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NADPH oxidases (NOX) are reactive oxygen species- (ROS-) generating enzymes regulating numerous redox-dependent signaling
pathways. NOX are important regulators of cell differentiation, growth, and proliferation and of mechanisms, important for a wide
range of processes from embryonic development, through tissue regeneration to the development and spread of cancer. In this
review, we discuss the roles of NOX and NOX-derived ROS in the functioning of stem cells and cancer stem cells and in
selected aspects of cancer cell physiology. Understanding the functions and complex activities of NOX is important for the
application of stem cells in tissue engineering, regenerative medicine, and development of new therapies toward invasive forms
of cancers.

1. Introduction

Reactive oxygen species (ROS) are highly reactive oxygen-
derived molecules that include free radicals such as
superoxide or hydroxyl radicals, as well as nonradicals
such as ozone or hydrogen peroxide. Depending on their
level, ROS can play dual roles either as important media-
tors and signaling molecules required for proper cell func-
tioning or as damaging factors leading to mutations,
carcinogenesis, and cell death.

To keep the correct equilibrium between the production
of ROS and their elimination, free radical scavengers, both
endo- and exogenous, are needed. It has been commonly
believed that antioxidants which neutralize ROS and thus
protect biomolecules from damage should be beneficial in
protection against cancer, but recent studies clearly show that
antioxidants (in the form of dietary supplements) may

actually promote tumor growth and cancer metastasis. In
2011, it was demonstrated, during a trial on over 30,000
men over 50 who were administrated high doses of vitamin
E, that the risk of prostate cancer increased by 17% [1]. More
recently, researchers from Sweden have shown that even
relatively low doses of antioxidants may enhance the growth
of lung tumors and melanomas in mice [2, 3]. Similar conclu-
sions come from work which demonstrated that treating
melanoma-bearing mice with antioxidants decreased oxida-
tive stress in circulating cancer cells but increased their ability
to metastasize [4]. No matter how puzzling or confusing
these evidences are, it is undoubtedly important to under-
stand better the biology of ROS and their sources to
effectively treat various diseases and disorders.

The main sources of ROS in cells, beside the respiratory
chain, are NADPH oxidases (NOX). The physiological func-
tions of NADPH oxidases are very diverse: they play a role in
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cellular proliferation, serotonin biosynthesis, endothelial
signaling, regulation of renal functions, and the immune
response against microorganisms (as a source of the so called
oxidative burst), but their overexpression is associated with
various neurological diseases and cancer types [5–8].

The roles of NOX have been quite well established in
many noncancerous cells, but the effects of NOX-generated
ROS on functioning of cancer and stem cells are much less
understood. Considering the role of ROS in cancer
recurrence and chemo- and radiotherapy resistance, this
seems to be one of the most important research areas in the
current oxidative medicine [9]. Here, we review the impor-
tance of NOX and NOX-derived ROS in the functioning of
stem cells, including cancer stem cells, and in cancer cells,
focusing on their roles in differentiation, self-renewal,
proliferation, angiogenesis, and metastasis (Table 1).

2. NADPH Oxidases

The NOX family is a group of transmembrane proteins able
to transport electrons from NADPH and to reduce oxygen
to the ROS superoxide anion (O2

·−) and hydrogen peroxide
(H2O2) [10]. NOX and the mitochondrial electron transport
chain are considered as the main sources of ROS in cells,

although other potential sources such as cytochrome p450,
xanthine oxidase (XO), or nitric oxide synthase (NOS) also
contribute to the redox potential [11]. In mammals, seven
proteins with NOX activity exist, NOX1 to NOX5 and Duox1
(dual oxidase 1) and Duox2; however, rats and mice lack
NOX5 [12]. NADPH oxidases can be found not only within
the plasma membrane (NOX1–5 and DUOX1-2) but also
in the endoplasmic reticulum (NOX2, NOX4, and NOX5),
mitochondrial membrane (NOX4), and nuclear membrane
(NOX4 and NOX5), as well as in the specialized membrane
microdomains caveoli and lipid rafts (NOX1), focal
adhesions (NOX4), and invadopodia (NOX1 and NOX4)
[13–19]. Every NOX family member is anchored to the mem-
brane through six transmembrane helices binding two haem
cofactors [20]. The C-terminal domain binds FAD/NADPH
and allows electron transfer to the haem and further across
the membrane to molecular oxygen [13, 21, 22]. DUOX1,
DUOX2, and NOX5 also have calcium-binding regions at
their N-terminus, which distinguish them from other NOX.
Additionally, DUOX1 and 2 possess a domain with a struc-
ture similar to the active site of peroxidase (but do not show
peroxidase or superoxide dismutase activity) [23, 24]. NOX1,
NOX2, NOX3, and NOX5 produce O2

·− while NOX4,
DUOX1, and DUOX2 generate H2O2 (see Figure 1) [22].

Table 1: Functions and mechanisms of action of NADPH oxidases in stem cells and cancer stem cells.

