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Abstract

Neuroimaging provides a unique tool to investigate otherwise difficult-to-access mental pro-

cesses like visual imagery. Prior studies support the idea that visual imagery is a top-down

reinstatement of visual perception, and it is likely that this extends to object processing.

Here we use functional MRI and multi-voxel pattern analysis to ask if mental imagery of cars

engages the fusiform face area, similar to what is found during perception. We test only indi-

viduals who we assumed could imagine individual car models based on their above-average

perceptual abilities with cars. Our results provide evidence that cars are represented differ-

ently from common objects in face-selective visual areas, at least in those with above-aver-

age car recognition ability. Moreover, pattern classifiers trained on data acquired during

imagery can decode the neural response pattern acquired during perception, suggesting

that the tested object categories are represented similarly during perception and visual

imagery. The results suggest that, even at high-levels of visual processing, visual imagery

mirrors perception to some extent, and that face-selective areas may in part support non-

face object imagery.

Introduction

Visual imagery is usually defined as visual perception in the absence of external stimuli. Collo-

quially, people refer to imagery as “seeing with the mind’s eye.” Visual imagery mirrors per-

ception both in its neural correlates and its behavioral effects [1–3]. Many studies supporting

this conclusion use neuroimaging methods, which are uniquely suited to investigate an intrin-

sic process like visual imagery. Cortical regions associated with particular perceptual acts are

also engaged when we imagine the same content. For example, the fusiform face area (FFA) is

engaged by both perceived and imagined faces [4–6], the parahippocampal place area by both

perceived and imagined places [4,5,7], and motion-sensitive MT/V5 by both perceived and

imagined motion [8–10]. Moreover, multi-voxel pattern analysis (MVPA) demonstrated simi-

lar representations of perceptual stimuli and their imagined counterparts [7,10–16].

Though most of the functional MRI (fMRI) work on visual imagery has focused on regions

in early visual cortex ([14,17–22]; for a review, see [22]), a few studies implicate regions further
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down the visual processing stream [11,12,23]. In particular, several of these studies have exam-

ined regions in and around the fusiform gyrus [4–7,24]. The results support the idea that top-

down mechanisms responsible for imagery can engage visual areas at any level of the process-

ing hierarchy depending on the task.

The first study comparing perception and imagery of faces and objects reported consider-

able overlap between voxels activated during perception and imagery of faces, as well as for

perception and imagery of places [4]. A subsequent study found similar overlap between fusi-

form regions activated during the perception and imagery of faces [6]. However, both of these

studies used small samples (eight participants in [4]; nine participants in [6]) and compared

face activation with activation for domains specifically chosen because their perception led to

different areas being engaged relative to faces (places in [4]; houses and chairs in [6]). More-

over, in both studies, the face-selective regions were not functionally localized which makes it

difficult to know if the effects can be assigned to FFA proper. Perhaps the strongest replication

of the original study on imagery of faces and scenes by O’Craven and Kanwisher was done by

Cichy and coauthors, who compared imagery and perception of bodies, faces, scenes, houses

and everyday objects in sixteen participants. They found that extrastriate regions (including

the FFA) showed greater activation by their preferred domain during both perception and

imagery [5].

Here we aimed to further this line of work by determining whether visual imagery mirrors

perception with regard to both face and object representations within face-selective regions.

As was done in prior work, we included domains for which we expected distinct activity pat-

terns during perception (faces and everyday objects). Critically, to address our main question,

whether imagery of non-face objects at the subordinate-level recruits face-selective areas, we

included cars and recruited a sample of participants with above-average car recognition. Based

on prior work, we expected cars to be represented in FFA in these participants, since this area

is the most robust predictor of behavioral performance in individuation judgments for cars

[25–28]. Another improvement we made upon previous neuroimaging studies of face and

object imagery is in our definition of face-selective regions. There are two functionally and

anatomically distinct face-selective fusiform sub-regions [29–31] that have in the past often

been lumped together, although they do not always respond in the same way. In particular, the

anterior FFA has been found to show more robust effects of experience for both faces and cars

[31–34]. Here, we defined and analyzed these separate regions of interest, to explore how they

engage during visual imagery.

We asked if imagery of faces and cars engages face-selective fusiform regions in above-aver-

age car recognizers, basing this prediction on evidence that perception of faces and cars engage

these regions in comparable populations. In recent work measuring individual differences in

the vividness of mental imagery, we found that the vividness of domain-specific imagery (for

cars) relates to that of domain-general imagery, but not to perceptual or semantic knowledge

ability levels with cars [35]. Therefore, it is unclear whether during car imagery, those with

above-average car recognition ability would recruit face-selective areas that are engaged during

car perception (where the selectivity has been found to predict car recognition ability), or

would recruit only object-selective regions. Note that while studies of perceptual expertise

reveal that good car recognizers represent cars in the FFA [25–28], the present work did not

include variability in car recognition ability (because car novices are unlikely to be able to

imagine different car models with any precision) and as such cannot address this variability. In

other words, our use of individuals with above-average car recognition is similar in logic to the

use of face experts in most face recognition studies, especially those that rely on famous faces

and verify that participants can actually recognize the specific faces used, or to the logic of psy-

chophysical studies that necessitate trained observers. Because our goals differ from studies
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that characterize expertise effects or study the learning process itself, we intentionally recruited

individuals who have good subordinate-level skills for both faces and cars to evaluate the simi-

larity of neural representations during imagery and perception (as opposed to seeking a range

of expertise levels).

