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ABSTRACT

Objective: Seizure frequency and seizure freedom are among the most important outcome measures for patients

with epilepsy. In this study, we aimed to automatically extract this clinical information from unstructured text in

clinical notes. If successful, this could improve clinical decision-making in epilepsy patients and allow for rapid,

large-scale retrospective research.

Materials and Methods: We developed a finetuning pipeline for pretrained neural models to classify patients

as being seizure-free and to extract text containing their seizure frequency and date of last seizure from clinical

notes. We annotated 1000 notes for use as training and testing data and determined how well 3 pretrained

neural models, BERT, RoBERTa, and Bio_ClinicalBERT, could identify and extract the desired information after

finetuning.

Results: The finetuned models (BERTFT, Bio_ClinicalBERTFT, and RoBERTaFT) achieved near-human perfor-

mance when classifying patients as seizure free, with BERTFT and Bio_ClinicalBERTFT achieving accuracy scores

over 80%. All 3 models also achieved human performance when extracting seizure frequency and date of

last seizure, with overall F1 scores over 0.80. The best combination of models was Bio_ClinicalBERTFT for classi-

fication, and RoBERTaFT for text extraction. Most of the gains in performance due to finetuning required roughly

70 annotated notes.
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Discussion and Conclusion: Our novel machine reading approach to extracting important clinical outcomes per-

formed at or near human performance on several tasks. This approach opens new possibilities to support clini-

cal practice and conduct large-scale retrospective clinical research. Future studies can use our finetuning pipe-

line with minimal training annotations to answer new clinical questions.
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INTRODUCTION

The electronic health record (EHR) is an ever-growing resource

of documents created by healthcare providers to monitor the well-

being of patients. Among such documents are progress notes,

which are unstructured or minimally structured free-text docu-

ments that clinicians use to record interactions with patients.

Progress notes contain the patient’s medication list, general well-

being, diagnoses, treatments, and disease progression.1 The EHR

is a source of information and data for large-scale retrospective

clinical research2–4; instead of following cohorts prospectively for

extended periods of time, researchers can look backwards

through the EHR using information gathered during patient visits

to answer clinical questions. Such retrospective studies may also

be cheaper to conduct than the current costly prospective stan-

dard of research,2 which often costs thousands of dollars per sub-

ject.5–8

However, manually extracting information from the EHR can be

time consuming and impractical. Automated text mining methods

from natural language processing (NLP), a field of computer science

dedicated toward teaching machines to read and comprehend hu-

man language, have attempted to mitigate this problem. Recent

strides in NLP have created pretrained language models, based

largely on the Transformer architecture, with unprecedented abili-

ties to understand unstructured text and generalize across a wide

range of tasks and domains.9–11 Transfer learning is a key advantage

to these models, which are initially pretrained on a large text corpus

to obtain a general understanding of language. They can then be

finetuned on small datasets to be adapted toward specific tasks or

domains. Already, such models have shown strong flexibility and ac-

curacy in specialized domains. For example, the Bio_ClinicalBERT

model demonstrated high accuracy and F1 scores for various clinical

NLP benchmarking tasks.12

In the clinical care of patients with epilepsy, among the most

important markers of clinical severity and response to treatment

are (1) the presence or absence of seizures (seizure freedom)

and (2) the frequency of seizures over a given time, generally

within the past year or since the last office visit. These outcome

measures are challenging for automated extraction from text. For

example, paroxysmal events at irregular intervals with dynamic

temporal components preclude simple static phenotypic classifica-

tion of patients. In this study, we developed a novel NLP pipeline

to automatically extract seizure freedom and seizure frequency

from clinical notes at the University of Pennsylvania Health System

(UPHS), validated against human annotations. Our novel pipeline

uses a combination of existing pretrained models, publicly avail-

able finetuning tools, and a relatively small amount of task-specific

annotation; we expect that it will be generalizable to a wide range

of research questions that require extracting and classifying text

from clinical notes.

