extracted from
pharmacovigilance data that compare the specific frequency of
an ADR under a given condition (i.e., drug treatment) against
the overall frequency of the ADR. PRRs for ADRs between
anti-inflammatory drugs and non-anti-inflammatory drugs were
first calculated. ADRs with PRRs > 1 were then selected:
these included ADRs more likely to be associated with anti-
inflammatory drugs than with other drugs. ADRs more likely
to be associated with specific anti-inflammatory drugs were
identified by calculating the PRR for the previously selected
ADRs among anti-inflammatory drugs only. Calculations were
done using the R package PhViD (Ahmed et al., 2010).

The FAERS dataset presents ADRs in terms of MedDRA
Preferred Terms. Considering that there are 22,500 different PTs,
these were mapped to their corresponding MedDRA HLT. A
bipartite network was constructed in which the first set of nodes
are drugs and the second set of nodes are ADRs represented as
HLTs. An edge was established between a drug and an HLT if
there was at least one PT associated with the HLT and a PRR > 1.
Since PRR is a measure of relative risk, the edges in this network
were considered to have a weight; the weight of an edge is the
sum of the PRRs between the drug and the set of PTs that can be
associated with a particular HLT.

Pathway-ADR Network
Through the merging and projection of the drug-pathway
network and the drug-ADR network, a pathway-ADR network
was generated. In this network, a pathway was connected to an
ADR if there was at least one drug connected to both. Edges in
the network have a weight, which represents the number of drugs
through which a pathway and an ADR are connected.

Network Analysis
For each network, basic network properties such as number
nodes, number of edges, and network density were calculated.
Centrality measures such as degree, clustering coefficient, and
redundancy coefficient (Latapy et al., 2006) were calculated for
each set of nodes using the R package Igraph (Csardi and Nepusz,
2006) and the Python package NetworkX (Hagberg et al., 2008).
Supplementary File 1 contains GML files for each network.

RESULTS

Drug-Drug Structural Similarity
A total of 114 anti-inflammatory drugs were identified based
on our ATC inclusion criteria as of July 2017. We obtained
drug structure data for 110 of these drugs from DrugBank and
PubChem. Figure 2 shows a heatmap representing the structural
similarities among these compounds. Supplementary File 2

contains the corresponding data matrix. In this heatmap, drugs
are arranged through non-supervised hierarchical clustering.
These clusters are composed of drugs with similar structures,
such as drugs that are derived from a lead molecule. For instance,
there is a large cluster which contains steroidal anti-inflammatory
drugs that are similar in structure to hydrocortisone; this
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FIGURE 2 | Heatmap of Tanimoto structural similarity. This heatmap represents structural similarities between 110 anti-inflammatory drugs. The color intensity is

proportional to the similarity between the chemical structure of two drugs measured using the Tanimoto coefficient. Drugs were ordered using non-supervised

hierarchical clustering. Clusters in this matrix contain drugs with close chemical structures. For instance, a large cluster (purple outline) contains hydrocortisone and

other drugs derived from it.

cluster also has the highest similarity values. Non-steroidal anti-
inflammatory drugs are grouped in smaller clusters, consistent
with the more diverse structures found in this group.

Gene Perturbation Similarity of
Anti-inflammatory Drugs
Approximately 40% of the 114 anti-inflammatory drugs were
included in the CMap and LINCS datasets (47 and 45 drugs,
respectively). Only 25 drugs were found in both datasets. The
heatmaps in Figure 3 illustrate the similarities between drugs in
terms of gene perturbation based on the Spearman correlation

of their ranked gene perturbation profiles; color intensity is
proportional to the correlation value. Supplementary File 1

contains the corresponding data matrix.
In the CMap dataset, a group of 31 drugs formed a large

cluster based on their gene perturbation effects. The rest of the
drugs are in smaller clusters of 9 and 7 drugs. These drugs belong
to both steroidal and non-steroidal classes of anti-inflammatory
drugs, showing a similarity in perturbation effects not limited by
structural features. Although we identified similar clusters using
the LINCS dataset, the overall similarities between drug profiles
were lower, as visualized in the heatmap via less color intensity.
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FIGURE 3 | Heatmap of gene perturbation similarity. These heatmaps represent similarities in gene expression profiles induced by drugs obtained from the (A)

Connectivity Map (CMap) and (B) Library of Integrated Network-based Cellular Signatures (LINCS) datasets. The color intensity is proportional to the similarity

between the gene expression profiles of two drugs measured using the Spearman correlation. Drugs are ordered using non-supervised hierarchical clustering. In both

panels, a larger cluster containing most drugs and two smaller clusters are shown. The clusters comprise drugs that do not necessarily share structural similarities.