To address this question, we used MVPA to investigate the information that spatial patterns

of neural responses in face-selective regions contain about object categories, when above-aver-

age car recognizers imagined faces, cars and a selection of familiar objects. Essentially, MVPA

quantifies reproducible spatial patterns of activity that can discriminate between different con-

ditions (see [36] for review). We first used MVPA to determine if representations from these

different categories could be distinguished in face-selective areas during perception and during

imagery. Critically, MVPA may also be used to demonstrate similarity of representations

across conditions by training the MVPA classifier on one discrimination, and testing it on

another. We used such an approach here to additionally assess the similarity of imagery and

perceptual representations. Specifically, we cross-trained the MVPA classifiers to test if the

same patterns of activity that distinguished between categories in imagery also distinguished

between categories in perception. Because we expected less overall BOLD activation to be

evoked by visual imagery relative to visual perception [4,11,12], analyzing patterns rather than

univariate responses provided a more sensitive approach for both of these questions. In addi-

tion, MVPA allowed measurement of categorical representational content instead of relative

activation amplitude between categories.

MVPA was also useful in overcoming an inherent limitation of our design. Most fMRI

work of recognition expertise has been correlational, relating behavioral indices of recognition

with the magnitude of region-specific neural activation. However, though individuals with any

level of car recognition ability can perceive cars, it is unlikely that individuals with poor car

recognition ability can robustly imagine specific cars. With MVPA we could investigate the

correspondence between perception and imagery in a sample of people capable of imagining

cars at a subordinate level. Because we did not compare across levels of car recognition ability,

we could not address whether our results would generalize to any individual–indeed, this ques-

tion may be moot because those with poor car recognition ability could not plausibly perform

this task. We could, however, ask whether it is possible to distinguish cars from objects in face-

selective areas. To foreshadow our results, we found evidence that imagined cars and objects

are represented differently within the face-selective regions in our sample. Moreover, we

found evidence that faces, cars and objects are each represented similarly during imagery and

perception in these regions, supporting the idea that visual imagery mirrors perception at sub-

ordinate levels of object processing.

Methods

Participants

A power analysis (using G�power software; [37]) indicated that a sample size of 16 was needed

to detect previously reported effect sizes for decoding imagined faces in the FFA with more

than 80% power at the .05 alpha level (one sample t-test, Cohen’s d� .78; [5]). We aimed for

20 participants because we do not always find every functional area in all participants. Partici-

pants were recruited using flyers posted throughout the Vanderbilt University campus and

using ResearchMatch.com. We only recruited males since car interest is predominantly

reported by males [38]. Thirty-two men were behaviorally screened and those who showed

above-average car recognition ability and visual imagery vividness were invited to participate

in the fMRI portion of the study. Of those participants, twenty-one qualified for the fMRI por-

tion and were scanned. One participant did not complete the fMRI portion because of
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previously undisclosed hearing problems that made it impossible to perceive the auditory sti-

muli. The remaining 20 participants were all healthy males (mean age = 24.3 years, SD = 6.7,

18 right-handed) who reported normal or corrected-to-normal vision and no hearing loss.

Informed written consent was obtained at the beginning of both sessions in accordance with

guidelines of the Vanderbilt University Institutional Review Board and Vanderbilt University

Medical Center. This study was approved by the Vanderbilt University Institutional Review

Board under IRB 050082. All participants received either monetary compensation ($15 for the

behavioral screening, $15 for the online tasks, and $45 for the fMRI scan) or course credit.

MRI Data acquisition

All participants were scanned on a Philips 7-Tesla (7T) Achieva human magnetic resonance scan-

ner with a 32 channel parallel receive array coil (Nova). High-resolution (HR) T1-weighted ana-

tomical volumes were acquired with a 3D TFE (Turbo Field Echo) acquisition sequence with

sensitivity encoding (SENSE) (TR = 4.3 ms, TE = 1.90 ms (minimum), flip angle = 7˚, sagittal

plane acquisition, FOV = 224 mm x 224 mm, matrix size = 224 x 224, slice gap = 0 mm, for an

isometric voxel size of 1 mm3). During the first participant’s scan,174 slices were acquired, and

for all following participants’ scans, 190 slices were acquired. All functional scans were acquired

using standard gradient-echo echoplanar T2�-weighted imaging (TR = 2000 ms, TE = 25 ms, flip

angle = 65˚, axial plane acquisition, FOV = 240 mm x 240 mm, matrix size = 80 x 80, slice gap = 0

mm, for an isometric voxel size of 3 x 3 x 3 mm). By using a comparable functional voxel size (3

mm on a side) to that typical at lower field strengths, we were able to capitalize on the higher field

strength (7T) to achieve better signal-to-ratio than would occur at lower field strengths [10]. Fol-

lowing 10 dummy scans, 35 ascending interleaved slices were acquired.

Stimuli

Localizer stimuli. Stimuli used in the localizer runs were greyscale images of 36 unfamil-

iar faces, 36 common objects, and 83 scrambled images presented centrally against a white

background. These stimuli have been used in several previous studies for localizer runs

[28,31,39]. None of the common objects or faces used in the localizer runs were also used in

the experimental runs.

Experimental stimuli. During the experimental runs, participants either perceived or

imagined cars, faces or objects. We selected images of 20 faces and 20 objects (none handheld),

all relatively easy to imagine based on an online pilot study, and 20 popular car models (all

sedans) for the study. We used common objects, similar to previous work [5,11]. For each cate-

gory, 4 unique stimuli were randomly chosen without replacement for each of the 5 runs, total-

ing 20 exemplars per category (see Table 1).

For the perceptual runs, stimuli were color images of cars, objects, or faces (10 male and 10

female) with the entire background removed using Adobe Photoshop. During the fMRI por-

tion, these stimuli were presented on a black background. For the imagery runs, participants

heard recorded auditory labels. For each trial, a .wav file of a male voice saying the label once

was played, lasting less than 4 seconds.