MATERIALS AND METHODS

Document curation
This retrospective study was approved by the Institutional Review

Board of the University of Pennsylvania with a waiver of informed

consent. We obtained nearly 79 000 progress notes for patients with

epilepsy who visited UPHS between January 1, 2015 and December

31, 2018. We filtered for notes authored by 8 epilepsy specialists,

and extracted text from these notes as “paragraphs” to improve the

probability that the text involved epileptic events; we truncated

these paragraphs to better fit within the maximum sequence length

of the models (512 tokens) and appended the date each note was

written to the front of each paragraph (see Supplementary Meth-

ods). We were interested in identifying patient seizure freedom and

extracting their seizure frequencies. We formulated this problem as

a question-answering task, where a model attempts to answer a se-

ries of questions given a context. From these paragraphs, we asked 3

questions (Table 1): (Q1) “has the patient had recent seizures,” (Q2)

“how often does the patient have seizures,” and (Q3) “when was

the patient’s most recent seizure.” For question 1, we defined

“recent seizures” as occurring either (1) since the last office visit, or

(2) in the 1 year before the note was written, whichever was more

recent. Note that these questions require distinct paradigms: the first

classifies patients as being seizure-free using all available informa-

tion in the note, while the latter 2 extract the span of text in the par-

agraph that best answers them. Additionally, an answer to any or all

these questions may not exist in a given paragraph.

Annotation
We recruited 15 annotators to collectively mark 1000 paragraphs in

a manner that answered the 3 questions. This number of documents

was chosen to balance annotation time with having sufficient data-

set size for model training and evaluation. Documents were chosen

randomly but with a uniform distribution across the 8 note authors,

such that each author wrote 125 paragraphs, to evenly capture their

representative styles. Annotations were performed on the INCEp-

TION platform.13 Our 15 annotators consisted of 7 clinicians (epi-

lepsy nurse practitioners, neurology residents, epilepsy fellows, and

attending physicians), and 8 nonclinicians (graduate students or per-

sonnel working in a lab focused on epilepsy-related research). We

created 5 annotation groups, each with 200 unique paragraphs. We

Table 1. Questions and corresponding task paradigm for the ques-

tion-answering task

Question Task paradigm

Q1: “Has the patient had recent seizures?” Classification

Q2: “How often does the patient have seizures?” Text extraction

Q3: “When was the patient’s most recent seizure?” Text extraction
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divided our annotators between these groups such that each group

had at least 1 clinician and at least 1 nonclinician annotator, and

that each document would have 3 independent sets of annotations.

Once all annotations were completed, annotations were merged

and adjudicated. Disagreements between annotations for each para-

graph were settled in most cases by majority voting between the

annotations. On occasions where no majority could be reached, 2 of

the authors (KX and CAE) together manually adjudicated the anno-

tation. The 5 groups of 200 adjudicated paragraphs were merged

into a single dataset of 1000 paragraphs defined as the “ground

truth” annotations.

We calculated interrater reliability among the human annotators

using Cohen’s Kappa (j) for the classification question,14 and F1

score for the text extraction questions. j measures the observed

agreement between annotators, offset by their expected agreement

due to chance. By convention, a j above 0.81 indicates “near

perfect” agreement.15 The F1 score measures the amount of text

overlap; an F1 score of 1.0 indicates the spans of text are identical,

whereas an F1 of 0 indicates no intersection. We calculated the F1

score in 2 ways: a paired F1, which shows annotator consistency

when 2 annotators agree on some amount of text, and an overall F1,

which includes all annotations for a particular question in each note.