Drug-Pathway Perturbation Network
Networks linking drugs to functional pathways were constructed
based on their effects at the gene perturbation level. These
networks allow the identification of biological functions that
can be affected by a given drug and the identification of drugs
that can affect a given biological function. The GSEA algorithm
was used to identify which functional pathways are affected
by each anti-inflammatory drug. Supplementary Figure 1

shows the resulting bipartite networks using a hive plot
visualization. In this visualization, nodes are arranged
along axes and edges and are represented by Bezier curves.
Supplementary Figure 1A shows the CMap-derived drug-
pathway perturbation network, which is dominated by the
largest connected component (a subgraph composed of a
set of nodes in which any pair of nodes is connected by a
path, and there is no path connecting them to a node outside
the subgraph), represented by a drug-containing axis and a
pathway-containing axis densely populated with edges between
them; this component contains most pathways perturbed by
anti-inflammatory drugs. A second component containing
pathways and two drugs is also shown. Twenty drugs with
no pathway effects were found and are arranged along an
axis with no edges. Supplementary Figure 1B shows the
LINCS-derived drug-pathway perturbation network. Again, this
network was dominated by the largest connected component
concentrating most of the perturbed pathways, along with four
smaller pathway-containing components and 7 disconnected
drugs. The properties of these networks are summarized in
Table 1.

In both networks, most drugs with at least one pathway
target belong to the same largest connected component.

TABLE 1 | Graph parameters for drug-pathway perturbation networks.

CMap LINCS

Nodes, drugs 47 45

Nodes, pathways 304 302

Edges 760 624

Network density 0.05 0.05

Average clustering coefficient, drugs 0.14 0.08

Average clustering coefficient, pathways 0.39 0.44

The most noticeable exceptions are azapropazone and
acemetacin in the CMap-based network. These two drugs
form a lone connected component where they both target 11
pathways related to signaling [including g protein-coupled
receptor (GPCR) and calcium signaling] as well as xenobiotic
metabolism, setting them apart from the rest of the anti-
inflammatory drug space in terms of system-wide effects. In
the case of the LINCS-based network, there were three small
components comprising single drug-pathway pairs [celecoxib
and the trefoil factor (TFF) pathway; bufexamac and valine,
leucine, and isoleucine degradation; and nabumetone and
WNT signaling], as well as a component formed by a drug
and two pathways [valdecoxib and the extracellular signal-
regulated kinase (ERK) pathway and acyl chain remodeling of
phosphatidylglycerol].

Figure 4 shows the degree distribution in these networks.
The degree of a node refers to its number of adjacent edges;
it is one of the defining measures of any network. The degree
value in these drug-pathway perturbation networks has different
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FIGURE 4 | Degree distributions in drug-pathway networks. (A) drug nodes in the CMap-based network, (B) pathway nodes in the CMap-based network, (C) drug

nodes in the LINCS-based network, and (D) pathway nodes in the LINCS-based network. In each panel, the x-axis represents a degree value (k) and the y-axis

represents the complementary cumulative frequency for a value of k, P(K). Drug nodes have degree values that range from 0 to 180 in the CMap-based network and

0 to 65 in the LINCS-based network. Pathways have degree values that range from 1 to 17 in the CMap-based network and 1–13 in the LINCS-based network. It

should be noted that in all degree distributions, nodes with higher degree values are fewer than nodes with low degree values.

meanings for each type of node. A “drug degree” represents the
capacity of a given drug to have multiple functional effects at
the pathway level. Meanwhile, a “pathways degree” represents
the susceptibility of a given pathway to be targeted by anti-
inflammatory drugs. It should be noted that the drug degree
distribution and the pathway degree distribution are different in
each network: first, the drug degree distribution has a larger range
than the pathway degree distribution; second, the frequency of
drug nodes with a single neighbor is higher than that of pathway
nodes with a single neighbor. These plots also show that these
networks are predominantly populated with pathways and drugs
that have few neighbors, whereas highly connected nodes are
scarce.