Process Expression/activity of NOX Effects/mechanism Reference

Differentiation

↑ NOX2 Differentiation of stem cells/ROS-dependent Notch signaling pathway [111]

↓ NOX4
Myogenesis, C2C12 differentiation/↓ ERK1/2 phosphorylation,
MAP kinases

[112]

↑ NOX2
↑ NOX4

Cardiac precursor cells (CPCs) → ↑ c-kit(+) cells/unknown mechanism [114]

↑ NOX4
Differentiation of endothelial cells into smooth muscle cells/TGFβ-1-
dependent NOX4/H2O2 upregulation

[115]

↑ NOX4

NOX4/H2O2 dependent

[116–118]
(i) Neural crest stem cells (NCSCs) differentiation to neural cells

(ii) 2T3 preosteoblast differentiation

(iii) Renal progenitor cells differentiation to profibrotic cells

↓ NOX4 Neural crest stem cells (NCSCs) death or retarded growth of PNS [116]

Stem cell
self-renewal

↑ NOX4 Proliferation of neural stem cells/superoxide dependent [122]

↑ NOX3 ↑ proliferation of mouse spermatogonial stem cells/unknown mechanism [123]

↓ NOX4
↓ proliferation and migration of adipose-derived stem cells (ADSCs)/
↓ ERK1/2, Akt, ↓ PDGFβ1

[124]

↓ NOX Proliferation of mesenchymal stem cells/↑ Nanog/Oct4 (TFs) [125]

NOX2
NOX4

↑ senescence of Ang. II-stimulated endothelial cells/unknown mechanism [126]

Cancer stem cell
growth and survival

NOX2
↑ proliferation of pancreatic cancer cells (SW1990 and BxPC-3)/
NF-κB/STAT3 activation

[137]

↑ NOX1
↑ enrichment of breast cancer stem-like cell population/RAS/Erk1/2/
NOX1 activation

[138]

↓ NOX2, NOX4, NOX5 ↑ survival of prostate stem-like cells in vitro [139]

Cancer stem cell
drug resistance

↑ NOX2
↑ resistance of patient-derived glioblastoma stem cells and chronic
myeloid leukemia stem cells to tyrosine kinase inhibitors/NOX2/
Egr1/Fyn upregulation

[143]
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Figure 1: Structure of NOX isoforms. NOX1–4 are similar in their size and domain structure. Two NOX subunits, gp91phox and p22phox
(also called β and α subunits, resp.), are integral membrane proteins that together comprise the large heterodimeric subunit flavocytochrome
b558 (cyt b558). The cytoplasmic C-terminus contains flavin adenine dinucleotide (FAD) and NADPH-binding domains (shown in the
picture as a green ellipse). NOX1 and NOX2 activation involves the phosphorylation of NOXO1 and p47phox, respectively, the
translocation of the entire multidomain complex, including p40phox, p67Phox, and Rac from the cytosol to the membrane, and the
transfer of electrons from the substrate to oxygen. Like NOX1 and NOX2, NOX3 is p22phox dependent, but it does not bind to Rac.
NOX4 activation involves p22phox and POLDIP2. NOX5, DUOX1, and DUOX2 have calcium-binding regions (EF hands) at their
N-terminus, which distinguish them from other NOX. DUOX1 and 2 have a domain with a structure similar to the active site of
peroxidase but without peroxidase or superoxide dismutase activity.
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To create an active NOX complex, stable complex NOX1–3
require binding to a membrane protein p22phox, cytosolic
proteins p47phox, p67phox (or their homologues named
NOXO1 and NOXA1, resp.), p40phox (only for NOX2), or
the GTP-binding protein Rac1/2 [21, 25–28]. The main role
of these subunits is to bring FAD and NADPH close together
to facilitate the transport of electrons [29]. NOX4 interacts
with p22phox but not with other proteins, and therefore, it
is believed to be constitutively active and regulated at the
level of transcript expression, or the activation may occur
in a yet unknown way [30–32]. The activity of NOX4 may
be enhanced by an interaction with DNA polymerase-δ-
interacting protein 2 (POLDIP2) [33, 34]. DUOX1, DUOX2,
and NOX5 activation is independent from cytosolic subu-
nits—they contain EF-hands (helix-loop-helix motifs) that
bind calcium ions for activation [12, 35, 36]. The mechanism
of the activation of NOX family enzymes has been described
in detail in [26, 30].

Once the active NOX complex is formed, electrons are
transferred from NADPH to FAD, causing its reduction to
FADH2 [13]. As the NOX catalytic subunit can accept only
one electron, a single electron is passed to the first inner
haem and then used for the reduction of molecular oxygen
bound by the second haem [10, 37]. Superoxide anion gener-
ated in this reaction often undergoes disproportionation
reactions in which one molecule of O2

· donates an electron
to another, forming H2O2 and O2 in a reaction termed
dismutation (catalyzed by superoxide dismutase (SOD) or
occurring spontaneously under low pH conditions) [38]. As
described above, H2O2, rather than superoxide anion, has
been identified as a product of NOX4, DUOX1, and DUOX2
but it is predicted that for thermodynamic reasons, this
cannot be formed through haem-catalyzed two-electron
reduction [13, 39]. More likely, some regions in NOX4,
DUOX1, and DUOX2 serve as enhancers of spontaneous
dismutation or as a proton donor, but this hypothesis has
not been confirmed [13, 40].