Model finetuning and evaluation
We randomly split the annotated paragraphs into a training set of

700 paragraphs, and a testing set of 300 paragraphs. We targeted 3

models: the original BERT,9 Bio_ClinicalBERT,12 which has addi-

tional pretraining on clinical and biomedical texts, and RoBERTa,16

a version of BERT with improved pretraining objectives, including

dynamic masking without next-sentence-prediction over signifi-

cantly more data, and better hyperparameters, such as a larger batch

size and a larger tokenization vocabulary. We selected BERT to

serve as a useful baseline, and Bio_ClinicalBERT and RoBERTa due

to its improved performance on clinical benchmarking tasks, and

its consistently high performance across several general NLP tasks,

respectively. Because the classification question (Q1) and text ex-

traction questions (Q2 and Q3) constituted distinct task paradigms,

they required 2 separate models, 1 for each type of task.

Our fine-tuning pipeline (Figure 1) followed the insights of Han

and Eisenstein17 and Soni and Roberts18: using a single pretrained

model, we first performed unsupervised domain adaptation with

masked language modeling (MLM) using the 78 000 progress notes

that were not selected for annotation. We then performed task-

specific finetuning with the resultant model in 2 separate instances

on publicly available English datasets—1 on BoolQ3L for the classi-

fication task,19 and the other on SQuADv2 for the text extraction

task,20 resulting in a pair of models. We concluded model training

with supervised finetuning on the training set of the human-

annotated medical notes. The order of our pipeline’s steps followed

and combined the order of finetuning steps used in the 2 aforemen-

tioned studies.17,18 We repeated this pipeline 5 times for each of the

3 starting models with a set of arbitrarily chosen seeds to allow for

estimates of the variability of each model’s performance. We denote

the models finetuned using the full pipeline as BERTFT, Bio_Clini-

calBERTFT, and RoBERTaFT, for the models finetuned from BERT,

Bio_ClinicalBERT, and RoBERTa, respectively. We performed abla-

tion studies by removing each step of our pipeline (1 at a time while

leaving the other steps unchanged) to evaluate their individual

impacts on model performance; as before, we used 5 arbitrarily cho-

sen seeds for each ablation experiment.

We evaluated the performance relative to the ground truth anno-

tations using the accuracy metric for the classification question (de-

fined as correct classifications divided by total classifications), and

the F1 text overlap score for the text extraction questions. As before,

the F1 score is based purely on the overlap between spans of text.

We set the F1 and accuracy scores so that they lie on the same 0–1

scale. We used Huggingface Transformers,21 a Python library for

neural NLP models, to perform finetuning and used their evaluation

methods or the official SQuADv2 evaluation script when appropri-

ate to determine the model’s performance.20 For all finetuning steps,

we used Huggingface’s default and supplied hyperparameters and

Pretrained Language Model Finetuning Fully Finetuned Model

Model finetuned for classifica�on task

Model finetuned for text extrac�on task

BERT MLM

BoolQ3L

SQuADv2

Annota�ons 
(classifica�on)

Annota�ons 
(text extrac�on)

BERTFT

BERTFT

Bio_ClinicalBERT MLM

BoolQ3L

SQuADv2

Annota�ons 
(classifica�on)

Annota�ons 
(text extrac�on)

Bio_ClinicalBERTFT

Bio_ClinicalBERTFT

RoBERTa MLM

BoolQ3L

SQuADv2

Annota�ons 
(classifica�on)

Annota�ons 
(text extrac�on)

RoBERTaFT

RoBERTaFT

Figure 1. Schematic methods detailing the annotation and finetuning pipeline. Pretrained language models are finetuned using masked language modeling by

exposing them to 78 000 unannotated clinical notes; task specific datasets (SQuADv2 and BoolQ3L); and the training set of annotated notes. This process was re-

peated for 5 different seeds.
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did not perform any hyperparameter optimization. We set the maxi-

mum sequence length of the 3 models to 512 tokens to capture as

much information at once as possible. We assessed human annotator

correctness by comparing each individual’s annotations against the

final ground truth annotations. Because the NLP models made 1

prediction per question per note, we selected the annotation closest

in proximity to the ground truth annotation to make a direct com-

parison in cases where a human annotator made more than 1 anno-

tation for a given question. If multiple ground truths existed for a

given question, the annotation with the highest similarity to any of

the ground truths was selected.

