
1Scientific RepoRtS |         (2020) 10:9616  | https://doi.org/10.1038/s41598-020-66851-8

www.nature.com/scientificreports

Biogenic synthesis of Agnps 
employing Terminalia arjuna leaf 
extract and its efficacy towards 
catalytic degradation of organic 
dyes
Shani Raj  1 ✉, Hanwant Singh  2, Rohini trivedi1 & Vineet Soni  2

In the present work, we demonstrated the biosynthesis of silver nanoparticles (AgNPs) by highly stable, 
economic and eco-friendly method using leaf extract of Terminalia arjuna (T. arjuna) and employing 
as a catalyst for the degradation of methyl orange (MO), methylene blue (MB), congo red (CR) and 
4- nitrophenol (4-NP). The biosynthesis of AgNPs was visually validated through the appearance of 
reddish-brown color and further confirmed by the UV-spectra at 418 nm. The TEM and FE-SEM studies 
revealed the spherical shape of particles with size ranged between 10–50 nm. Face centered cubic 
crystalline nature of AgNPs was proved by XRD analysis. The negative value of zeta potential (−21.7) 
indicated the stability of AgNPs and elemental composition was confirmed by EDS. FT-IR analysis 
revealed the functional groups present in the plant extract trigger the biosynthesis of AgNPs. The 
AgNPs exhibited strong degradation of MO (86.68%), MB (93.60%), CR (92.20%) and 4NP (88.80%) by 
completing the reduction reaction within 20 min. The reaction kinetics followed the pseudo-first-order 
and displayed k-values (rate constant) 0.166 min−1, 0.138 min−1, 0.182 min−1 and 0.142 min−1 for MO, 
MB, CR and 4-NP respectively. This study showed an efficient, feasible and reproducible method for the 
biosynthesis of eco-friendly, cheap and long-time stable AgNPs and their application as potent catalysts 
against the degradation of hazardous dyes.

Nanotechnology deals with the synthesis and manipulation of particles ranging from 1–100 nm in size at one 
dimension1. From the decades, metal nanoparticles (NPs) are gaining more attention in the field of nanotech-
nology due to the higher specificity and activity than their bulk counterpart2. Metal NPs such as platinum, silver 
and gold have been broadly used as photonics, electronics, optical device, catalyst, biosensing and bio-labelling 
agents3–10. Among metal NPs, AgNPs have found appropriate claimants as antimicrobial and anticancer agents, 
wound healing, drug delivery system and waste water treatment11–14. In order to meet the demands of NPs, var-
ious physical and chemical methods have been exploited in recent years15–19. The disadvantages of the conven-
tional methods of metal NPs synthesis are cost expensive, high energy input and use of highly toxic chemical 
and solvent which are environmentally harmful. To reduce the harmful effects and costliness researchers have 
attracted towards the development of biological methods for synthesis of NPs that employs living organisms 
such as algae, fungi, bacteria and plants20–25. Plants are rich source of phytochemicals such as polysaccharides, 
flavonoids, alkaloids, terpenoids, phenolics, saponins, amino acids, proteins and vitamins which act as reducing 
and stabilizing agents for the biosynthesis of NPs26. Biological synthesis of AgNPs using plant extract has become 
ubiquitous due to easy to access and high efficiency27.

The plant T. arjuna Wight and Arn. (Combretaceae) is found abundantly throughout Indian subcontinent, 
Sri Lanka, Burma and Mauritius. The plant is used to treat many ailments due to presence of various bioactive 
compounds like luteolin, arjungenin, terminic acid, arjunoside I, arjunoside II, arjunolic acid etc28,29.
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Nowadays, harmful chemical substances such as organic dyes have become the root cause of water contami-
nation. Organic dyes are widely used in various industries as colorant such as textile, paper, food, drug, cosmet-
ics, leather and printing30. A bulk amount of industrial effluents along with organic dyes are often discharged 
into the water bodies without passable treatment31. These dyes and its derivatives are highly toxic, carcinogenic 
and non-degradable which causes numerous problems such as skin diseases, liver and kidney failure and also 
poisoning the nervous system of living organism32. As currently available methods for the removal of toxic sub-
stances from water bodies are costly and inefficient, therefore, it is highly essential to develop an eco-friendly and 
cost-effective alternative for the degradation of organic dyes from wastewater33. Recently, the catalytic reduction 
of organic dyes using biologically synthesized NPs received the attention of scientists due to the high potential of 
degrading organic dyes34,35. However, the method of synthesis of nanoparticles using plants is popular but the 
study of application of silver nanoparticles on treatment of dye effluent is limited. Hence, there is crucial need of 
more assessment and evaluation in this field.