ROS, including NOX-derived superoxide (O2
·) andH2O2,

inhibit the activities of various biological molecules. At low
levels, they serve as the second messengers for signal trans-
duction, but higher concentrations cause oxidative damage
to DNA, proteins, and lipids by direct oxidation or via
the transition metal-driven Haber-Weiss reaction to the
extremely reactive hydroxyl radical (OH·) (Figure 2) [41–44].

H2O2 induces apoptosis in many cancer cells in vitro via
the activation of the caspase cascade. Many antitumor drugs,
such as vinblastine, doxorubicin, or camptothecin, also
exhibit antitumor activity via H2O2-dependent activation of
apoptotic cell death, which suggests the potential use of
H2O2 as an antitumor agent [45–48]. However, a biphasic
effect of H2O2 and superdoxide has been demonstrated on
cellular proliferation in which low levels (submicromolar
concentrations) induce growth, but higher concentrations
(>10–30 micromolar) induce apoptosis or necrosis. This
phenomenon has been demonstrated for primary, immortal-
ized and transformed cell types [38, 44].

This review highlights the relations between NOX
proteins and several cellular processes which are of impor-
tance in medicine and hallmarks of cancer such as increased

proliferation rate, avoidance of apoptosis, tumor invasive-
ness, tumor angiogenesis, differentiation, and self-renewal
of stem cells, showing that several NOX may be considered
as potential therapeutic targets. The expression of NOX,
especially in cancer cells and solid tumors, has been a topic
of several publications in the past few years (for details, see
[11, 49]). Therefore, we concentrate here on selected pro-
cesses in which NOX have been identified as important
players, particularly proliferation, invasiveness, and metas-
tasis, paying particular attention to potential mechanisms
of action and regulation.

3. Roles of NOX in Cancer Cells

Increased expression of NOX1, NOX2, NOX4, and NOX5 or
their regulatory components compared with normal controls
has been described in many types of cultured cancer cell lines
and in human tumors at early and late stages of tumorigene-
sis, indicating their importance in cancer development and
progression [49–51].

Exogenous expression of NOX1 in NIH3T3 fibroblasts
caused increased cell growth and the ability to form tumors
in athymic mice [52]. Tenfold overexpression of NOX1
caused increased growth and transformation with only
a < 2-fold increase in extracellular O2

·- generation, showing
that high levels of ROS are not required for these effects.
Coexpression of catalase (CAT) reversed the transformed
phenotype, indicating that H2O2 was the growth-promoting
species [38, 52].

Studies of tumor and adjacent tissues from 123 patients
with gastric cancer (adenocarcinoma) showed that in 47.2%
of cases, the NOX2 level was detectable and was increased
in the tumor compared to adjacent tissue. Patients in the
NOX2-positive group presented a poor prognosis (5-year
survival rates) [53].

The roles of NOX3, DUOX1, and DUOX2 in cancer and
stem cells have not been very well established as yet. Accord-
ing to the current state of knowledge, NOX3 expression is
generally limited to the cochlea and inner ear epithelial cells,
where it plays a role in the perception of gravity and
maintaining balance [54, 55]. DUOX promoters have been
shown to be highly methylated in lung cancer [54, 56].
Recently, it has been also demonstrated that the loss of
DUOX1 expression in lung cancer cell lines is strongly asso-
ciated with the loss of the epithelial marker E-cadherin and
that the silencing of DUOX1 promotes features of an
epithelial-to-mesenchymal transition (EMT), an important
feature of metastatic cancer [57]. Wu et al. [54] showed that
DUOX2 is regulated by IFN-γ-mediated Stat1 binding to the
Duox2 promoter in pancreatic tumor lines. At the same time,
the authors demonstrated the upregulation of DUOX2
expression in vivo in pancreatic cancer xenografts and in
patients with chronic pancreatitis. In another study by Wu
et al. [58], IFN-γ-mediated DUOX2 overexpression resulted
in H2O2-induced, ERK-associated upregulation of HIF-1α
and VEGF-A in pancreatic cancer cells. Recently, DUOX
enzymes were also found to constitutively maintain ROS
levels in prostate cancer cells, and these ROS promote AKT
signaling leading to increased resistance to apoptosis [59].
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3.1. NOX in Tumor Development. Oxidative stress can result
in genomic instability caused by direct modification and
damage to nucleic acids and alteration of redox-sensitive
proteins and signal transduction leading to tumor formation.
The exact function of NOX-derived ROS in cellular transfor-
mation remains an open question.

ROS produced by NOX4 caused mitochondrial dysfunc-
tion and mitochondrial DNA damage [15, 60, 61]. As NOX4
can be found also in the nucleus, it could be responsible for
direct oxidation of nuclear proteins and DNA as well [62].
Whether NOX play a role in ROS-induced genomic instabil-
ity resulting in tumorigenesis is uncertain, as this would be an
outcome of complex interactions between reactive species,
antioxidants, and DNA repair pathways.