Pathway degrees range from 1 to 13 in the LINCS network
and 17 in the CMap network; there are no pathways with a
degree of 0, as expected given the network construction model.
Interestingly, the most connected pathway was the “cell cycle”
pathway from the Reactome database in both networks, making
it the most susceptible pathway to anti-inflammatory drugs.
However, there was not a single pathway that was perturbed
at the gene expression level by all the anti-inflammatory drugs.
Drug degrees range from 0 to 65 in the LINCS-based network
and from 0 to 180 in the CMap-based network; drugs with the
highest degrees were azapropazone and rimexolone, respectively.
It must be noted that in the case of drug nodes, the network
constructionmodel allows for the presence of nodes with a degree
of 0.

Supplementary Figure 2 shows clustering coefficient
distributions for each network. The clustering coefficient of
a node in a bipartite network is a measure of how likely it is,
on average, for a given node to share neighbors with others
(Latapy et al., 2006). In the case of these networks, a higher
clustering coefficient for a drug node can be interpreted as the
likelihood that pathways affected by a given drug are affected by
another drug. In contrast, for pathway nodes, a higher clustering
coefficient represents the likelihood of finding another pathway
that is susceptible to a similar set of drugs. The clustering
coefficient for drugs in both networks is below 0.2 for all drugs
in the largest connected component. A related concept is node
redundancy. This parameter measures whether the removal of a
given node from the bipartite graph leads to the disconnection of
two of their neighbors. Drug node redundancy can represent the
uniqueness of pathway effects, with highly non-redundant drugs
being those that are able to affect pathways untargeted by other
anti-inflammatory drugs. The distribution of redundancy values
is shown in Supplementary Figure 3.

Drug-ADR Network
Relationships between anti-inflammatory drugs and ADRs
contained in the FAERS dataset were used to generate a bipartite
network. This network allows the identification of possible
adverse effects for a given drug and drugs that are associated to
a given adverse effect. We first identified those side effects more
likely to be associated with anti-inflammatory drugs; individual
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drugs more likely to be associated with particular side effects
were then identified. The resulting bipartite network is presented
in Supplementary Figure 4 as a hive plot comprising a single
large component containing all anti-inflammatory drugs studied
and their side effects. The transparency of the Bezier lines is
proportional to the weight of the edge, representing the ADR risk
for the associated drug. The statistics describing this network are
found in Table 2.

Figure 5 shows the cumulative frequency distribution for
degree. The ADR degrees ranged from 1 to 38; the highest degree
was associated with a non-specific “general signs and symptoms,
not elsewhere classified.” Further, the drug degrees ranged from 3
for flufenamic acid to 635 in the case of prednisolone, suggesting
that all anti-inflammatory drugs are more frequently associated
with side effects than other drugs. Supplementary Figures 5, 6
show the previously discussed parameters of clustering coefficient
and redundancy. In the case of drugs, the clustering coefficient
increased up to a value of 0.18, while for ADR nodes, the
maximum clustering coefficient was 0.23.

Another centralitymeasure only defined in weighted networks
is node strength. The strength of a node in a weighted network is
defined as the sum of weights for all adjacent edges (Barrat et al.,
2004). In this network, weights represent the risk of a given ADR
for a drug. Node strength for each drug can be used as a general

TABLE 2 | Graph parameters for the drug-adverse drug reaction (ADR) network.

Drug—ADR

Nodes, drugs 52

Nodes, ADRs 1,175

Edges 9,597

Network density 0.16

Average clustering coefficient, drugs 0.13

Average clustering coefficient, ADRs 0.17

measure of relative risk for any side effect, regardless of severity,
to manifest in a treatment with a given drug. The strength
distribution for drug nodes is shown in Supplementary Figure 7.

Pathway-ADR Network
This network represents links between functional pathways
and ADRs in the anti-inflammatory setting resulting from a
projection of the drug-pathway and drug-ADR networks. Here,
functional pathways and ADRs are linked if both are associated
with at least one shared anti-inflammatory drug; the edge weight
in these networks is the number of shared drugs between a
pathway and an ADR. Table 3 contains descriptors related to
these networks.

