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Chronic intermittent hypoxia (CIH), the hallmark of obstructive sleep apnea, is the
main risk factor to develop systemic hypertension. Oxidative stress, inflammation,
and sympathetic overflow have been proposed as possible mechanisms underlying
the CIH-induced hypertension. CIH potentiates the carotid body (CB) chemosensory
discharge leading to sympathetic overflow, autonomic dysfunction, and hypertension.
Oxidative stress and pro-inflammatory molecules are involved in neurogenic models
of hypertension, acting on brainstem and hypothalamic nuclei related to the
cardiorespiratory control, such as the nucleus of the solitary tract, which is the
primary site for the afferent inputs from the CB. Oxidative stress and pro-inflammatory
molecules contribute to the activation of the CB chemoreflex pathway in CIH-
induced hypertension. In this brief review, we will discuss new evidence for a critical
role of oxidative stress and neuro-inflammation in development of the CIH-induced
hypertension through activation of the CB chemoreflex pathway.

Keywords: carotid body, chronic intermittent hypoxia, hypertension, inflammation, nucleus of the solitary tract,
pro-inflammatory cytokines

ROLE OF THE CAROTID BODY IN THE CIH-INDUCED
HYPERTENSION

An abnormal heightened carotid body (CB) chemosensory discharge, which elicits sympathetic
overflow, has been involved in the cardiovascular and autonomic alterations in preclinical models
of human diseases such as obstructive sleep apnea (OSA), systolic heart failure, and neurogenic
hypertension (Sun et al., 1999; Peng et al., 2003; Rey et al., 2004; Del Rio et al., 2010; Abdala et al.,
2012; McBryde et al., 2013). The OSA syndrome characterized by repeated episodes of chronic
intermittent hypoxia (CIH) is considered an independent risk factor for systemic hypertension,
and is associated with atrial fibrillation, stroke, and heart failure (Somers et al., 2008; Dempsey
et al., 2010). The cardiovascular consequences of OSA has been attributed to oxidative stress,
inflammation, and sympathetic overflow induced by CIH, but other factors are influential, such
as sleep fragmentation and co-morbid metabolic diseases (Gozal and Kheirandish-Gozal, 2008;
Somers et al., 2008; Dempsey et al., 2010; Iturriaga et al., 2016; Iturriaga, 2017). OSA patients
show enhanced sympathetic, vasopressor and ventilatory responses to hypoxia, attributed to a
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potentiated hypoxic peripheral chemoreflex (Somers et al.,
2008; Dempsey et al., 2010). Similarly, rodents exposed to
CIH show enhanced cardiorespiratory and sympathetic hypoxic
responses, and develop hypertension (Fletcher et al., 1992; Peng
et al., 2003; Iturriaga et al., 2009; Del Rio et al., 2010, 2014;
Kumar and Prabhakar, 2012). Neural recordings of rat and cat
CB chemosensory discharges have shown that CIH selectively
increases the baseline discharge in normoxia and enhances the
chemosensory responses to hypoxia (Peng et al., 2003; Rey et al.,
2004; Del Rio et al., 2010). The enhanced CB chemosensory
discharge induced by CIH has been linked with local oxidative
stress and increased endothelin-1 (ET-1) levels in the CB (Peng
et al., 2003; Rey et al., 2006; Del Rio et al., 2010). The enhanced
CB chemosensory discharge plays a crucial role in the onset
and progression of the hypertension induced by CIH. Indeed,
Fletcher et al. (1992) found that CBs denervation prevents the
hypertension in rats exposed to CIH. Furthermore, Del Rio et al.
(2016) found that CBs ablation in hypertensive rats exposed to
CIH for 21 days, restores the autonomic balance, the cardiac
baroreflex sensitivity and reduces the elevated arterial pressure
(BP), even when the CIH stimuli was maintained for 7 days and
systemic oxidative stress persisted after the elimination of the
CBs. Thus, the available evidence supports a crucial role of the
CB in the onset and progression of the hypertension induced by
CIH.