RESULTS

Interrater reliability and ground truth annotations
For the classification question, agreement among human annotators

was consistently in the “near perfect” range (average pairwise

j¼0.82, with 13/17 [76%] pairs having j>0.8). For the text ex-

traction questions, the paired F1 had an average pairwise value of

0.79 when annotators identified overlapping spans of text. The

overall F1, which considered all annotations per note, had an aver-

age pairwise value 0.44 (Figure 2). We found that there was no dif-

ference in human annotator correctness between clinician and

nonclinician annotators.

The final dataset consisted of ground truth annotations for 1000

notes. For the classification question (Q1), 61.8% of notes were classi-

fied as having recent seizures, 30.3% as not having recent seizures,

and 7.8% had no answer. For the text extraction questions, 35.5% of

notes contained a statement of seizure frequency (Q2) and 49.5% of

notes contained a statement of most recent seizure occurrence (Q3).

Evaluating model performance
Figure 3 shows the performance of each of the 3 fine-tuned models

as well as human performance on each of our question-answering

tasks, compared with ground truth annotations. For the classifica-

tion question (Q1), Bio_ClinicalBERTFT and BERTFT each showed

strong and robust performances across 5 trials, with Bio_Clinical-

BERTFT achieving the highest median (0.837) accuracy, with a max-

imum of 0.863. RoBERTaFT showed more variability across trials

and the lowest median accuracy (0.747). We performed 2-sided

Mann-Whitney U tests between human annotators and the models

with the null hypothesis that the model and human accuracies came

from the same distribution. We rejected this hypothesis for the mod-

els (P values .019, .019, and .014 for Bio_ClinicalBERTFT, RoB-

ERTaFT, and BERTFT, respectively), indicating that they were

slightly worse than humans at classifying patients (difference in me-

dian accuracy relative to that of humans of �0.085, �0.175,

�0.095 for Bio_ClinicalBERTFT, RoBERTaFT, and BERTFT, respec-

tively) despite the excellent overall performance of BERTFT and

Bio_ClinicalBERTFT.

For the 2 text extraction questions (Q2 and Q3), our models

showed stable performance across 5 trials, with RoBERTaFT achiev-

ing the highest median (0.845 and 0.834) and maximum F1 values

(0.860 and 0.853). Again, we performed 2-sided Mann-Whitney U

tests between the F1 scores of our models and our human annota-

tors. These tests failed to reject the null hypothesis for either ques-

tion, indicating no significant difference in performance in

comparison to human annotators (Figure 3).

Factors that contribute toward model performance
We conducted ablation studies to investigate the individual impacts

of each step of the finetuning pipeline. We used Bio_ClinicalBERT

and RoBERTa as the starting models for the classification question

(Q1) and text extraction questions (Q2 and Q3), respectively, as

they had the best performance on the respective tasks. We first re-

moved the MLM step (-MLM), keeping the task-specific and anno-

tated training datasets, then removed the task-specific datasets (-

SQuADv2, -BoolQ3L), keeping the MLM task and the annotated

training dataset, and finally removed the annotated training dataset

(-Annotations), keeping the MLM task and the task-specific data-

sets. We performed 2-sided Mann-Whitney U tests comparing the

ablation experiments to the full finetuning pipeline with the null hy-

pothesis that the ablated models and the full model have equivalent

performance. For the classification question, we rejected the null hy-

pothesis for the models finetuned without MLM or annotations (P

values ¼ .021 and .008, respectively), indicating that those 2 factors

were significant contributors to the models’ performance. For the

seizure frequency question, we found that only the annotations had

a significant contribution to the models’ performance (P value ¼
.0079). For the most recent occurrence question, both MLM and

annotations were significant contributors to model performance

(P values ¼ .032 and .008, respectively; Figure 4). Overall, it is evi-

Figure 2. Mean intragroup Cohen’s j and F1 scores with 95% confidence intervals. Annotators within each group were compared pairwise and demonstrated

high agreement across all groups. j was calculated using annotator classification values (Q1). F1 was calculated using annotator text extractions (Q2 and Q3).
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dent that the annotated training dataset was the most significant

step in the training pipeline, and that the MLM step was occasion-

ally helpful.