Besides, genomic instability NOX1 has been connected
with the regulation of p53 activity. The corepressor HIPK2
which control the tumor suppressor p53 also upregulates
NOX1, which in turn prevents deacetylation and inactivation
of p53 by the stress-controlling protein sirtuin1 (SIRT1),
therefore promoting tumorigenesis [63, 64].

Increased expression of NOX1 also accompanies activat-
ing mutations in K-RAS, a proto-oncogene with a key role in
growth autonomy of tumor cells [65]. Overexpression of K-
RAS enhances the transcription of NOX1 through RAF/
MEK/ERK-dependent phosphorylation of the transcription
factor GATA6 [66]. In RAS-transformed cells, NOX1 stimu-
lates cell proliferation and anchorage-independent growth
through the RAS/MEK and canonical WNT-β-catenin
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Figure 2: Endogenous sources and consequences of ROS overproduction. Overproduction of superoxide anion and H2O2 by NOX (NOX and
Duox), cytochrome c oxidase, or xanthine oxidase (XO) and the subsequent increased level of hydroxyl radical (generated through the Fenton
or Haber-Weiss reaction) are leading to lipids, proteins, and nucleic acid oxidation and, in consequence, to genomic instability, mutations,
and carcinogenesis. Upon this conditions, cell survival or death is dependent on the activation of either ASK-1 or PI3K: high level of ROS
tends to activate the ASK-1/JNK pathway leading to cell death, while lower or transient ROS production may result in the activation of
PI3K kinase (accompanied by ASK-1/JNK inhibition) and NF-κB-mediated survival.

5Oxidative Medicine and Cellular Longevity



pathways [67, 68]. NOX regulate several other phosphatases
linked to cell survival, for example, the low molecular weight
protein tyrosine phosphatases (LMW-PTP) and protein
phosphatase 1 (PP1). In chronic myeloid leukemia, increased
NOX4-mediated ROS production induced by Bcr-Abl
(kinase generated from the Philadelphia chromosome)
enhances survival signal transduction through the inhibition
of PP1 which negatively regulates the PI3k/Akt pathway [69].

3.1.1. NOX in Proliferation, Invasiveness, and Metastasis. All
cancer cells share some features known as the hallmarks of
cancer which include insensitivity to growth-inhibitory sig-
nals, limitless replicative potential, self-sufficiency in growth
signals, avoidance of apoptosis, sustained angiogenesis, tissue
invasion, and metastasis [70, 71].

Recent studies on colon cancer show that NOX1 activity
and ROS generation are modulated through a cascade of
interactions between growth receptor-bound protein 2 (an
adaptor involved in signal transduction), Cbl E3 ligase (an
ubiquitin-protein ligase), NOXA1 (an activator of the NOX
complex), epidermal growth factor, and NOXO1 (an orga-
nizer of the NOX complex). NOX1 can modulate the canon-
ical Wnt-β-catenin signaling pathway which is crucial for the
proliferation and fate of both malignant and normal cells,
and on the other hand, Wnt can induce NOX1-derived
ROS production [67]. Thus, the connections between NOX
activity and cancer cell growth, proliferation, and tumor for-
mation involve complex signaling pathways and interactions.

Cancer cells can be transferred to and proliferate in dif-
ferent regions of the same organ or in very distant sites. This
spreading, termed metastasis, is a multistep process involving
the invasion of tumor cells into the extracellular matrix, the
migration through the endothelium into vessels (intravasa-
tion) and then out of them (extravasation), and finally, the
colonization and proliferation leading to growth of the sec-
ondary tumors [72, 73]. The steps of extracellular matrix deg-
radation and extravasation are mediated by invadopodia,
actin-rich structures in the plasma membrane which contain
integrins, matrix metalloproteinases, NOX, and other trans-
membrane proteins. The formation of invadopodia is depen-
dent on NOX-mediated production of ROS [17, 74, 75]. Two
proteins found only invadopodia, named Tks4 and Tks5,
show homology to p47phox (as well as some structural
similarities to p40phox and NOXO1 and associate with
and activate NOX1 and NOX3, even when no other
organizers were present [76, 77]. This suggest that ROS-
dependent invadopodia formation may be dependent on
a NOX-Tks protein complex, formed exclusively at inva-
dopodia membranes [17, 78].

Higher metastatic potential is correlated with elevated
matrix metalloproteinase-7 (MMP-7) expression in human
colon cancer cells; less invasive colon cancer cells, such as
Caco2 and HT29 cell line, present low MMP-7 expression
level and high NOX1 and AMPK phosphorylation levels.
AMPK is an energy-sensing kinase, activated by changes of
theAMP/ATPratio causedby insufficient amountof nutrients
and required for rapid cell proliferation and hypoxic condi-
tions. Pharmacological activation of AMPK by adding 5-ami-
noimidazole-4-carboxamide riboside (AICAR) and D942

leads to reduced NOX4 expression and NOX4-dependent
ROS generation. NOX may be linked to inflammation-
induced metastasis in renal cell carcinoma (RCC), where cell
invasion is based on NOX4-mediated hypoxic-induced pro-
duction of interleukin-6 and interleukin-8 (IL-6 and IL-8)
[79]. IL-6 and IL-8 induce metastasis in RCC, but their
NOX-dependent production can be reduced through the
activation of AMPK (previously shown to decrease tumor
growth in a xenograft model and in vitro) [79, 80].