CIH AND CB CHEMOREFLEX
POTENTIATION

The CB chemoreceptor cells are innervated by sensory petrosal
neurons that project to the nucleus of the tractus solitarius
(NTS), which is the primary site of integration of gastrointestinal,
respiratory and cardiovascular information in the brainstem
(Berger, 1980; Finley and Katz, 1992; Grimes et al., 1995). The
projections from the petrosal neurons that innervate the CB reach
the caudal section of the NTS, specifically the dorsal, medial,
and commissural sub-nuclei. In the NTS, second and third-
order neurons project to the paraventricular nucleus (PVN) and
the rostral ventrolateral medulla (RVLM), where are located the
pre-sympathetic neurons (Guyenet, 2006). Hypoxia depolarizes
chemoreceptor cells releasing excitatory transmitters, which in
turn increases the frequency of discharge in the petrosal neurons
eliciting reflex hyperventilatory, autonomic and vasopressor
responses (Iturriaga and Alcayaga, 2004; Nurse and Piskuric,
2013). CIH enhanced the normoxic CB chemosensory discharge
and the neural activity of the cardiorespiratory neurons in the
brainstem and hypothalamus (Iturriaga et al., 2017). Indeed, CIH
increases the electrical activity of glutamatergic neurons in the
NTS (de Paula et al., 2007) and the number of c-fos or FosB
positive neurons in the NTS, RVLM, PVN, in the subfornical
organ (SFO) and median preoptic nucleus (Knight et al., 2011;
Bathina et al., 2013; Sharpe et al., 2013). The activation of NTS
and RLVM neurons induced by CIH is associated with local
oxidative stress (Peng et al., 2014). Moreover, the increased Fos
B in the RVLM induced by CIH (An and En-Shang, 2014) was
attenuated by systemic pretreatment with a superoxide dismutase

mimetic (Kuo et al., 2011). Thus, it is likely that the CIH-induced
activation of the NTS and RVLM neurons is the result of oxidative
stress (Daulatzai, 2012). Another plausible explanation is that the
activation of the CB chemoreflex neural pathway triggered by the
enhanced CB chemosensory discharge may elicit oxidative stress
and neuroinflammation in the brainstem. This idea is strongly
supported by the finding that CB neurotomy performed before
the onset of CIH exposure prevents the oxidative stress in the
NTS and RVLM, and the development of the hypertension in rats
(Peng et al., 2014).

OXIDATIVE STRESS AND
INFLAMMATION IN THE CB AND THE
CHEMOREFLEX NEURAL PATHWAY
INDUCED BY HYPOXIA

Reactive oxygen species (ROS) and reactive nitrogen species
(RNS) contribute to enhance the CB chemosensory discharge
and the progression of the hypertension in rats exposed to CIH
(Prabhakar, 2000; Del Rio et al., 2010; Peng et al., 2014). Indeed,
the treatment with antioxidants normalized the enhanced CB
chemosensory discharge and prevents or reverses the elevated BP
in CIH-treated rats (Peng et al., 2003, 2009; Del Rio et al., 2010;
Moya et al., 2016).

In addition other molecules downstream the ROS signaling
pathway may mediate the CIH-induced excitatory effects on
CB chemoreception. Thus, we hypothesized whether pro-
inflammatory molecules may contribute to enhance the CB
chemosensory discharge (Iturriaga et al., 2009). Inflammation
is part of the response of the immune system to tissue
damage or pathogen invasion (Hänsel et al., 2010). The
classical clinical signs of inflammation include increased blood
flow, capillary permeability, release of inflammatory mediators
and the migration of leukocytes (Hänsel et al., 2010). These
processes are orchestrated by molecules activated by the nuclear
transcription factor κB (NF-κB), which stimulates the release
of pro-inflammatory cytokines such as tumor necrosis factor
alpha (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6),
chemokines and adhesion molecules (Shih et al., 2015). The
combination of cycles of hypoxia followed by re-oxygenation in
OSA patients is associated with an increase of plasma levels of
TNF-α, IL-6, and C-reactive protein (Meier-Ewert et al., 2004;
Irwin et al., 2010). Most of the cellular responses and adaptations
to hypoxia are mediated by the hypoxia-inducible factor-1α (HIF-
1α) (Prabhakar and Semenza, 2012; Peng et al., 2014). NF-κB is
a critical transcriptional activator of HIF-1α and it is necessary
for the accumulation of HIF-1α during hypoxia (Hocker et al.,
2017). On the other hand, hypoxia may directly activate the
NF-κB factor, promoting the transcription of pro-inflammatory
cytokines (Eltzschig and Carmeliet, 2011). Moreover, in response
to oxidative stress, HIF-1α evokes the translocation of NF-κB to
the nucleus increasing the expression of IL-1β, TNF-α, and ET-1
among other pro-inflammatory molecules (Chang et al., 2009).
Zhang et al. (2015) studied the serum levels of inflammatory
cytokines and the activation of NF-κB and HIF-1α in myocardial
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tissues in response to different frequencies of CIH (10–40
times/h for 6 weeks) and the actions of the antioxidant tempol.
Intermittent hypoxia increased the serum levels of TNF-α, along
with an increase on myocardial expression of NF-κB and HIF-1α