We next asked how much annotated training data were ulti-

mately required. We split the annotated training dataset into cumu-

lative tenths and applied the fine-tuning pipeline with 5 seeds using

these subdatasets on Bio_ClinicalBERT and RoBERTa for classifica-

tion and text extraction, respectively. Using the first 10% of the

training dataset (ie, 70 annotated notes), we achieved 82.7% of the

final accuracy for the classification question, and 91.0% and 90.6%

of the final F1 scores for the 2 text extraction questions (Figure 5).

We repeated the above analyses after stratifying notes according

to whether an answer existed to the text extraction questions (Q2

and Q3). We found that all language models were very accurate at

identifying notes where no answer existed. In notes where an answer

existed, performance was lower, although this was true for both the

NLP models and the human annotators, with the models performing

better than most human annotators (see Supplementary Results).

Finally, we manually reviewed instances where our model failed

to predict the correct classification or failed to extract the correct

span of text and we identified patterns among the errors. We ana-

lyzed the predictions of Bio_ClinicalBERTFT for classification, and

RoBERTaFT for text extraction, both with the same best overall

seed. We found that the leading cause of errors was due to too much

irrelevant information, such as outdated seizure-related information

and/or information unrelated to epilepsy in the paragraph, which

resulted in the model becoming “confused,” and selecting, for exam-

ple, an outdated seizure frequency. Additionally, we found that the

models had trouble performing higher-order logic, including tempo-

ral reasoning. For example, the model had trouble classifying para-

graphs that mentioned the patient having an event on a specific

date, but being seizure-free from a more recent date, for example,

“The patient had a seizure cluster on 4/13. They have been seizure

free since May.” The model also failed to perform implicit semantic

reasoning; for example, the statement “the patient has been seizure-

free since June” was interpreted by human annotators to mean that

Figure 3. A comparison between the accuracy and F1 score of human and machine predictions. Machines achieved near human performance on the classification

question, and human-like performance on the text extraction questions. Gray points denote individual annotator performance, whereas green, orange, and pur-

ple points denote individual Bio_ClinicalBERTFT, RoBERTaFT, and BERTFT seeds, respectively. Box plots show median and quartile ranges of values.

Figure 4. Contributions of the individual steps in the fine-tuning pipeline toward model performance. The masked language modeling step and Annotations influ-

enced final model performance. Bio_ClinicalBERT and RoBERTa were finetuned for classification and text extraction, respectively, with the same seeds. A speci-

fied step was removed from the finetuning pipeline in each experiment. Box plots show median and quartile ranges of values.
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the patient’s most recent seizure was in June. However, the model

consistently failed to identify such statements as indicating a

patient’s last event (Q3). Overall, it is evident that many of the pre-

diction errors occurred in an understandable and nonrandom fash-

ion (Table 2).

DISCUSSION

In this work, we developed a finetuning pipeline for NLP language

models to improve their understanding of clinical notes for patients

with seizures. We demonstrated that models finetuned using these

methods can accurately extract seizure-related information from epi-

lepsy notes to a high degree of correctness, rivaling that of a human.

We identified consistent patterns of errors in our models and deter-

mined how each step of our finetuning pipeline helped to improve

the models’ performance. Finally, we note that our methods can be

used to answer different questions with minimal amounts of new

data.

Our findings demonstrate the ability of machine systems to un-

derstand medical text practically and accurately. Our models can be

used to support clinical decision-making by rapidly extracting im-

portant markers of epilepsy severity and treatment response from

unstructured patient histories. Additionally, our generalizable pipe-

line can be used to conduct retrospective studies, at scale, across a

wide range of clinical research questions in a fraction of the time

and at a fraction of the cost required for prospective studies.