The induction of an invasive phenotype by TPA (12-O-
tetradecanoylphorbol-13-acetate) results in increased NOX2
and MMP-7 expression which leads to higher ROS produc-
tion and decreased AMPK phosphorylation [81]. In colon
cancer cells, this molecular switch from NOX1 to NOX2,
together with NOX2-derived ROS, increases MMP-7 expres-
sion by the deactivation of AMPK, and the TPA-induced
phenotype can be reverted by NOX2 but not NOX1-
targeting siRNA, suggesting that NOX2 activity induces an
invasive phenotype [81]. In contrast, in melanoma cells, the
role of a switch-deciding transformation from a noninvasive
to an invasive phenotype is played by the Akt protein, a kinase
that plays a key role in proliferation, cell migration, and apo-
ptosis, which induces NOX4-derived ROS [82].

The inhibition of NOX by siRNA or a pharmacologic
inhibitor leads to significantly reduced lung cancer formation
in vivo and lung cancer cell invasion in vitro, as shown by a
meta-analysis [83]. NOX1-derived ROS are crucial for the
regulation of metastasis through the toll-like receptor 4
(TLR4) in non-small lung cancer cells (NSCLC) [84], and it
is possible that TLR4 signaling enhances the expression of
NOX1 which subsequently regulates MMP-9 and increases
metastasis in these cells [84, 85]. O'Leary described the role
of TLR-4-dependent NOX1 activity in accelerating adher-
ence of lipopolysaccharide- (LPS-) stimulated colon cancer
cells (SW480, SW620, and CT-26 cell lines) and proposed a
mechanism in which TLR-4-mediated activation of NF-κB
leads to increased activation of NOX and in consequence to
a higher level of ROS and phosphorylation of Akt [86]. The
PI3K/Akt signaling pathway mediates TG-interacting factor-
(TGIF-) induced NOX2 activation and ROS production,
which stimulate PI3K/Akt to promote the invasiveness of
urothelial carcinoma [87]. TGIF acts as a transcriptional
repressor/corepressor regulated by TGF-β and associated
with the protein SMAD [88]. TGF-β/SMAD3-induced
NOX4 activity affects cell migration and expression of
fibronectin, a marker of TGF-β-induced epithelial-to-
mesenchymal transition (EMT), in normal and metastatic
breast epithelial cells [89, 90].

There is growing body of evidence that microRNAs are
involved in NOX-dependent regulation of tumor growth,
invasiveness, and metastasis [91–93]. miR-21 has been
reported to promote growth, metastasis, and chemo- and
radioresistance in non-small lung cancer cells by targeting
PTEN, the product of a tumor suppressor that is mutated
in many cancers [93]. The inhibition of NOX activity in
human lung cancer cells decreases their invasive potential
in vitro, lowers the level of miR-21 and MMP-9, and also
increases expression of PTEN. The expression of miR-21
and of the NOX subunit p47phox was significantly higher
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in poorly differentiated tumor cells. An increased level of
miR-21 also compensates for the effect of NOX inhibitors
on metastasis [92]. Consistent with the results for prostate
cancer cells in which NOX-derived ROS are known to regu-
late invasiveness and metastasis in vivo, the depletion of
p47phox subunit using siRNA reduced tumor metastasis in
a xenograft model of prostate cancer [94]. The regulation of
miR-21 by NOX-derived ROS probably occurs by the activa-
tion of Akt, but understanding of this axis requires further
studies [94, 95]. miRNAs can also affect the NOX4-MCP-1
axis critical for hemangioendothelioma; silencing of the
enzyme required for miRNA maturation (Dicer) prevented
formation of tumors in vivo, accompanied by the upregula-
tion of miR-21a-3p activity targeting the 3′UTR of the
NOX4 transcript [96]. A lower level of NOX4-derived ROS
resulted in decreased production of the oxidant-inducible
monocyte chemoattractant protein-1 (MCP-1) which is
critical for endothelial cell tumor formation [96, 97].

The role of NOX5 is less understood than those of NOX1,
2, and 4, but it is also reported to play a significant function in
cancer. Its silencing results in a lower proliferation rate of
prostate cancer PC-3 cells and increased apoptosis caused
by enhanced activity of caspases 3 and 7 [51], and therefore,
NOX5-derived ROS are suggested to be important for the
regulation of proliferation and survival of prostate cancer
cells [51]. Lower expression of NOX5 resulted in a decreased
level of phosphorylation of c-Jun N-terminal kinase 1/3
(JNK1/3) and a reduced level of PKC-ζ protein, which is
known to promote an aggressive phenotype of human pros-
tate cancer cells [51, 98].