These networks help identify possible associations between
functional pathways and ADRs in the context of anti-
inflammatory drugs that can be used to generate hypotheses
regarding the underlying mechanisms of the side effects
associated with these drugs. For instance, “eye and eyelid
infection” was a side effect identified with a high number
of connections to three Reactome pathways, including cell
cycle, cell cycle mitotic, and DNA replication using the CMap-
derived pathway-ADR network. There were four drugs through
which these ADR and pathways are connected: hydrocortisone,
ketoprofen, methylprednisolone, and rimexolone. Each of these
drugs can be found in ophthalmic medications. The connection
between these drugs and this ADR can therefore be explained
by the therapeutic indication of these drugs. Meanwhile, the
mechanism through which these drugs may affect these pathways
is not known, although it is important to notice that cell cycle
pathways are affected by several anti-inflammatory drugs, as
mentioned previously in section Drug-Pathway Perturbation
Network. Without further experimental confirmation, further
discussion on the role of these pathways regarding the ADR
would be speculative. However, a putative role of the perturbation
of these pathways in the ophthalmic infection condition, at least
in the context of treatment with this set of drugs, is an example

FIGURE 5 | Degree distributions in drug-adverse drug reaction (ADR) networks. This figure illustrates the degree distribution of (A) drug nodes and (B) ADR nodes. In

each panel, the normalized, complementary cumulative degree frequency distribution is presented. Drug nodes have degree values that range from 0 to 635, while

pathways have degree values that range from 1 to 38.
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TABLE 3 | Graph parameters for pathway-adverse drug reaction (ADR) networks.

CMap LINCS

Nodes, ADRs 1,160 1,165

Nodes, pathways 304 302

Edges 48,430 95,311

Network density 0.137 0.27

Average clustering coefficient, ADRs 0.27 0.28

Average clustering coefficient, pathways 0.26 0.25

of a non-trivial insight that can be generated through a network-
based analysis and which may drive novel experimental research.

DISCUSSION

In this work, we explored relationships among anti-inflammatory
drugs based on parameters such as chemical structure similarity,
gene perturbation, functional pathway perturbation, and ADRs.
Network models were constructed and examined based on these
features, which can provide further insights into the relationship
of these drugs with their pharmacological effects; we found that
functional features, such as perturbed pathways and ADRs, are
more informative for this purpose. Through the exploration of
drug centrality and functional features in bipartite networks,
we identified drugs that could be prioritized for potential
repurposing. Finally, we found associations between drug effects
at the pathway level and side effects, which may point to
underlyingmechanisms for these effects in the anti-inflammatory
setting.

Structural and perturbation similarities are good comparison
parameters for the general drug space (Iorio et al., 2010; Lo
et al., 2015). As the anti-inflammatory drug space is already
a subset of the greater drug space that shares common
therapeutic applications, differences (structural and at the raw
gene perturbation level) are probably much less likely to
be observed in the anti-inflammatory drug space than in
the general drug space. It is difficult to determine a non-
arbitrary cut-off value to generate an insightful network model
based on similarities in the structural or gene perturbation
profile. However, the bipartite models proposed in this work
do not have this limitation, leading to a more descriptive
landscape of the functional effects of these therapeutic drugs.
Around 300 functional pathways that are potentially susceptible
to modulation through anti-inflammatory drug use were
identified, along with nearly 1,200 ADRs. Therefore, this
network-based approach is presented as more suitable for
the exploration of a limited section of the pharmacological
space than studies based on chemical structural features
alone.

The structure of these networks provides insight regarding
the similarities and differences between anti-inflammatory drugs.
Drug-pathway networks are dominated by the largest connected
component in each network. Drugs that are part of the smaller
components affect pathways that are not susceptible to the effects
of other drugs. Drugs that have common effects that are shared

with many other drugs in the network have higher clustering
coefficients and redundancy values. Drugs whose pathway effects
are completely redundant such that there is another drug with
the exact same set of pathway effects are rare, which is consistent
with the coexistence of these drugs in current medical practice.
The drug-ADR network exclusively comprises a single connected
component, indicating a widespread overlap in potential side-
effects between these drugs.