Procedure

Behavioral screening. To ensure that participants were able to imagine individual cars,

they were screened in a 1-hour preliminary session. During this session, participants com-

pleted 4 behavioral tasks (1 measuring visual imagery vividness, 2 measuring performance for

cars and other domains, and 1 measure for self-reports of visual expertise). First, participants

completed the Vividness of Visual Imagery Questionnaire (VVIQ; [40]) and 2 additional car
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imagery questions [35]. The VVIQ measures self-reported individual differences in visual

imagery and has been used in behavioral (e.g., [41]) and imaging work [18,23]. Next, partici-

pants completed a same/different matching task with 3 categories–cars, birds, and houses–fol-

lowed by the Vanderbilt Expertise Test (VET; [42]) for cars, birds, and butterflies. We chose to

use two categories other than cars to better estimate participants’ general object recognition

abilities because we were most interested in their car recognition ability controlling for general

recognition ability (see [43]).

Participants were included only if they met all of the following cutoffs: 50% accuracy on

the VET-car (chance is 33%), a d-prime of at least 1.340 on the car matching tasks, and a

score of at least 3 on the VVIQ-general questions. These cutoffs were chosen to be above the

corresponding averages from previous larger datasets [42,44–46]. As a group, our sample

was chosen to be above average in car recognition ability and also in the vividness of visual

imagery. This was important both so participants could perform our task and because there

is some evidence that individual differences in vividness can manifest in neural differences

[15,18,21,23]. Note that while we recruited participants capable of imagining individual

cars from the auditory make and model name cues, our MVPA was done at a categorical

level (face vs. car, as done in [4]) not at an individual exemplar level (Ford Fusion vs. Kia

Forte, similar to [7]).

To further characterize participants’ recognition abilities and relevant semantic knowledge,

independent of the tests used to select participants, they completed the following tasks online a

few days before scanning. Participants first completed the Cambridge Face Memory Test long-

form (CFMT; [47,48]), followed by the Vanderbilt Face Matching Test (VFMT; [49]), and the

Semantic Vanderbilt Expertise Test (SVET; [38]) for cars, birds and dinosaurs. Lastly, partici-

pants completed a task to familiarize themselves with the experimental stimuli and their labels.

During the first 60 trials, an image was shown with the corresponding label beneath it.

Table 1. Labels for stimuli from each of the three categories, grouped by which run the stimuli were presented in.

Run Faces Objects Cars

1 Halle Berry TV Aston Martin Vanquis

Bill Clinton Tent Volvo V40

Justin Bieber Bookshelf Chevy Impala

Jennifer Lopez Lawn Mower Rolls Royce Ghost

2 Michelle Obama Park Bench Honda Accord

Tom Cruise Desk Tesla Model S

Robin Williams Chair Toyota Prius

Madonna Water Fountain Volkswagen Passat

3 George W Bush Slide Subaru Legacy

Taylor Swift Swing Set Ford Mustang

Brad Pitt Picnic Table Nissan Altima

Oprah Dresser Pontiac Grand Prix

4 Angelina Jolie Microwave Maserati Quattroporte VI

Leonardo DiCaprio Pillow Ford Fusion

Sandra Bullock Traffic Light Volkswagen Beetle

Jennifer Aniston Bed Kia Forte

5 Michael Jackson Broom Hyundai Sonata

Johnny Depp Boat Porsche Panamera

George Clooney Plane Toyota Corolla

Ellen Degeneres Laptop Chevrolet Camaro

https://doi.org/10.1371/journal.pone.0205041.t001

Mental imagery in face-selective areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0205041 September 28, 2018 5 / 21

https://doi.org/10.1371/journal.pone.0205041.t001
https://doi.org/10.1371/journal.pone.0205041


Participants studied the image and label and then clicked to advance. There were six 10-trial

blocks of each stimulus category (faces, objects, and cars) and the images of a given category

were randomized within a block, but presented in the same order to every participant. During

the last 60 trials, participants completed a two alternative forced choice to decide which of two

labels corresponded to the image shown. Correct responses were randomized with respect to

presentation location. This task ensured that participants were familiar with both the images

and their labels.

Scanning procedure. The MRI portion of the experiment began with a structural run, fol-

lowed by 2 functional localizer runs and 5 experimental runs. Each participant performed the

same tasks with the same stimuli in the same sequence. The localizer runs consisted of 15

16-second blocks with an 8-second block of fixation between each 16-second block, beginning

and ending with the task. Each block presented stimuli from either the face, object, or scram-

bled category and each image was displayed for 900 ms with a 100 ms temporal gap between

presentations. Participants completed a 1-back task to detect the one image repeated per

block, which they indicated with a button press (right hand index finger). The second localizer

run was identical to the first except for the order in which the blocks and stimuli were pre-

sented. Each localizer lasted 6 minutes.

For both imagery and perception runs, 4 stimuli were chosen from each category (faces,

objects, cars) to use in a given run (Table 1). These images (12 total/run) were presented to the

participants for review before each run began for approximately 2 minutes. Participants were

informed that the images presented on the review slides would be the stimuli used during the

following run. Following the two localizers, participants completed an imagery run in which

they were instructed to create a mental image corresponding the image label that was aurally

presented. The run consisted of 24 blocks of 4 4-second trials each, totaling 96 trials and lasting

6 minutes, 24 seconds. A specific face, object, or car was only presented once per block, while

all block and stimulus orders were randomized once and then presented in the same random-

ized order to all participants. During fixation blocks, participants were instructed to rest, while

keeping their eyes open. In imagery runs, a grey fixation cross on a black background changed

to red (for one complete 16-second block) to instruct participants to stop imagining and also

to encourage participants to keep their eyes open and remain alert despite the minimal visual

input. Participants were instructed to keep their eyes open during the entire run so that they

would be able to see the fixation cross turn red. Because we wanted participants to focus on

creating mental images, the visual imagery itself was the only task participants completed dur-

ing the imagery runs (Fig 1).

During perception runs, stimuli were presented with a grey fixation cross superimposed

over the stimuli, and participants determined if the image was displaced up or down relative to

the screen’s center. On each trial, images were displaced either 75 pixels upwards or downwards

from the screen’s center, but were always centered horizontally (Fig 1). Participants used a but-

ton box to make up or down responses with either their index or middle fingers, respectively.