Figure 5. Influence of training set size on mean model performance with 95% confidence intervals. Most of the models’ improvements occurred within the first

10% of the training data. Bio_ClinicalBERT and RoBERTa were finetuned for classification and text extraction, respectively, with the same seeds. Various anno-

tated training set sizes were used for the final finetuning step.

Table 2. Reasons for erroneous predictions

Reason for consistent errors Number of errors

Total Classifying sei-

zure freedom

(Q1)

Extracting sei-

zure frequency

(Q2)

Extracting

date of last sei-

zure (Q3)

Too much historical or irrelevant information
• For example, “In 2002 they began having convulsions, with frequency

3/month.”
• For example, “Patient with history of coronary artery disease. . . stent

thrombosis, prostate cancer. . . readmitted after a fall. . . worsening sub-

dural hematoma and rightward subfalcine herniation. . .”

44 18 8 18

Many relevant events with different information
• For example, “No seizures with loss of awareness since last visit. Con-

tinued probable simple partial seizures frequently.”

8 8 0 0

Identified irrelevant phenomena or failed to identify relevant phenomena

from symptoms
• For example, “At least daily stomach spasms”

10 1 7 2

Unusual time anchor
• For example, “Occur on the first day of their menses.”

3 0 3 0

Temporal reasoning
• For example, “3 months ago, they had three seizures in July. No seizure

since that time.”
• For example, “Not had significant myoclonus since their early 30s.”

11 9 0 2

Semantic reasoning
• For example, “. . . seizure free for the past 3 months.”

6 0 1 5
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Among human annotators, we found excellent agreement for the

classification question, but poorer agreement overall for the text ex-

traction questions. However, because we triple-annotated all notes

and used majority adjudication in most cases, the paired F1 score

gives a meaningful estimate of the reliability of annotations given

that 2 annotators selected similar text spans. The lower F1 values

when accounting for all annotations indicates that double or triple-

annotating notes is still preferable because individual annotations in

isolation have only modest interrater reliability. Additionally, our

ground truth annotations were derived from human annotations.

Therefore, they were not independent, and our method for estimat-

ing human performance (by comparing each individual annotator to

the final ground truth) was biased in favor of overestimating human

performance. Still, it was important to have a baseline against which

to measure the performance of our models, and makes it even more

impressive that the models (which were independent of the ground

truth annotations) performed comparably to human annotators.

Our experiments also showed that the language models fine-

tuned under our pipeline can achieve near-human and human-like

performance on clinically meaningful epilepsy-related tasks. We

found the best performing combination of models to be Bio_Clini-

calBERTFT and RoBERTaFT for text classification and text extrac-

tion, respectively. We observed that model performance on the

classification question was slightly worse than human performance

(although the model was still quite accurate), and model perfor-

mance on the text extraction questions was equivalent to human

performance. We hypothesize that this discrepancy may be in part

because of the more complex logical reasoning required for the clas-

sification task. For example, if a note says “the last seizure occurred

in June 2015,” it requires no inference to extract this text as the an-

swer to Question 3, “When was the patient’s most recent seizure?”