In this work, a rapid synthesis of AgNPs via eco-friendly method throught the leaf extract of T. arjuna has 
been developed. The synthesized AgNPs were also characterized using TEM, FE-SEM, EDS, XRD and FT-IR. 
Further, the developed AgNPs have also been used as catalyst for the degradation of MO, MB, CR and 4-NP.

Materials and Methods
Materials. AgNO3 (Sigma-Aldrich, St. Louis, USA) and dyes MO, MB, CR, 4-NP and NaBH4 (HiMedia, 
India) were procured from Pvt. Ltd. New Delhi (India). Healthy leaves of T. arjuna were collected from Madan 
Mohan Malviya Ayurveda College Udaipur, Rajasthan, India (24.5854° N, 73.7125° E). Sterilized deionized water 
(DIW) was used during the whole experiment process.

Preparation of the plant extract. The leaves were washed thoroughly with double distilled water and 
shade dried for 2 weeks at room temperature. To make a fine powder, dried leaves were pulverized by mixture 
grinder. Thereafter, 1 g powder was mixed with 100 ml of boiled DIW and stirred on hot plate for 15 minutes. 
After that the extract was filtered through Whatman No. 1 filter paper (HiMedia). The filtrate was kept at low 
temperature (4 °C) for further use.

Synthesis of Ag nanoparticles. 1 mM of AgNO3 was prepared into sterilized deionized water and mixed 
with plant extract in ratio 95:5. The overall reaction was carried out in low light condition to minimize the 
photo-activation of AgNO3. After few minutes, solution was turned into reddish-brown color which indicates 
the reduction of AgNO3 into AgNPs. Further the solution was characterized by spectrum using UV- visible spec-
trophotometer (SPECORD 200 Analytik Jena, Germany). The reaction mixture was centrifuged at 15000 × g for 
20 min at 4 °C. The pellets were collected and dried in the oven at 40–45 °C to obtain AgNPs.

Characterization of Ag nanoparticles. UV–visible spectroscopy was done to study the bioreduction of 
AgNO3 to AgNPs. The reaction mixture was analyzed at scanning range 300–700 nm, 1 nm resolution and 1 cm 
path length with DIW as reference. DLS (Malvern, UK) was performed for the zeta potential of synthesized NPs 
at 25 °C at a scattering angle of 90°. FTIR spectroscopy (Bruker, US) was used to analyze functional groups which 
are involved in reduction of AgNO3 into AgNPs. The transmittance was recorded at 500 to 4000 cm−1. XRD 
(X-ray diffractometer, Ultima IV, Rigaku, Japan) was used to obtain diffraction pattern of AgNPs with Cu Kα 
radiation (λ = 1.54 Å) between 20° to 90° (2θ range). Electron microscopy was carried out to morphological study 
of the synthesized NPs using Transmission electron microscopy (TEM-Tecnai G2–20, USA) and Field Emission 
Scanning Microscopy (FESEM, JEOL SM-7600F Japan) coupled with X-ray energy dispersive spectrometer 
(Oxford EDS system). TEM analysis was done by ultrasonically dispersal of AgNPs powder in EtOH. Further, 
the one drop of the dissolved sample was placed on a Cu grid and allowed to evaporate at room temperature and 
operating at 200 kV with a resolution point of 2.04 nm.

Catalytic degradation of dyes. Catalytic potential of synthesized AgNPs was evaluated by degrading dif-
ferent carcinogenic organic dyes (MO, MB, 4-NP and CR) in the presence of NaBH4. Before degradation process 
the synthesized AgNPs were sonicated using ultra prob sonication for few minutes to make aqueous colloidal sus-
pension. For reduction, colloidal suspension of AgNPs and NaBH4 was mixed with aqueous solution of dyes. The 
detail of the concentration and volume of reaction mixture is given in Table 1. The reduction process was carried 
out in 4 mL quartz cuvette and time-dependent reduction time was observed by recording absorption spectra in 
time interval of 1 min. Reaction mixture without AgNPs was used as reference and pseudo-first-order kinetics 
was analyzed to evaluate the rate constant as per following equation:

ln(A /A ) kt (1)t 0 = −

Dye
Dye’s 
conc.