We chose this task to encourage attention to the images while avoiding adding a difficult per-

ceptual/decisional task that was not present in the imagery task. Each perception run consisted

of 24 blocks of 8 2-second trials for a total of 192 trials per run. Perception runs, like imagery

runs, took 6 minutes, 24 seconds to complete. As with the imagery runs, all blocks and stimuli

were randomized. Participants completed 3 imagery runs with 2 perception runs interleaved.

Data analysis

MRI analysis. The HR structural scans were normalized to Talairach space [50]. All func-

tional data were analyzed using Brain Voyager software (www.brainvoyager.com), in-house
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Matlab scripts, and LibSVM [51]. Functional scans were preprocessed using slice scan time

correction (cubic spline, sinc interpolation), 3D motion correction (sinc interpolation), tem-

poral filtering (high-pass filtering with a criterion of 2 cycles per run and a Gaussian filter at 3

seconds), and no spatial smoothing. Across all runs for all participants, we identified all

motion-spikes over .5 mm, and any blocks with a spike in motion of this magnitude were

removed from all subsequent linear models. Of the 6 participants’ data where spikes in motion

were detected, a total of 6 perception run blocks and 7 imagery blocks were removed from

analyses. Functional data were registered to the original (non-transformed) structural scan

before regions of interest (ROIs) were defined.

Localizer data were submitted to a general linear model (GLM) with regressors for each

stimulus category. Face-selective ROIs were defined using the Face>Object contrast from the

localizer GLM. We distinguished between two face-selective fusiform areas: a more posterior

FFA1 and a more anterior FFA2 [29,30].

As is common when defining these functional regions [28,33,34], we could not localize every

regions for every participant, and thus only included the ROIs that we could functionally local-

ize. When possible, bilateral FFA1, FFA2, and OFA regions were defined individually for each

participant (Fig 2) by finding peaks of significant BOLD responses to faces in the fusiform

gyrus. Object-selective regions in the parahippocampal gyrus (PHG) were defined using the

Object>Face contrast from the localizer GLM. We defined two object-selective PHG regions

(one posterior and one middle, here called PHG1 and PHG2 respectively) bilaterally. Addition-

ally, two lateral occipital object-selective regions were defined using the Object>Scrambled

contrast from the localizer GLM. For each ROI, the face- or object-selective peak voxel was

identified before the region was grown to 4 functional voxels (108 mm3) for univariate analyses

Fig 1. Schematic of scanning procedure for a sample (a) perception run and (b) imagery run. In perception runs, participants indicated via key press whether the

image was displaced upward or downward.

https://doi.org/10.1371/journal.pone.0205041.g001
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or 27 functional voxels (729 mm3) for MVPA using in-house Matlab scripts. This script created

ROIs by growing regions to include the next-highest contiguous activated voxel until a given

size (in this case 4 or 27) was reached. Functional voxels belonging to more than one ROI were

removed from both ROIs.

Multi-voxel pattern analysis (MVPA). MVPA was conducted using a linear support-vec-

tor machine (SVM). Because we used different subordinate-level exemplars for each run and a

blocked design, we trained our classifiers at the category level (e.g. cars vs. objects instead of

Kia Forte vs. Honda Accord). We used MVPA to answer two different questions. In an initial

series of classification analyses, we asked whether distinct image categories led to different rep-

resentations in each ROI. Specifically, for each classification, a leave-one-run-out approach

was used in which one run was used as test data and the remaining runs were used as training

data. Classification rates represent the proportion of times the classifier produced a correct

prediction. Because we are interested in object representations during visual imagery, we first

focus on our imagery condition. To analyze this imagery condition, the classifier was trained

on two runs and tested on one, for the three possible iterations. For the overall classification

performance report, an average of these three iterations was calculated. MVPA was done for

each participant individually, and results were averaged across participants within equivalent

ROIs to form group results. If the classifier is able to distinguish one category from another,

this provides evidence that the two categories are represented differently during imagery

within that ROI. Most importantly, we were interested in whether imagined cars could be

decoded from imagined objects in face-selective regions.

Fig 2. Example 27 functional voxel ROIs shown on 2 inflated right hemispheres of representative participants

(anterior and posterior portions of the brain denoted with A and P, medial and lateral with M and L). Note: All ROIs

were defined in volumetric space. ROIs transformed to surface space for illustrative purposes only. Any dis-contiguous

clusters or ROI overlap that appears in figure did not occur in volumetric space (all ROIs were contiguous and no ROIs

contained overlapping voxels).

https://doi.org/10.1371/journal.pone.0205041.g002
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Successful car vs. object decoding during imagery cannot, however, tell us if cars are imag-

ined in a manner similar to the way they are perceived–decoding could be based on any differ-

ence in the representations during the imagery conditions. To address this question directly,

in a second set of analyses we trained a classifier for each participant using data acquired dur-

ing the imagery condition and then tested the classifier on data acquired during the perception

condition. Prior work with designs that collected equal amounts of imagery and perceptual

data obtained better cross-task classification when training on imagery than when training on

perception [5]. These authors suggested that all the features of an imagined representation

should overlap with those in perceived representations, but that the converse was not true.

Based on these prior results, we collected more imagery data and chose to compare perception

and imagery by training on imagery and testing on perception. Above-chance performance in

such a cross-trained classifier constitutes evidence that 1) the two categories are dissimilarly

represented within the given ROI and 2) this dissimilarity is present during both perception

and imagery.

Univariate analysis. Independent RFX GLMs were fit to the imagery and perception runs

with each category (faces, cars, objects and fixation), convolved with the canonical hemody-

namic response function, included as a separate regressor. Parameter weights were calculated

for each voxel, then averaged across all voxels composing an ROI. We examined all three possi-

ble pairwise contrasts of our three stimulus categories: face versus car, face versus object, and

car versus object.