Meanwhile, correctly classifying the patient as seizure-free (Ques-

tion 1, “Has the patient had recent seizures?” ¼ no) requires knowl-

edge of when the note was written, whether that date is more than 1

year after June 2015, and that 1 year is the criteria for a recent sei-

zure. Previous work has shown that logical reasoning and temporal

reasoning remain challenging for language models.22–27

Such high performances on clinical datasets have been seen in

other studies, though on different datasets and tasks. For example,

Alsentzer et al used Transformer Models to achieve 82.7% accuracy

on the MedNLI dataset,28 which measures how well a model can in-

fer relationships between a hypothesis and premise using clinical

texts.12 Additionally, both Alsentzer et al12 and Yang et al29 used

Transformers to achieve F1 scores between 75 and 95 on various

i2b2 and/or n2c2 clinical challenges. Previous work has also been

done to apply NLP to epilepsy clinical notes: Fonferko et al30 used a

rules-based NLP method to extract seizure frequency, among other

information, from 200 clinical letters, achieving an F1 score of 66%

on a per-item basis and 72% on a per-letter (ie, per-note) basis. Our

methods differed from theirs in several aspects, especially in the

manual steps required. In addition to preparing their data, they used

manually coded rules for detecting statements of seizure frequency

and large dictionaries of search terms to handle the intricacies of

language and the various ways that seizure frequency can be repre-

sented in the text. In contrast, our manual efforts were confined

solely to create and annotate our data. The language model then

uses that data to learn and understand the language in a more gener-

alizable fashion. It is also important to note that the F1 scores

reported in our and other studies may measure performance differ-

ently, depending on the NLP task and method, limiting direct com-

parisons between studies.

The findings of our ablation studies contrast with some of the lit-

erature. Han and Eisenstein,17 which inspired our pipeline, com-

bined unsupervised domain adaptation with supervised task

adaptation to improve BERT’s performance on sequence tagging in

difficult domains. They devised 3 BERT models—a frozen BERT

baseline, a task-tuned BERT, and a BERT with both domain tuning

and task tuning. They found that sequentially adding these finetun-

ing steps improved model performance over the baseline. Mean-

while, Soni and Roberts18 found that using SQuAD as an

intermediate dataset improved clinical question answering perfor-

mance for several models. In contrast, we found that only domain

tuning and the annotated training set proved to be helpful, and only

the annotations proved to be critical to model performance. Task

tuning using intermediate datasets had no significant impact on the

final performance of our models.

Our study does have some limitations. Our clinical notes are

sourced from a single healthcare center and as such, the generaliz-

ability of our results to other centers is unknown and should be

tested in future research. Similarly, we annotated, trained, and tested

on specific neurology notes; our model may experience decreased

performance when applied to notes from other departments. How-

ever, these problems can be solved with additional finetuning on a

small dataset sourced from either the new institution or department,

in the manner that we have described within this article. Addition-

ally, our choice in models was constrained by the limitations of our

16 GB Nvidia P100 GPU. This prevented us from using different,

larger models, such as Longformer,31 which has been found to out-

perform RoBERTa on long document tasks. This problem can be re-

solved by using a more powerful GPU in the future.

Our definition of seizure freedom (since last office visit or within

1 year) was also pragmatic, and reflects clinical practice for measur-

ing this outcome measure, but from a machine learning perspective

was arbitrary and may have affected the accuracy of our classifica-

tion models. We also captured and lumped together the frequency of

all types of seizures. For clinical purposes, some types of seizures are

more severe (eg, bilateral tonic-clonic convulsions) and may require

different clinical management than milder types (eg, focal aware

“auras,” or myoclonic jerks). For patients with multiple types of

seizures, extracting different frequency information for different sei-

zure types should be addressed in future research. Additionally,

copy-and-pasted information, a challenge for current electronic

medical record systems, sometimes led to internally contradictory

text within a single note. These are inherent challenges in NLP of

free-text medical notes and will remain a challenge until medical

records systems further constrain data entry or capture clinical data

in more discrete, minable forms instead of prose text.

In the future, we hope to use our model to extract seizure free-

dom and seizure frequency data from clinical notes in real-time

practice to improve clinical decision-making. We also plan to per-

form large-scale retrospective epilepsy research using data from

UPHS and potentially from collaborating centers with the push of a

button.

CONCLUSION

In conclusion, our novel NLP pipeline allowed models to extract

clinically important outcome measures, seizure freedom, and seizure

frequency for patients with epilepsy, with accuracies comparable to

that of human annotators. This tool will enable investigators to

mine outcome data from clinical note text at scale to facilitate clini-

cal research and decision-making. The amount of training data re-
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quired to fine-tune the model was smaller than expected, suggesting

that this tool can be adapted to other applications in the future with

modest preparation.
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