The connectivity of a drug in the networks presented in this
manuscript is indicative of the drug’s effects, either therapeutic,
in the context of the pathway networks, or toxic, in the case
of the ADR network. In the case of drug-pathway networks,
node degree is a measure of connectivity; high-degree drugs
in these networks affect more functional pathways. Some drugs
were found to have no significant effects on pathways, appearing
as drugs with a degree of 0. Evidently, this does not mean
that these drugs have no pharmacological effects; rather, it is
indicative of no observable activity at the gene expression level
(as tested in cell cultures), making them comparatively less likely
to exhibit other system-wide effects than other more connected
anti-inflammatory drugs. In the context of ADRs, there are
two complementary connectivity measures for each drug: degree
indicates the number of possible side effects of a given drug,
while node strength is a measure of relative risk for any side
effect. The use of network-based metrics allows for a simple and
generalizable categorization of these drugs based on their possible
biological effects.

Drug connectivity in the networks presented in this
manuscript can be useful in the context of drug repurposing. It
is possible to use the degree of a drug node in the drug-pathway
network as a measure of the number of potential alternative
therapeutic targets. The node strength of a drug in the drug-
ADR network is an indicator of its general risk for generating
a side effect. Using these two axes, the anti-inflammatory space
can be divided into four groups as shown in Figure 6. The drug
space with the highest pathway targets and the lowest side effect
strengths would be the best suited to identify drug candidates
for repurposing. For illustration purposes, each axis is divided
by its median value; drugs with higher than median pathway
effects and lower than median side effect strength appear in the
upper, left quadrant. Arguably, these drugs are more likely to
be successfully repurposed, and there are literature reports that
support this hypothesis. For instance, the use of naproxen as a
cytotoxic drug in urinary bladder cancer has been reported (Kim
et al., 2014). Other repurposed applications have been proposed
for meloxicam in the treatment of non-Hodgkin’s lymphoma
(Nugent et al., 2016; Chartier et al., 2017), etodolac for the
treatment of breast cancer (Yang et al., 2014), tenoxicam for the
treatment of tuberculosis (Maitra et al., 2016), hydrocortisone
in the treatment of Alzheimer’s Disease (Zhang et al., 2015),
flufenamic acid for the treatment of Salmonella infection (Ekins
et al., 2011; Preethi et al., 2016), fenoprofen as a melanocortin
receptor allosteric enhancer (Montero-Melendez et al., 2017),
and nabumetone (Shameer et al., 2017).

The approach described in this work is currently limited by
constraints related to the availability of drug effect information.
The CMap and LINCS drug perturbation datasets, which are
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FIGURE 6 | Toxic and therapeutic potential of the anti-inflammatory drug space. In these figures, drugs are classified based on their risk of producing an adverse drug

reaction (ADR, measured as the node strength from the drug-ADR network) and their potential alternative therapeutic uses [measured as the degree in a

drug-pathway network, either derived from (A) the Connectivity Map (CMap) or (B) Library of Integrated Network-based Cellular Signatures (LINCS)]. Each axis is

divided by its median value. Point color and size are proportional to position in the x and y axes. Following this classification, drugs in the upper, left quarter are the

best repositioning candidates, as they have the most effects on alternative pathways and the least risk for ADRs.

some of the most extensive and have robust and reproducible
generation methodologies, were used. Nonetheless, the coverage
of tested drugs is far from complete, which is reflected in
the composition of the resulting networks. In the case of
pharmacovigilance information, it is important to consider
the inherent limitations associated with drug monitoring, as
well as limitations in the reporting infrastructure and changes
in prescription habits, which may affect the availability of
adverse effect information for drugs. As such, it is important
to note that the approach presented here is implemented in an
exploratory setting. The aforementioned limitations may lead
to the identification of false positive leads, which can only be
overcome with further, well-defined experimental research.

Since our focus in this work was a well-defined subset of
the therapeutic drug space, we suggest that the relationships
identified to the functional features identified here may be
specific only to this subset of drugs. We do not know whether the
topologies of similarly constructed bipartite networks for other
drug classes, or for the larger drug space, will share similarities,
as this was beyond the scope of the present work.

CONCLUSIONS

In this work, we explored a subset of the pharmacological
space integrated by anti-inflammatory drugs. We identified
relationships between these drugs based on their chemical
structure and effects on gene expression, as well as physiological
effects such as alteration of functional pathways and the onset
of adverse reactions. We integrated these into bipartite network
models that we analyzed to identify topological properties related
to these relationships. We showed that using the bipartite
network model provides advantages for the exploration of the
anti-inflammatory drug space that are not possible by using

other analysis strategies. We expect to expand our model as
new high-throughput drug screening protocols generate further
information regarding drug effects.