Volume 
of dye

Volume of 
H2O (DI)

NaBH4 
(0.05 M)

Volume 
of AgNPs 
(0.05%)

Reduction 
time (min)

Rate constant 
(k)

MO 1 mM 200 µL 1.8 mL 0.990 mL 10 µL 14 0.166 min−1

MB 1 mM 100 µL 1.9 mL 0.980 mL 20 µL 19 0.138 min−1

4-NP 5 mM 50 µL 1.45 mL 0.580 mL 20 µL 15 0.142 min−1

CR 1 mM 400 µL 1.6 mL 0.980 mL 20 µL 14 0.182 min−1

Table 1. Detail of experiment scheme for catalytic degradation of dyes.
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The % degradation of the dyes was estimated through the following equation

=
−

×
A A

A
Percent degradation 100

(2)
t0

0

where, A0 is the initial absorbance of dye, At is the absorbance of dye at time t and k is the rate constant. The whole 
reaction of degradation was processed at room temperature. Figure 1 shows the over view of AgNP synthesis, 
characterization and dye degradation.

Results and Discussion
A change in color from yellow to reddish-brown was observed upon the addition of plant extract into aqueous 
AgNO3 solution, which clearly indicates the synthesis of AgNPs. The change in color was due to surface plasmon 
resonance (SPR) excitation which was examined using UV-visible spectrophotometer. The SPR absorption band 
is due to collective vibration of free e- of metal NPs in resonance with light wave36. Further, the formation of 
AgNPs was confirmed by the appearance of a characteristic peak at 418 nm (Fig. 2A). In this experiment, effect 
of different pH (3 to 9) on reduction of AgNO3 into AgNPs was assessed by UV- visible spectroscopic analysis 
(Fig. 2B). The size and shape of the AgNPs were influenced by the varying pH value. In the biological synthesis of 
AgNPs, pH changes the electrostatic repulsion of biomolecule and capping agent present in the solution resulting 
in changing their binding and reduction ability to metal ions37,38. It was indicated in Fig. 2B that with the gradual 

Figure 1. Schematic representation of the synthesis of AgNPs and degradation of dyes.

Figure 2. (A) UV-visible spectra of biosynthesized AgNPs [inset (a) Plant extract (b) AgNO3 solution (c) 
AgNPs] (B) UV-visible spectra of AgNPs at different pH.
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increase in pH the color of the solution (inset Fig. 2B) as well as absorbance intensity also increased but in case 
of pH 3 and 4 no characteristic peak was observed. From neutral to slightly alkaline pH sharp absorbance peak 
was observed which may be due to the ionization of the phenolic groups present in plant extract indicated rapid 
formation of AgNPs39. The formation of large size and aggregation of the AgNPs at acidic pH could be due to the 
electrical charge of the biomolecule which repels the anions present in the reaction solution40. By the result of this 
experiment, it can be observed the more reduction of Ag+ ion at pH at 9 is optimum condition.

Figure 3A shows the FTIR spectrum of leaf extract of T. arjuna before and after bioreduction of AgNO3 into 
AgNPs. FTIR spectrum analysis was done to recognize the possible biomolecules present in the leaf extract which 
are responsible for the reduction of the Ag+ ions into Ag° and capping of AgNP. In the spectrum low peak at 
613 cm−1 is correspond to CI stretching of halo compound. The medium band at 1636 cm−1 is correspond to 
N-H stretching of conjugated amine and medium band at 2125 cm−1 correspond to C-N stretching of any alkyne 
N = C = S. The strong and broad band at 3280 cm−1 correspond to O-H stretching of stretching of H- intramolec-
ular bonded alcohols and phenols and hence, the main component present in the leaf extract of T. arjuna such as 
leucoanthocyanidins, arjunetin and hydrolyzable tannins are responsible for the reduction of AgNO3 into AgNPs 
and capping of AgNPs41.

XRD crystallography was done to reveal the crystalline nature of the synthesized AgNPs. The XRD pattern 
showed the Bragg’s reflection plane in the 2θ range between 20–90°. The diffraction peaks at 2θ = 38.21°, 44.39°, 
64.49°, 77.32° and 81.95° are corresponded to (111), (200), (202), (311) and (222) Miller indices of AgNPs, respec-
tively Fig. 3B, which interpreted for the face-centred cubic structure of the AgNPs42. The broad peaks indicate 
the small crystalline size of nanoparticles. The resulted Bragg’s diffraction peaks are corroborated with database 
of Joint Committee on Powder Diffraction Standard of Ag (JCPDS card No. 04–0783). The similar findings of 
Bragg’s refection for AgNPs are also reported43–45. The sharp peaks are shown in Fig. 3B might have due to cap-
ping agent which stabilize the AgNPs and few unassigned peaks (*) that might be thought due to the crystalliza-
tion of the biomolecule on the surface of the AgNPs46. The lattice constant was calculated from diffraction pattern 
α = 4.07 Å and d spacing 2.03 Å of synthesized AgNPs.