Results

Behavioral results outside of the scanner

Data are available at https://figshare.com/s/24fc1314649a6e2b2899. Average performance on

each behavioral test is reported in Table 2. To compare participants’ car recognition abilities to

general object recognition abilities, we averaged the two non-car categories for each task and

compared this average to car recognition performance.

Table 2. Average accuracy (or d-prime for matching task and rating average for VVIQ and SR) score across par-

ticipants for each of the behavioral tests, along with standard deviations. Tests used to qualify participants for MRI

scan are bolded (N = 20 scanned participants).

Measure Mean SD

VVIQ-General 4.09 0.39

VVIQ-Car 4.45 0.47

SR-Car 7.55 1.00

SR-Birds 2.65 1.57

SR-Butterfly 2.00 1.08

VET-Car 0.79 0.12

VET-Bird 0.65 0.12

VET-Butterfly 0.60 0.11

Matching-Cars 2.54 0.42

Matching-Birds 1.56 0.37

Matching-Houses 1.72 0.39

CFMT 0.58 0.16

VFMT 0.59 0.09

SVET-Dino 0.49 0.11

SVET-Bird 0.46 0.08

SVET-Car 0.87 0.14

https://doi.org/10.1371/journal.pone.0205041.t002
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As expected (given that we screened based on VET-Car and matching task-Car perfor-

mance), participants performed significantly better with cars than non-car categories (VET: (t
(19) = 4.98 p� .001, d = 2.28; Matching Task: t(19) = 8.71; p� .001, d = 4.00). While these

tasks are not precisely matched in difficulty, in large unscreened samples the VETs have highly

similar means (see [42]). Our participants also performed significantly better on the SVET-Car

than non-car SVETs (t(19) = 12.14; p� .001, d = 5.57).

Behavioral results from the scanner

Performance on behavioral tasks in the scanner indicated that participants were attending to

the stimuli. The average performance on the n-back task during the first and second localizer

runs (not including scrambled images) was 79% (SD = 19%) and 93% (SD = 8%), respectively.

Average performance on the up/down displacement task during the first and second percep-

tion runs was 83% (SD = 26%) and 86% (SD = 17%), respectively.

MRI Results

ROI identification. To grow regions suitable for MVPA, we created ROIs composed of

27 functional voxels. Though past work has shown that ROI sizes of around 100 voxels pro-

duce optimal MVPA performance [52], some of our functional regions are small and close to

one another (e.g., FFA1 and FFA2). Given that typical searchlight MVPA analyses use spheres

of approximately 30 voxels [53], we chose to use 27 voxels since this was the largest size at

which we could avoid identifying many overlapping voxels across functional region definitions

(Table 3). All ROIs were grown to 27 3x3x3 functional, non-overlapping voxels except for the

following which were smaller because of dropout due to the ear canal: the lOFAs in two partic-

ipants (12 functional voxels), the rOFA in one participant (18 functional voxels), and all ROIs

in one participant (17 functional voxels). The MVPA results did not qualitatively differ when

these smaller ROIs were excluded from analysis. For these reasons, along with the fact that we

could not functionally localize each ROI for each participant, we had unequal numbers of

ROIs (see Table 3), as is typical in work with these sub-regions (e.g. 33). We used 4-functional-

voxel ROIs for our univariate analyses so that we would include only peak activation [34].

However, univariate results with the 27-functional-voxel ROIs produced qualitatively similar

results to the smaller ROIs.

Table 3. Peak Talairach coordinates of the peak structural voxel for each 27-functional voxel ROIs with 95% con-

fidence intervals reported in parentheses. N column reports the number of participants in whom we localized the

respective ROI.

ROI Peak X Peak Y Peak Z N

rFFA1 37.00 (34.46, 39.55) -60.73 (-63.88, -57.59) -17.40 (-19.64, -15.16) 15

rFFA2 36.83 (34.81, 38.86) -43.94 (-46.77, -41.12) -20.78 (-22.83, -18.72) 18

rOFA 30.15 (26.41, 33.89) -77.62 (-80.92, -74.31) -18.00 (-22.10, -13.90) 13

lFFA1 -39.46 (-41.85, -37.08) -60.08 (-63.85, -56.31) -19.38 (-22.48, -16.29) 13

lFFA2 -39.95 (-41.21, -38.69) -46.00 (-48.22, -43.78) -20.85 (-23.32, -18.38) 20

lOFA -37.50 (-39.88, -35.12) -76.67 (-79.85, -73.48) -17.92 (-21.26, -14.57) 12

rPHG1 25.70 (23.80, 27.60) -46.30 (-48.46, -44.14) -13.05 (-15.40, -10.70) 20

rPHG2 24.60 (22.93, 26.27) -63.60 (-66.67, -60.53) -13.80 (-16.11, -11.49) 20

lPHG1 -26.74 (-28.25, -25.22) -45.58 (-47.95, -43.21) -16.74 (-19.09, -14.39) 19

lPHG2 -27.21 (-28.82, -25.60) -62.21 (-64.95, -59.47) -15.32 (-17.89, -12.74) 19

rLOC 40.85 (38.38, 43.32) -70.55 (-72.82, -68.28) -8.85 (-11.46, -6.24) 20

lLOC -44.50 (-46.52, -42.48) -69.80 (-70.96, -68.64) -9.75 (-12.23, -7.27) 20

https://doi.org/10.1371/journal.pone.0205041.t003
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Multi-voxel pattern analysis

Within-task classification. To test if activity patterns for imagined faces, cars and objects

were distinguishable, we performed MVPA on the imagery task (i.e., both training and testing

data from imagery runs) separately for each ROI and each participant. This addresses whether

it is possible to decode cars versus objects in face-selective areas. The classifier achieved above

chance performance in both lFFA2 and lFFA1, as well as rFFA1 (Fig 3). Decoding imagined

faces from imagined objects was only possible in lFFA2, although the effect in lFFA1 was close

in magnitude (note that we had reduced power in lFFA1 because we were only able to localize

the ROI in 13 participants, Table 3). Imagined faces and cars could be decoded in all four FFA

ROIs. Average MVPA performance (for face vs. car, face vs. object and object vs. car) in face-

selective ROIs did not correlate with behaviorally measured car recognition performance

across subjects (r’s = -.17 –.27, p’s> .24). This is unsurprising given that we intentionally

selected participants with high car recognition ability.