We suggest that the present work provides a framework
to explore functional effects of certain therapeutic classes. We
focused on the anti-inflammatory space, considering its notable
clinical importance. We demonstrated that it is possible to
gain insights relevant to pharmaceutical research using these
models, which can be integrated to drug repurposing and drug
combination pipelines, as well as to the clinical setting. This
will provide further criteria for the selection of optimal anti-
inflammatory therapies. Finally, we exemplified an application
integrating different sources of pharmacological information into
network models for drug repurposing.
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Supplementary File 1 | A compressed file containing all networks as graph

markup language (GML) files.

Supplementary File 2 | A compressed file containing all similarity matrices as

comma-delimited files.

Supplementary Figure 1 | Graph visualization of the drug-pathway perturbation

networks. In these visualizations, networks are presented as hive plots. Nodes

representing drugs and pathways are arranged along axes, and edges

representing perturbation of a pathway by a drug are shown as Bezier curves.

(A) shows a network derived from CMap data containing two connected

components; the largest one (comprising the orange drug axis and the yellow

pathway axis) contains the majority of pathway perturbing drugs and perturbed

pathways. A second component contains two drugs (pink axis) perturbing 11

pathways. Drugs for which no pathway effects were found are arranged along the

green axis. (B) shows a network derived from LINCS data that is dominated by a

large connected component with 4 smaller components containing drugs and

perturbed pathways. Drugs for which no pathway effects were found are arranged

along the purple axis.

Supplementary Figure 2 | Clustering coefficient in drug-pathway networks.

(A) Drug nodes in the CMap-based network, (B) pathway nodes in the

CMap-based network, (C) drug nodes in the LINCS-based network, and (D)

pathway nodes in the LINCS-based network. In each panel, the normalized,

cumulative clustering coefficient frequency distribution is presented. Drug nodes

have degree values that range from 0 to 0.45 in the CMap-based network and 0 to

0.19 in the LINCS-based network. Pathways have degree values that range from

0 to 0.75 in the CMap-based network and 0 to 1 in the LINCS-based network.

Supplementary Figure 3 | Redundancy coefficient in drug-pathway networks.

(A) Drug nodes in the CMap-based network, (B) pathway nodes in the

CMap-based network, (C) drug nodes in the LINCS-based network, and

(D) pathway nodes in the LINCS-based network. In each panel, the normalized,

cumulative redundancy frequency distribution is presented.

Supplementary Figure 4 | Graph visualization of the drug-adverse drug reaction

(ADR) network. A hive plot representation of the drug-ADR network is shown. This

network comprises 52 drug nodes and 1,227 ADR nodes, with 9,597 links

between them. Drugs nodes are arranged along the blue axis, while ADR nodes

are arranged along the red axis. Edges between them are shown as Bezier

curves. The transparency of each line is proportional to the edge strength. The

network comprises a single large connected component containing all drugs and

pathways.

Supplementary Figure 5 | Clustering coefficient in drug-adverse drug reaction

(ADR) networks. This figure illustrates the clustering coefficient distribution of

(A) drug nodes and (B) ADR nodes. In each panel, the normalized,

cumulative clustering coefficient frequency distribution is presented. Drug

nodes have a maximum value of 0.18, while pathway nodes have a

maximum value of 0.24.

Supplementary Figure 6 | Redundancy coefficient in drug-adverse drug reaction

(ADR) networks. This figure illustrates the redundancy coefficient distribution of

drug nodes (A) drug nodes and (B) ADR nodes. In each panel, the normalized,

cumulative redundancy frequency distribution is presented for drug and ADR

nodes, respectively.

Supplementary Figure 7 | Node strength in drug-adverse drug reaction (ADR)

networks for drug nodes. The normalized, cumulative strength distribution for drug

nodes is shown, with a range of 0 to 85,591.61. A node’s strength in a weighted

network is the sum of the weights of all adjacent edges. In this network, an edge

weight represents the risk of an ADR for a given drug. Therefore, a drug’s node

strength is a measure of general risk for a drug.
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