The mean size of the AgNPs was determined as per following Scherrer equation:

= λ β θD k / cos (3)

where, D is the average crystalline size (Å), k is a constant equal 1, λ is X-ray radiation (λ = 1.54 Å) source, β is 
the angular line full width at half maximum (FWHM) and θ is the Bragg angle. The average size of AgNPs was 
noted as 18.11 nm.

DLS studies were utilized to examine the surface zeta potential and dispersity of the synthesized AgNPs in 
aqueous colloidal solution. The PDI value of AgNPs was 0.963 (Fig. 4). In the Fig. 4 negative zeta potential was 
observed at −21.7 mV and zeta deviation was 5.42 mV. The high negative value of zeta potential causes repulsion 
among nanoparticles to prevent agglomeration47. The size of nanoparticle measured larger than TEM, SEM and 
XRD due to the measured size included biomolecule and water layer covering the surface of nanoparticles48.

FE-SEM and TEM were carried out to examine morphology of particle surface and size of plant-based pro-
duced AgNPs. TEM images (Fig. 5A–D) shows the particles are spherical and small groups of particles were 
also observed due to agglomeration during sample preparation. Figure 5E displays the Selected Area Electron 
Diffraction (SAED) pattern of the AgNPs which indicated the pointed diffraction spot in ring arrangement from 
inner to outer related with (111, 200, 202, 311, 222) lattice reflections of Ag49,50. FE-SEM study reveals that the 
particles are uniformly spherical in shape and the rough surface of the particles coated with organic layer which 
act as capping agents (Fig. 6A,B). The size of the particles was calculated by the TEM and FE-SEM analysis, which 
are mainly in range between10–50 nm. Highest percentage of particles showed the size range between 16–20 nm 
as displayed in size distribution histogram (Fig. 5F). In addition, the chemical compositions of the synthesized 

Figure 3. (A) FT-IR spectra of plant extract and AgNPs after reduction (B) XRD pattern of biosynthesized 
AgNPs.
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AgNPs were revealed by EDS spectrum analysis, as shown in Fig. 6C. The EDS spectrum highlights the presence 
of Ag (86.13%) and fewer amounts of other elements such as O (4.54%) and Cl (9.29%) weight % and Ag (59.27), 
O (19.45) and Cl (21.28) atomic %, respectively51.

AgNPs-mediated catalytic reduction of MB, MO, CR and 4-NP was carried out in the presence of NaBH4 as 
reducing agent. MO, a hazardous azo-dye to the environment52, can be degraded by reducing agent like NaBH4 
but the rate of degradation is very low. AgNPs with the properties of low volume to high surface area can increase 
the rate of reduction for dye degradation. An aqueous solution of MO shows orange color which turns into 
deep orange by adding NaBH4 and it shows strong UV spectral band in the visible range at 464 nm. There was 
no change in absorbance of MO in the presence of NaBH4

53. After adding AgNPs in MO containing NaBH4 the 
reduction in absorbance was observed shown in Fig. 7A. The degradation was analyzed by UV-visible spectropho-
tometer at 1 min time interval. The complete degradation of the MO dye was done within 14 min. Figure 7B shows 
the reduction reaction followed the pseudo-first-order reaction kinetic with the rate constant (k) 0.166 min−1.

The degradation of MB was achieved using T. arjuna derived AgNPs. MB is a cationic heterocyclic aromatic 
dye which is used as redox indicator in analytic chemistry, chemotherapeutic and anti-malarial agent in the aqua-
culture industry. An aqueous solution of MB is profound blue coloured and shows the maximum UV absorption 
peak at 664 nm with a bulge at 613 nm due to n → π* and π → π* transitions. In the presence of potent reduc-
ing agent NaBH4 no degradation was observed. The reduction of MB to leucomethyleneblue (colorless MB) by 
AgNPs with NaBH4 and the decrease in absorbance was monitored spectrometrically at 664 nm Fig. 7C. The 
reduction reaction was completed within 20 min and the reaction kinetics followed the pseudo-first-order and 
k = 0.138 min−1 is rate constant. Figure 7D.