Fig 3. Average accuracies of the classifier when trained on imagery data and tested on imagery data for object versus car (left) and face versus object (middle)

and face versus car (right) two-way classifications in face-selective ROIs (upper row) and object-selective ROIs (lower row). Error-bars represent one-tail 95%

confidence interval, accuracy of decoding below chance was not theoretically meaningful.

https://doi.org/10.1371/journal.pone.0205041.g003
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In object-selective regions, the classifier could decode imagined faces versus imagined

objects and imagined cars versus imagined objects in bilateral PHG2 and lLOC (Fig 3). Imag-

ined faces and cars could be decoded in all object-selective ROIs except the lPHG1. Both

within-task and across-task analyses of early visual areas provided little evidence that catego-

ries could be distinguished in these regions (see supplement for details).

Across-task classification. To ask whether the categorical differences we observed in

imagery reflected the representations evoked by these categories during perception, we trained

a classifier with data from the imagery runs and tested its ability to decode the perception

runs. Central to our question, we were able to distinguish perceived cars from perceived

objects based on imagery information in bilateral FFA2 (Fig 4). Additionally, we could also

decode perceived faces from objects based on imagery information in all face-selective ROIs

except rOFA (Fig 4). Based on imagery information, perceived faces could only be distin-

guished from cars in left face-selective ROIs.

Fig 4. Average accuracies of the classifier when trained on imagery data and tested on perception data for object versus car (left) and face versus object (middle)

and face versus car (right) two-way classifications in face-selective ROIs (upper row) and object-selective ROIs (lower row). Error-bars represent one-tail 95%

confidence interval, accuracy of decoding below chance was not theoretically meaningful.

https://doi.org/10.1371/journal.pone.0205041.g004
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In all object-selective regions, perceived faces were decoded from perceived objects based

on imagery information, and perceived cars were also distinguished from perceived objects in

all but bilateral LOC ROIs (Fig 4). All object-selective ROIs except the rPHG regions could dis-

tinguish perceived faces from cars based on the imagery-trained classifier.

Univariate analyses

The average parameter weights are reported in Table 4. Face and car parameter weights are

reported relative to an object baseline. We use objects as a baseline condition so that both low-

and high-level visual processing activation would be subtracted out. In contrast with previous

work reporting significant activation during face imagery in face-selective fusiform and OFA

regions [4–6], we only found significantly greater activation for imagined faces vs. imagined

objects in one face-selective region, lFFA2 (Table 4). In addition, when examining the parame-

ter weights for the perception runs (Table 4), we noted that while face stimuli showed the pre-

dicted pattern of eliciting higher BOLD response in face-selective areas (FFAs and OFAs)

relative to objects and lower responses in object-selective areas (PHGs and LOCs), this was not

always true of the car stimuli. Notably, in face-selective areas the response magnitudes for per-

ceived cars relative to perceived objects was not significantly different from zero (Table 4).

While our main predictions concerned the MVPA results, we explored the possibility that

our task led to particularly small univariate responses due to repetition suppression. Repetition

suppression has been used as a tool to characterize functional specificity of neuronal popula-

tions, since neurons tend to adapt most to their preferred stimuli [54,55]. Previous studies

have reported repetition suppression across runs for faces in face-selective areas [56–58].

The present task required displacement judgments (which are not highly attention-

demanding) and a great deal of stimulus repetition (each image repeating 12 times per run).

This combination likely fostered repetition suppression, and perhaps to a greater extent within

category, for cars and faces, than for objects, since cars are visually (and semantically) more

homogeneous. Thus, given both the stimulus characteristics and the fact that face-selective

areas of individuals with above-average car recognition ability should be more selective for

cars than for objects, we might expect more repetition suppression for cars and faces than

objects, resulting in a paradoxically low average activation for these categories.

Table 4. Average GLM parameter weights for both imagery and perception runs. Each weight is the average of the 4 contiguous most face- or object-selective func-

tional voxels (identified via the independent functional localizer) within the ROI. Beta weight is reported along with the t-statistic and FDR adjusted p-value (q-value) of a

two-tailed test of the differences being different from 0.

Perception Imagery

Face-Obj Car-Obj Face-Obj Car-Obj

β t β t β t β t
rFFA1 0.84 8.41 (.00) 0.01 0.15 (.90) 0.04 0.27 (.87) -0.02 -0.23 (.87)

rFFA2 0.68 5.91 (.00) -0.08 -0.79 (.55) 0.16 2.03 (.12) 0.05 0.65 (.74)

rOFA 0.52 2.70 (.02) 0.22 1.48 (.27) 0.02 0.22 (.87) 0.02 0.16 (.87)

lFFA1 0.80 4.28 (.00) -0.02 -0.13 (.90) 0.02 0.17 (.87) -0.03 -0.36 (.87)

lFFA2 0.64 6.44 (.00) -0.10 -0.91 (.54) 0.32 3.51 (.00) 0.06 0.96 (.74)

lOFA 0.72 2.63 (.02) 0.34 1.48 (.27) -0.17 -0.78 (.75) -0.24 -1.54 (.50)

rPHG1 -0.88 -7.08 (.00) -0.49 -3.18 (.00) -0.03 -0.45 (.87) -0.19 -2.54 (.10)

rPHG2 -0.93 -10.52.00) -0.65 -4.58 (.00) -0.22 -3.17 (.03) -0.05 -0.73 (.74)