3.1.2. NOX and Angiogenesis. Cell function and survival
and, in the case of cancer cells, also the ability to spread
to adjacent and distant tissues are dependent on the
oxygen and nutrients provided by the vasculature [99].
Angiogenesis is a critical step for the development of
tumors with a diameter higher than ~2mm as it allows
the delivery of nutrients into the solid tumor [13, 99].
New blood vessel formation from existing vasculature is
regulated by growth factors such as vascular endothelial
growth factor (VEGF) which activates matrix metalopro-
teinases (MMPs) and can be regulated by inhibitors (i.e.,
angiostatin) [100]. Another key element of angiogenesis
in tumors is the transcription factor hypoxia-inducible fac-
tor 1 (HIF-1) which under hypoxic condition characteris-
tic for the center of tumor, increases the transcription of
VEGF, and furthermore, both HIF-1α and VEGF expres-
sion can be stimulated by ROS [100, 101].

In ovarian cancer cells, NOX4-derived ROS together with
mitochondrial-derived ROS are necessary for tumor-induced
angiogenesis and regulation of VEGF level through HIF-1α
expression [13, 102]. NOX1- and NOX4-derived ROS pro-
mote HIF-dependent vascularization in prostate cancer and
malignant melanomas; however, several reports indicate that
ROS-mediated angiogenesis can also occur through an HIF-
independent mechanism [13, 82, 103]. Garrido-Urbani et al.
reported increased expression and activity of NOX1 during
angiogenesis and impaired angiogenesis in NOX1-deficient
mice, indicating its role in endothelial cell migration and

tumor progression [104]. NOX1 downregulates expression
and activity of the antiangiogenic receptor PPARα (peroxi-
some proliferator-activated receptor α) which is known to
inhibit the transcription factor NF-κB (see Figure 3) and
VEGF [104, 105]. Another mechanism has been reported
for serotonin-induced angiogenesis: serotonin (5-HT, 5-
hydroxytryptamine) activates NOX and induces ROS pro-
duction, which is probably mediated through the activation
of the 5-HT1 receptor-linked Src/PI3K pathway [106]. How-
ever, it is not clear if HIF-1 plays a role in this mechanism
because the PI3K pathway can increase VEGF production
by tumor cells in both an HIF-1-dependent and HIF-1-
independent manner [106, 107].

4. NOX in Stem Cells

Stem cells play important roles in many stages of develop-
ment, from progenitors of all cells, pluripotent stem cells, in
early embryonic stages, to tissue-restricted cells—giving rise
to cells with highly specialized functions [108]. Numerous
studies have demonstrated the potential of stem cells in ther-
apies [109]. Redox states have been reported to play impor-
tant role in both maintaining stemness and mediating
differentiation of several precursor cell types [110].

4.1. NOX and Differentiation. NOX2 regulates the differenti-
ation of mouse induced-pluripotent stem cells (miPCs) into
arterial endothelial cells (miPSC-ECs) via the Notch signal-
ing pathway [111]. The expression of arterial endothelial
markers such as EphrinB2, neuropilin 1 (Nrp1), and activin
receptor-like kinase 1 (ALK1), as well as the expression of
Notch-pathway components, was significantly decreased
(at the mRNA and protein levels) in NOX2−/− miPSCs.
However, the transfection with an adenovirus vector cod-
ing for NOX2 resulted in a significant increase of arterial
endothelial markers and Notch1 expression, and the same
effect was obtained by the upregulation of Notch activity.
In both cases, the effect of this increase can be reversed either
by DPI-induced inhibition of ROS generation or by silencing
of Notch1 expression [111]. NOX2 deficiency has been
shown to significantly lower the potency of miPSC-ECs for
vascular repair in mouse ischemic limbs, tube formation, cell
proliferation, cell migration, and uptake of Ac-LDL (acety-
lated low-density lipoprotein) and to increase sensitivity to
oxidative stress [111].

NOX4 has been reported to regulatemyogenesis, the pro-
cess in which muscle stem cells first proliferate and then dif-
ferentiate. In myogenic C2C12, cell changes in NOX4
expression level correlate with the changes in the level of
the differentiation markers myogenin, MyoD1, Pax7, and
Myf5 which can be further linked to the changes in MAPK
signaling pathways. Both overexpression and depletion of
NOX4 caused reduction of ERK1/2 phosphorylation during
the differentiation [112]. The MAPK family consists of extra-
cellular regulated kinases (ERK1/2), Jun N-terminal kinase
(JNK), p38 kinase, ERK3/4, and the mitogen-activated pro-
tein kinase 1 (BMK1/ERK5) pathways. The JNK and p38
kinase pathways are sometimes grouped together and
referred to as the stress-activated protein kinases (SAPKs)
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[113]. NOX are also implicated in the differentiation of car-
diac cells into cardiac muscle, endothelial, and smooth mus-
cle cells. Cardiac precursor cells (CPCs) marked by type III
receptor tyrosine kinase c-kit (c-kit+) with silenced Nox2
and Nox4 genes showed increased expression of the CPC
stemness markers c-kit and Flk1 (receptor for vascular endo-
thelial growth factor), while cells with overexpression of
NOX2 and NOX4 presented decreased c-kit level [114].