in a frequency-dependent manner. Interesting, tempol treatment
attenuated this effect (Zhang et al., 2015). Therefore, there is an
interplay between oxidative stress, inflammation, and hypoxic
induced factors under CIH conditions.

Chronic intermittent hypoxia increases the levels of pro-
inflammatory molecules in the CB (Del Rio et al., 2011, 2012; Lam
et al., 2012). Indeed, Rey et al. (2006) found that CIH increased
ET-1 in the CB from cats exposed to CIH for 4 days, while
bosentan reduced the CB chemosensory response to hypoxia
in vitro in CIH-treated cats, but not in sham animals. Lam et al.
(2012), reported that 7 days of exposure to CIH increased the
mRNA levels of TNF-α, IL-6 and IL-1β, and their receptors in
the rat CB. Moreover, Del Rio et al. (2012) found that exposure
to CIH for 21 days produced a progressive increase of the
immunoreactivity levels of TNF-α, IL-1β and iNOS in the rat
CB, while ET-1 showed a transient increase during the first week
of CIH. These results suggest that pro-inflammatory molecules
may mediate the onset (ET-1) and the maintenance (pro-
inflammatory cytokines) of the CB chemosensory potentiation.
The treatment with ascorbic acid abolished the CIH-induced
increases of TNF-α and IL-1β immunoreactivity levels in the
CB, suggesting that inflammation depends on oxidative stress
in the CB (Del Rio et al., 2012). The treatment with ibuprofen
administered systemically during CIH did not reduce the
enhanced CB chemosensory responses to hypoxia, although
reduced the increased chemosensory baseline and the increased
levels of pro-inflammatory cytokines in the CB (Del Rio et al.,
2012). Nevertheless, the administration of ibuprofen prevents
the hypertension induced by CIH exposure and the ventilatory
acclimatization in rats, suggesting that ibuprofen may act in
other sites of the chemoreflex pathway (Del Rio et al., 2012).
Ibuprofen also prevents the increase in the number of c-fos
positive neurons in the cNTS of rats subjected to CIH (Del
Rio et al., 2012). Therefore, pro-inflammatory molecules may
act on other neural structures of the CB chemoreflex pathway,
such as the brainstem cardiorespiratory centers. Similarly, Popa
et al. (2011), found in rats exposed to sustained hypoxia that the
systemic administration of ibuprofen blocked the increase of IL-
1β and IL-6 in the NTS and reduced the ventilatory response,
indicating that these cytokines were crucial for the onset of the
hyperventilatory response elicited by hypoxia (Popa et al., 2011).
More recently, De La Zerda et al. (2017) tested the hypothesis that
inflammatory signals are necessary to ventilatory acclimatization
to sustained hypoxia applied for 11 days once it is established
in rats. They found that hyperventilation was not affected by
ibuprofen when was administered for the last 2 days of the
hypoxic exposure (De La Zerda et al., 2017). In addition, they
found that hypoxia (1 h) activated microglia in the NTS, effect
that was abolished by ibuprofen administered from the beginning
of hypoxic exposure (De La Zerda et al., 2017). The activation
of the microglia induced by acute hypoxia lasted for 7 days,
and was not altered by ibuprofen administered 2 days after the
end of the hypoxia (De La Zerda et al., 2017). Thus, an early