lPHG1 -0.87 -8.31 (.00) -0.56 -4.70 (.00) -0.23 -3.16 (.03) -0.19 -3.03 (.10)

lPHG2 -0.80 -11.13(.00) -0.60 -5.47 (.00) -0.25 -4.68 (.00) -0.08 -0.89 (.74)

rLOC -0.29 -2.04 (.00) -0.42 -4.30 (.00) -0.04 -0.61 (.46) -0.11 -1.40 (.50)

lLOC -0.36 -2.87 (.00) -0.36 -4.66 (.00) -0.12 -1.65 (.15) 0.00 -0.07 (.84)

https://doi.org/10.1371/journal.pone.0205041.t004
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We investigated this possibility by calculating parameter weights for each run using fixation

as a baseline (see supplemental S1 Table). In general, faces and cars had higher parameter

weights than objects in the first perception run, and faces and cars showing a larger decrease

than objects between run 1 and 2 (see Fig 5). Of interest was the prediction of more habitua-

tion for faces and cars than for objects in face-selective areas specifically. This was supported

by an ANOVA using factors of ROI type (face-selective ROIs, PHG ROIs and LOC ROIs),

with perception runs (Run1 and Run 2 with weights of 1 and -1), and category (face, car and

object with weights of 1, 1 and -2). This led to a significant interaction between ROI type, run

and category (F(2,38) = 33.39, p< .0001, ηp
2 = .64). We unpacked this interaction with a run x

condition ANOVA in each type of ROI. In face-selective ROIs, there was a run x category

interaction (F(1,19 = 23.39, p = .0001, ηp
2 = .55), with more habituation for faces and cars than

for objects. The same interaction was also significant in the PHG ROIs (F(1,19 = 9.75, p = .006,

ηp
2 = .34), but in this case it reflected more habituation for objects than for faces and cars. The

interaction was not significant in LOC ROIs (F(1,19 = 0.67, p = .42, ηp
2 = .03).

Because repetition suppression is an indication of functional specificity (e.g., [54]), these

results are consistent with stronger selectivity of face-selective areas for faces and cars than for

objects in our sample and they suggest that mean responses across runs in this design are not a

good indication of selectivity.

Discussion

We set out to determine if the FFA can support imagery of non-face objects at the subordi-

nate-level. To answer this question, we compared how well classifiers could distinguish

between imagined faces, cars and objects in a sample of above-average car recognizers. We

found that a classifier trained and tested on imagery runs can distinguish between imagined

cars and imagined objects in some face-selective regions, suggesting that car representations

exist in face-selective areas during visual imagery.

In addition, a classifier trained on imagery runs can successfully distinguish perceived cars

from perceived objects in the anterior FFA (FFA2), an area that has shown the most robust car

Fig 5. Average parameter weights for faces (dashed), objects (dotted) and cars (solid) plotted for perception runs 1 and 2 in combined

face-selective regions (right, significant run�category interaction) and object-selective regions (left). Fixation is used as a baseline for the

face, object and car conditions and error bars show SEM values.

https://doi.org/10.1371/journal.pone.0205041.g005
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expertise effects in prior work [31,34] and also seems particularly sensitive to experience for

faces [32,33]. These across-task results further reveal that the representations of cars in our

participants are at least in some way similar to those evoked during perception. Importantly

however, our results refute the idea that face-selective areas are selectively recruited for face

imagery [4]. Future work using an event-related design could further this finding by determin-

ing if similar results could be found when training and testing at the subordinate level.

In fact, the results generally suggest that faces and cars can be decoded from objects in sev-

eral non-face selective areas. Such results are consistent with the general idea that categorical

representations are distributed (e.g., [14]). The parahippocampal gyrus, for instance, tends to

show a different response to faces than non-face objects (Martin et al. 2013), has been found

be engaged for objects of expertise [25], and its response to faces relative to objects predicts

face recognition ability [33].

Though our main analyses focused on distinguishing imagined cars from imagined objects

when training and testing on imagery data, we should note that this within-task (imagery to

imagery) classifier appeared to show somewhat weaker decoding of faces from objects than

cars from objects. That is, imagined faces vs. imagined objects decoding was only above statis-

tical significance in one face-selective region (lFFA2). We do not wish to over-interpret this

relatively weak decoding for faces in this condition, because we do not have sufficient statistical

power to show that decoding in lFFA2 is larger than that in other face-selective ROIs or that

the decoding for cars was stronger than that for faces. Instead, we would emphasize that the

cross-trained analyses (training on imagery and testing on perception) demonstrate that, in

most face-selective areas, representations of imagined faces and objects are sufficiently similar

to representations of their perceived counterparts to allow training of a classifier that can

decode representations of perceived faces and objects. Perhaps what these results highlight is

that there may be factors at play that we do not presently have a good way to measure. For

instance, we know little about the relative difficulty of imagining objects from different catego-

ries, such as cars and faces, which could recruit different strategies, thereby facilitating decod-

ing. While we can measure the neural correlates of imagery, there are few methodological

approaches that allow us insight into the quality of the images our participants generate, aside

from their similarity to perceptual representations.

Though we made no predictions about the face versus car classification, we note that previ-

ous work found a negative correlation between car recognition ability and face versus car clas-

sification performance [31]. Here, we find that decoding faces from cars is possible in some

face-selective areas for both our within-task classifier (bilateral FFA1s and FFA2s) and our

across-task classifier (lFFA1, lFFA2 and lOFA, see Figs 3 and 4). It is important to highlight

that the present methods can reveal whether decoding is possible, but do not provide informa-

tion as to the differences between representations, which are suggested by the well-below per-

fect decoding performance. Based on McGugin et al. [31], we might speculate that faces and

cars would be more easily distinguished in car novices than in our current sample. It is cer-

tainly interesting that the rFFA2, which has emerged in other studies as the main area sensitive

to expertise [28,31,33], can distinguish both perceived faces and perceived cars from perceived

objects based on imagery training, but cannot distinguish faces vs. cars in the same across-task

comparisons. This region may be where car and face representations are most similar in car

experts, in imagery as in perception.