The maximum absorption peak of the aqueous solution of CR (brick red color) and 4-NP (yellow color) was 
observed at 490 nm (Fig. 8A) and 317 nm (Fig. 8C) respectively. However, addition of NaBH4 shifted the absorp-
tion peak of 4-NP to 400 nm. The shifting of adsorption peak may be due to the formation of 4-nitrophenolate ion 
(Fig. 8C)54. The intensity of absorption remained constant and no decoloration was observed by adding NaBH4 
for long time. Though, after adding of AgNPs to the aqueous solution of CR and 4-NP contained NaBH4, instantly 
sharp reduction in the absorption takes place, was examined by UV spectra shown in Fig. 8A,C. The drop at 
400 nm and concurrently rises at 297 nm confirms the degradation of 4-NP through the reduction of nitrophe-
nolate to aminophenol ion (Fig. 8C). CR completely degraded within 14 min, while 4-NP took 15 min for com-
plete degradation. The catalytic reaction kinetics and rate constant can be calculated by pseudo-first-order rate 
kinetic law from the plot ln(At/A0) versus reaction time with respect of CR and 4-NP55,56 shown in Fig. 8B,D. The 
rate constant was estimated for CR and 4-NP to be 0.182 min−1 and 0.142 min−1, respectively. The percent degra-
dation of the dye was calculated using equation (2) that shows the more than 86% of degradation was observed. 
In the Fig. 9 illustrated the percent degradation of MO (86.68%), MB (93.60%), CR (92.20%) and 4NP (88.80%). 
High volume to surface ratio of the synthesized AgNPs provides more catalytic sites and lower activation energy. 
Thus, the catalytic degradation of organic dyes might be because of surface reaction between reactant and AgNPs 
as suggested by Langmuir-Hinshelwood model57.

For the reduction of several organic dyes use of NaBH4 as reducing agent is kinetically favourable but not 
thermodynamically viable. Hence various nanocatalyst have been reported to reduction of organic dyes accom-
plished in very less time and kinetically feasible. Figure 10 represent the schematic diagram of dye degradation. 
In the mechanism of catalytic reduction of organic dyes, the role of NaBH4 is to produce BH4

−1 by its dissociation 
and act as electron donor and dyes molecules act as electron acceptor while AgNPs act as relay centre for electron 
transfer from BH4

−1 ion to dyes molecules. In aqueous solution both BH4
−1 and dyes molecules are diffuse to the 

surface of AgNPs. The BH4
−1 and dyes molecule are attached to NPs surface. The hydrogen released from BH4

−1 
act as hydrogen source, get adsorbed by catalytic surface of NPs and attack on dyes molecules. The electron carry-
ing NPs activate catalytic surface and activate azo bond of dyes resulting breakage of azo bonds due to uptake of 
electron via catalyst and hydrogen from BH4

−1 and dyes get reduced on the surface of NPs30,58.

conclusion
In this study, we have reported a facile and green approach to biosynthesis of AgNPs employing T. arjuna leaf 
extract as a reducing and stabilizing agent. The synthesized AgNPs was confirmed by characterization with FTIR, 
UV-vis, DLS, SEM-EDS, TEM and XRD analyses. TEM and FE-SEM studies shown the particles were spheri-
cal, face cantered cubic in nature and size range in 10–50 nm. Compare to the chemical method this method is 
convenient and eco-friendly since it does not require any toxic chemical and surfactant. The synthesized AgNPs 
were successfully applied for rapid catalytic degradation of harmful organic dyes (MB, MO, CR and 4-NP). The 

Figure 4. Zeta potential of biosynthesized AgNPs.
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degradation of dyes was done in less than 20 min, observed by UV-vis spectroscopic analysis. The current study 
provides new perspectives for biological synthesis of metal NPs and their applications as catalyst in context of 
wastewater treatment to remove dyes contamination from industrial effluents.

Figure 5. TEM micrograph of biosynthesized AgNPs with different magnification (A–D), SAED pattern (E) 
and Size distribution histogram of AgNPs (F).

Figure 6. SEM images of biosynthesized AgNPs (A,B), SEM-EDS spectrum analysis (C).
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Figure 7. UV-visible absorption spectra of catalytic degradation of MO (A) and MB (C) by NaBH4 in the 
presence of AgNPs, Pseudo-first order plot of ln(At/A0) vs. time of MO (B) and MB (D).

Figure 8. UV-visible absorption spectra of catalytic degradation of CR (A) and 4-NP (C) by NaBH4 in the 
presence of AgNPs, Pseudo-first order plot of ln(At/A0) vs. time of CR (B) and 4-NP (D).F.
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Data analysis. The data analysis was done using Microsoft excel and the graphs were prepared using 
OriginPro8.5 software.

Received: 30 October 2019; Accepted: 21 May 2020;
Published: xx xx xxxx
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