increase of pro-inflammatory molecules is required to produce
hyperventilation following sustained hypoxia. Snyder et al. (2017)
collected tissue punches from brain regions associated with
different stages of neurodegenerative diseases in rats exposed CIH
and measured oxidative stress and inflammatory markers. They
found that CIH for 7 days produces oxidative stress and increases
pro-inflammatory cytokines in brain areas associated to early
stages of neurodegeneration (substantia nigra and entorhinal
cortex) but not in the NTS and RVLM (Snyder et al., 2017). Our
results agree with those observations. We found IL-1β, IL-6, and
TNF-α mRNA levels were augmented in the NTS of hypertensive
rats after 21 days of CIH (Oyarce and Iturriaga, 2018). These
findings suggest that pro-inflammatory cytokines in the NTS may
contribute to the maintenance of the hypertension, since CIH
increases BP in 3–4 days in conscious rats, paralleling the time
required to establish the enhanced CB chemosensory discharge
(Del Rio et al., 2016).

NEUROGENIC HYPERTENSION AND
INFLAMMATION

Neurogenic hypertension is associated with sympathetic
overflow, increased plasma angiotensin II (Ang II) and
C-reactive protein, TNF-α, IL-6, monocyte chemotactic protein
1, and adhesion molecules (Zubcevic et al., 2011), highlighting
the importance of peripheral inflammation in hypertension.
However, the role of central inflammation in neurogenic
hypertension is gaining recognition. In the central nervous
system, both circulating or released pro-inflammatory cytokines
by astrocytes and microglia act on brainstem cardiovascular
neurons (Shi et al., 2010). Waki et al. (2007) found that inducing
inflammation in the NTS of normotensive rats by increasing the
expression of the junctional adhesion molecule (JAM-1), triggers
hypertension. They also compared the expression of JAM-1 in
the NTS in young and adults spontaneously hypertensive rats
(SHRs) and normotensive Wistar–Kyoto rats and found that
JAM-1 mRNA was highly expressed in the NTS from SHR rats.
Waki et al., 2010 using RT2 Profiler PCR arrays to detect changes
on gene expression of cytokines and chemokines in the NTS
from SHR, reported an abnormal expression of inflammatory
mediators with relevant roles in the cardiovascular homeostasis,
suggesting that cytokines may contribute to the hypertension
by increasing the neuronal activity in the NTS (Waki et al.,
2010). McBryde et al. (2013), reported that CB denervation
reduces the number of CD3+ cells in the homogenate of
the brainstem of SHR rats, suggesting that an enhanced CB
chemosensory drive may induce the infiltration of T cells in
brain tissues associated with the BP control (McBryde et al.,
2013). The same group showed that systemic inflammation
induced by LPS infusion activates the rat RVLM microglia,
producing neuroinflammation and oxidative stress in rats, and
neurogenic hypertension (Wu et al., 2012). In the PVN, the
enhanced expression of pro-inflammatory cytokines elicits
hypertension, while the blockade of TNF-α or NF-κB in the PVN
attenuates the Ang-II-induced hypertension (Sriramula et al.,
2013).
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ROLE OF MICROGLIA ON BRAIN
INFLAMMATION AND CIH

Activation of microglia, the brain resident macrophages, played a
critical role in neuroplasticity and neuroinflammation (Shi et al.,
2010; Bhalala et al., 2014; Kawabori and Yenari, 2015). Although
ROS are essential for microglial inflammatory responses
(Tschopp and Schroder, 2010), the specific involvement of
microglia in CIH-induced neuroinflammation and hypertension
is not completely known. Smith et al. (2013) found that 14 days
of CIH increases the microglia mRNA expression of IL-1β,
IL-6, COX-2 and the innate immune receptor TLR4 in the
rat brainstem. Recently, Stokes et al. (2017), studied the role
played by glial cells in the rat ventilatory acclimatization to
sustained hypoxia. Using minocycline, an inhibitor of microglia
activation with anti-inflammatory properties, they blocked both
the microglial and astrocyte activation in the NTS and the
ventilatory acclimatization of rats submitted to chronic hypoxia.
One plausible mediator of the effects of CIH is Ang II, which
induces microglial activation in the PVN and hypertension

(Paton et al., 2008; Zhang et al., 2010). It is known that Ang
II and pro-inflammatory cytokines molecules participates in the
communication between neurons and glial cells (Kang et al.,
2009).