These changes were accompanied by changes in the level
of Gata6, Gata4, and cytokine-transforming growth factor β1
(TGF-β1) required for cardiac lineage specification, as well as
an altered level of the differentiation markers α-smooth mus-
cle actin (α-SMA) and cardiac troponin T (cTnT). The
upregulation of NOX2 and NOX4 during the differentiation
of early postnatal c-kit+ cells suggests that they are responsi-
ble for maintaining “the balance between precursors and
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Figure 3: Examples of NOX signal transduction. NOX1-derived ROS can affect the following: differentiation through the p38 and ERK1/2
pathway, hypertrophy via p38-mediated activation of Akt, cell migration by the activation of cSrc protein, and cellular growth by the
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differentiation status” [114]. NOX4 has also been described
as a mediator of the differentiation of mouse embryonic stem
cells into smooth muscle cells (SMC) with a positive correla-
tion between the expression of NOX4 and SMC-specific
genes (SMαA, SM22α, h1-colponin, and SM-myh11) and
transcription factors essential for the differentiation (serum
response factor and myocardin), expression, and activation
of NOX4 (which can occur through TGF-β1) driving the
differentiation (and maintenance of phenotype) of functional
SMC from EC through H2O2 generation [115].

NOX4 activity is essential for BMP-induced neuronal
differentiation of neural crest stem cells (NCSCs) [116],
differentiation of osteoblasts from murine 2T3 preosteoblast
cells [117], and profibrotic cell differentiation from adult
renal progenitor cells [118]. The silencing of NOX4 in pri-
mary NCSCs leads to cell death; however, in NOX4−/−

knockout mice, the development of the neural crest-derived
peripheral nervous system occurred normally (although
embryos showed retarded growth). As NOX4 is the only
NOX expressed in NCSCs at a detectable level, it is suggested
that other NOX proteins from surrounding cells and tissues
may provide ROS for NCSCs during embryogenesis [116].
It seems also that NOX levels and functions are dynamically
regulated during mouse embryonic stem cell differentiation,
as p67phox subunit expression is significantly increased in
2-3-day-old embryoid bodies compared to those 11-12-day
old [119, 120].

4.2. NOX and Stem Cells Self-Renewal. There are two key
characteristics of stemness: one is potency, understood as
an ability to differentiate, and the other is self-renewal, an
ability to maintain a pool of undifferentiated stem cells
through symmetric and asymmetric cell divisions [121].
The stimulation of NOX4-derived superoxide production
by angiotensin II (Ang II) in neural stem cells significantly
increases their proliferation [122], leading to the suggestion
that NOX4 level regulates stem cell self-renewal and, there-
fore, may be an important player in neurodegenerative
processes such as Alzhaimer’s disease, Parkinson’s disease,
or multiple sclerosis [122]. A function of NOX in self-
renewal has also been reported by Morimoto et al. who
described a connection between the self-renewal potential
of mouse spermatogonial stem cells (SSCs) and NOX3 and
presented the hypothesis that renewal of SSCs is in fact regu-
lated by sequential activation of different NOX genes and
may or may not occur through the PIK3-AKT and MAP2K1
pathways [123]. Similar results were obtained for adipose-
derived stem cells (ASCs) in which the silencing of NOX4
leads to reduced proliferation and cell migration, as well as
decreased expression of Oct4 and Rex1 and a lower level of
phosphorylation of PDGFR-β, AKT, and ERK1/2 [124].

In contrast, another study suggests that the suppression
of NOX using apocynin can reverse the aging process in
mesenchymal stem cells and increases the expression of
the transcription factors Nanog and Oct-4—which are
important in the self-renewal of stem cells [125]. Increased
expression of NOX2 and NOX4 has been reported to
accelerate senescence of Ang II-stimulated endothelial pro-
genitor cells [126].

ROS generated by NOX (and other sources) can act as
an enhancer of stem cell signaling but also as damaging
molecules, and therefore, more studies are still required
as the threshold is not clearly defined [9]. Additionally,
it should be noted that the idea of NOX-mediating differ-
entiation, aging, and senescence of stem cells interferes
with data on their role in undifferentiated and not senes-
cent cancer cells. Unfortunately, there is not enough data
to draw precise conclusions.

4.3. NOX and Cancer Stem Cells. Several reports indicate that
the growth of some solid tumors and their high resistance to
chemotherapy are dependent on small population of cells
called cancer stem cells (CSCs) [127].

CSCs are subgroup of cancer cells having the ability of
self-renewal and capability to initiate tumor formation and
metastasis [59]. So far, these tumor-initiating cells have
been found in many types of cancer, breast, brain, skin,
head and neck, thyroid, cervix, retina, and lung and from
leukemia and lymphoma [128–131]. The origin of CSCs
remains still unclear, and it is debated if they are formed
in a process similar to reprogramming (dedifferentiation)
from cells that have acquired a more stem cell-like phenotype
or if they are stem cells which have accumulated the sufficient
number of mutations required for carcinogenic transforma-
tion. It is also possible that they are a result of a combination
of both these processes. The issue of the origin of these cells
raises numerous discussions, and to highlight this uncer-
tainty, they are often referred as cancer stem-like cells or
tumor-initiating cells.