We did not systematically compare within- and across-task analyses, because the across-

task analysis uses more data (all three imagery runs are used for training the classifier instead

of two runs, and all the perception runs are used for decoding rather than only one imagery

run). However, a qualitative comparison suggests that decoding is not always best when more

data is used, so it is interesting to speculate on this qualitative comparison. In the extreme, if
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the representations used during perception and imagery were identical, then we would expect

across-task classification to always be better than within-task classification because more data

is available. This is generally the case for the contrast of faces vs. objects, where decoding was

better in across- than within-task analyses in almost every ROI (see S1 Fig for a qualitative

comparison). It was also the case for decoding faces vs. cars in left face-selective ROIs and cars

vs. objects in right object-selective ROIs. In some cases (most clearly in decoding faces vs. cars

in object-selective areas) the across- and within-task classifiers performed similarly.

However, another consideration when comparing the across- and within-task analyses is

that the across-task analysis trains and decodes on different tasks, whereas the within-task

analysis uses a leave-one-out approach in a homogeneous set of runs. In that sense, even

though the within-task analysis uses less data, it may provide better decoding than the across-

task analysis to the extent that the representations used during imagery and perception differ. It is

interesting that within-task decoding appears to outperform across-task decoding mainly in

the car vs. object comparison. This could mean that some of what our participants do during

imagery may not overlap with perception (more for cars than faces and objects), and yet still

be category specific (sufficient to distinguish cars from objects). For instance, despite being

asked to imagine the specific images used during the perception task, each car expert may have

his or her own preferred representation of the car models we used (e.g. instead of imagining

our image of a Kia Forte, they imagine a different image of a Kia Forte). This is obviously spec-

ulative but it presents a challenge to the suggestion by Cichy et al [5] that all features of an

imagined representation should overlap with those in perceived representations.

In our univariate analysis, we did not entirely replicate previous findings [4–6] of greater

activation for faces in face-selective areas during visual imagery, as we only found this effect in

lFFA2. This discrepancy could be due to several factors. First, unlike prior work we divided

our face-selective regions into subregions (FFA1 and FFA2), rather than picking the more

face-selective peak or averaging the peaks together. Second, the contrast we used in our univar-

iate analysis compared activation during face and car imagery to object imagery activation.

This contrast differs from previously used contrasts of faces versus places [4], faces versus non-

faces (bodies, objects, scenes and houses, [5]) and faces versus houses and chairs [6]. Addition-

ally, O’Craven and Kanwisher [4] reported that in some participants, they did not find overlap

between perception and imagery responses, perhaps due to lower visual imagery ability.

Because our sample was selected to be above average on the VVIQ, this seems unlikely to

explain the present results. Finally, our participants were men recruited to have above-average

car recognition ability, which could explain some of these differences, although their average

CFMT performance was not different from that in larger unselected samples (t(122) = 1.05; p
= .30, d = 0.23, larger unselected sample of 104 from [59]). Regardless of the reason, our study

was designed for multivariate analysis and prior work has shown multivariate analyses can be

informative despite weak or absent univariate effects (e.g., [60]). Additionally, given that all

our participants were above-average in car recognition (Table 2), the fact that we did not find

greater activation for perceived cars relative to perceived objects may seem odd given that

many prior studies reported car expertise effects in the face-selective areas of car experts. How-

ever, prior work relied on correlations between car recognition ability and selectivity for cars

in face-selective areas rather than absolute values, so it is difficult to compare across these

designs (e.g., [25,27,28]). Importantly, in the present participants, who were car experts, cars

showed habituation that was similar to faces both in face-selective areas (more habituation

than for objects) and in the PHG (less habituation than for objects). Future work could com-

pare repetition suppression for cars in car experts and novices to confirm our interpretation of

these results as resulting from car expertise. While we did not vary car expertise in this study,

we attribute decoding of cars from objects in FFA during imagery to perceptual expertise.
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However, we acknowledge that if car novices were tested while they imagined various cars,

they could also recruit face-selective areas for this task.

Our results provide new evidence that visual imagery mirrors visual perception, not only in

early visual areas [22], but also further down the visual processing stream. This also applies to

a category for which detailed representations would have likely been acquired relatively late in

life. Therefore, it appears that experience impacts not only how objects are represented in the

brain during perception, but also during imagery. The nature of these representations, how-

ever, remains unclear. Though the work reported here and previous work shows that visual

imagery can be characterized as a top-down re-instantiation of vision, it has yet to be deter-

mined whether these mental image representations are necessarily “visual” or if they draw

more upon semantic representations associated with visual images.
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S1 Fig. Average accuracies of the across-task classifier (train imagery-test perception, Fig

4) overlaid on top of the within-task classifier (train imagery-test imagery, Fig 3) for object

versus car (left) and face versus object (middle) and face versus car (right) two-way classifi-

cations in face-selective ROIs (upper row) and object-selective ROIs (lower row). Across-

task classifier is in greyscale and translucent.
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S1 Table. Run 1 and Run 2 parameter weights for the two perception runs. Fixation is used

as the baseline. Run 2 parameter weights that are significantly lower than Run 1 parameter

weights (one-tailed) are denoted with an asterisk.
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S2 Table. Reports average classifier accuracies when the classifier is trained on imagery

runs and then tested on perception runs and vice versa. In both Tables 2 and 3 we also report

classification accuracies for an early visual cortex region (EVC). These regions (one right and

one left) were a single set of 27 contiguous function voxels (729 structural voxels each; right

EVC—mean X = 26.22 (SD = 2.94), mean Y = -88.22, (SD = 3.01), mean Z = -10.22
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tailed.
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