ROLE OF THE CIRCUMVENTRICULAR
ORGANS IN THE HYPERTENSION
INDUCED BY CIH

Circulating Ang II cannot effectively activate AT1 receptors
(AT1R) in the NTS and RVLM of healthy subjects, because these
receptors are protected by the brain barrier, but Ang II may access
the brain through the circumventricular organs (CVOs), regions
with weak brain barrier and a high density of AT1R (Banks and
Erickson, 2010). Saxena et al. (2015) studied the contribution of
Ang II on the sustained BP increase and FosB activation in the
median preoptic and the PVN in rats with AT1R knockdown in
the SFO. They found that CIH increased BP during the hypoxic
exposure in both control and AT1R-knockdown rats. However,

FIGURE 1 | Proposed mechanism involved in CIH-induced hypertension. A diagram displays that the oxidative stress and pro-inflammatory molecules mediate the
activation of the CB chemoreflex pathway leading to hypertension. In the NTS and RVLM, the hyperactivation of the neurons contributes to microglial activation
increasing local levels of ROS, Ang II, and pro-inflammatory cytokines.
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during the normoxic dark phase, only the controls showed a
sustained BP elevation. AT1R-knockdown rats showed a decrease
in the FosB mark in the median preoptic nucleus and the PVN.
In addition, Kim et al. (2018) found that Ang II may act at the
CB level. They found that the acute intermittent hypoxia-induced
renal sympathetic overflow (RSO) was prevented by losartan.
The CBs denervation and the pharmacological inhibition of
the SFO produced a partial reduction of RSO, while combined
CB denervation and SFO inhibition eliminated the increased
sympathetic overactivity following intermittent hypoxia. Thus,
the evidence suggests that SFO mediates the effects of elevated
circulating levels of Ang II. Proinflammatory cytokines plays a
key role in hypertension, but these molecules do not permeate the
blood–brain barrier. Thus, it has been proposed that the CVOs
mediate the hypertensive effects of circulating pro-inflammatory
cytokines. Wei et al. (2013) found that the increased BP and
RSA elicited by the intracarotid injection of TNF-α and IL-
1β was attenuated in SFO-lesioned rats. They found that the
increased BP and RSO induced by injections of TNF-α or IL-
1β into the rat SFO were attenuated by microinjections of
losartan and captopril in the SFO (Wei et al., 2015). More
recently, Wei et al. (2018) found that the intravenous injection
of IL-1β increased mRNA levels of the angiotensin-converting
enzyme, AT1R, TNF-α, and IL-1β in the SFO and the PVN.
Pretreatment with microinjections of losartan and captopril in
the SFO attenuated the expression of these excitatory mediators
in the SFO and in the PVN. These results show that pro-
inflammatory cytokines increase renin–angiotensin activity and
produce local inflammation in the SFO and PVN.

PROPOSED MODEL FOR CIH
ACTIVATION OF THE CB CHEMOREFLEX
PATHWAY

The available evidence indicates that the initial phase of the CIH-
induced hypertension relays on the enhanced CB chemosensory

drive, which triggers activation of neurons in the NTS and
RVLM leading to hypertension (Figure 1). The CB is sensible to
oxidative stress that contributes to potentiates the chemosensory
discharge. As result of the activation of the neural pathway
or a direct effect of CIH, the oxidative stress and pro-
inflammatory molecules levels increase in the NTS and RVLM
and contribute to the maintenance of hypertension. In addition,
it is likely that circulating pro-inflammatory molecules and
Ang II levels may enter the central nervous in the SFO and
the AP (Simpson, 1981). The increased central activity may
enhance the production of both ROS and pro-inflammatory
cytokines in the NTS, which may induce microglial activation
(Hirooka et al., 2010). At the same time, microglial activation
may increase the neuronal expression of NF-ββ, which increase
the production of pro-inflammatory cytokines (Shi et al., 2010).
In late phases of CIH, the inflammatory state may contribute
to increase the sympathetic activity leading to the production
of more pro-inflammatory molecules (Fernandez et al., 2014).
This positive feedback should result in a hyperactivation
of RVLM and PVN neurons. In the NTS and RVLM, a
positive feedback between ROS and Ang II may increase the
activity of glutamatergic neurons that increase the excitatory
sympathetic output to the kidneys, blood vessels, heart and
adrenal gland, eliciting a sustained increase in the BP (Crowley,
2014).
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