CSCs reside preferentially in special microenvironmental
niches within tumor tissue, where cells have a limited access
to oxygen. The features of these hypoxic niches are of crucial
importance for CSC self-renewal, metastatic potential, and
therapy resistance. CSCs express increased levels of antia-
poptotic proteins in comparison to mature cell types from
the same tissue, which could explain their resistance to cyto-
toxic drugs [132, 133].

The presence of CSCs might also explain why cancer may
reoccur after treatment; most chemotherapeutic drugs act
only on mature cancer cells, and CSCs have elevated levels
of an ATP-binding cassette which promotes drug resistance
[134]. In glioma cells, CSCs preferentially activate DNA-
damage checkpoints, so the cells can repair the damage faster
and escape radiation-mediated cell death [135]. In breast
cancers, CSCs express a low level of ROS due to higher
expression of free radical scavengers, which ultimately causes
resistant to radiation therapy [136].

Recently, NOX-mediated production of ROS has been
recognized as an important factor involved in cancer stem
cell regulation and chemotherapy resistance [137]. Enrich-
ment of a population of breast cancer stem-like cell popu-
lation, induced by exposure to low concentrations of
combined carcinogens, correlates with the activation of
the RAS-Erk1/2-NOX1 pathway which plays an important
role in maintaining increased cell proliferation [138]. The
opposite result was observed for stem-like holoclones
derived from the PC3 human prostate cancer cell line,
which showed reduced expression of NOX2, NOX4, and

9Oxidative Medicine and Cellular Longevity



NOX5, and their upregulation significantly lowered cell
survival in vitro [139].

Gemcitabine, a chemotherapeutic drug used in advanced
pancreatic cancer, is characterized by low efficiency and
causes rapid development of chemoresistance [137, 140,
141]. New data show that the pancreatic cancer stem cell
phenotype (characterized by CD44+, CD24+, and CD133+

markers) can be actually induced by gemcitabine itself
[142]. Gemcitabine activates the NF-κB/STAT3 signaling
cascade through NOX-mediated production of ROS [137],
and pancreatic cell lines incubated with the NOX inhibitor
apocynin show not only a decrease in ROS and p-STAT3
levels but also an abolished expression of Nanog, Sox2, and
Bmi1, genes associated with self-renewal and maintaining
pluripotency [137].

NOX2 has been suggested as a potential target in the
development of a therapy against chronic myeloid leukemia
(CML) and glioblastoma, as the resistance of CML stem cells
and patient-derived glioblastoma stem cells to tyrosine
kinase inhibitors seem to be mediated through the NOX2/
Egr1/Fyn axis [143]. Chemotherapy may induce the overpro-
duction of ROS which leads to NF-κB-mediated release of
inflammatory cytokines, including IL-6 and IL-8, and drive
cancer progression through inflammation. Additionally,
interleukin-6 is known to induce resistance of myeloma cells
to chemo- and radiotherapy by NF-κB-dependent increase of
manganese superoxide dismutase expression (MnSOD)
[144]. Unfortunately, there is not enough data to confirm
whether such re-establishing of redox homeostasis exist in
cancer stem cells [144].

The role of NOX-generated ROS in the functioning of
cancer stem cells is not well understood yet, but considering
their role in cancer recurrence and chemo- and radiotherapy
resistance, this seems to be one of the most important
research areas in current oxidative medicine [9].

5. Summary

NOX are the only enzymes for which the production of ROS
is main physiological function. They play roles in many pro-
cesses required for functioning of cells and organisms,
including wound healing, host defense, cell differentiation
during embryogenesis, proliferation, and regulation of gene
expression. However, their pathologically altered expression
and activity are connected with several neurodegenerative
and inflammatory diseases, as well as the development and
progression of cancer [145].

NOX can modulate proliferation and differentiation of
stem cells which make them a potential tool and target in
stem cell therapies, tissue engineering, and regenerative med-
icine. Studies aimed at growing functional cardiac tissue from
stem cells (neonatal rat cardiomyocytes) have already shown
NOX-mediated redox signaling to be crucial for neovascular-
ization in vivo which is necessary for the generation of func-
tional tissues [119, 146].

Altered expression of NOX has been observed in many
types of cancers [147]. As recent research has brought
some light into the mechanisms of NOX-derived ROS
action and effects on proliferation, invasiveness, metastasis,

and angiogenesis of cancer cells, NOX have been proposed
as targets in therapy of lung, colon, thyroid, and prostate
cancer [51, 147, 148]. Especially, the ability to prevent
metastasis through the modulation of cancer stem cell
growth and proliferation would bring enormous benefits
for patients. However, this approach is currently limited
by the lack of highly specific and validated inhibitors for
different NOX enzymes which would not affect other
sources of ROS. The development of specific inhibitors
seems to be even more important given the poor results
of therapies based on antioxidants aimed at scavenging
ROS [149]. As NOX are not the only origin of ROS in
cells, it is important to understand the mutual interactions
between these enzymes and other ROS sources, especially
the respiratory chain, to effectively regulate redox potential
for therapeutic purposes.

NOX have been intensively studied over the past decade,
and the results obtained have significantly increased our
knowledge about their activation and the signaling pathways
which they influence; however, much more research is still
required, especially in vivo using animal models.
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