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Abstract: Bivalent genes are frequently associated with developmental and lineage specification
processes. Resolving their bivalency enables fast changes in their expression, which potentially
can trigger cell fate decisions. Here, we provide a theoretical model of bivalency that allows for
predictions on the occurrence, stability and regulatory capacity of this prominent modification
state. We suggest that bivalency enables balanced gene expression heterogeneity that constitutes
a prerequisite of robust lineage priming in somatic stem cells. Moreover, we demonstrate that
interactions between the histone and DNA methylation machineries together with the proliferation
activity control the stability of the bivalent state and can turn it into an unmodified state. We suggest
that deregulation of these interactions underlies cell transformation processes as associated with
acute myeloid leukemia (AML) and provide a model of AML blast formation following deregulation
of the Ten-eleven Translocation (TET) pathway.

Keywords: bivalent gene; histone modification; gene expression heterogeneity; lineage specification;
aberrant DNA methylation; blast formation

1. Introduction

In the last decade, different histone modifications have been implicated in transcriptional
regulation of genes. In this regard, tri-methylation of lysine 4 and 27 at histone H3 are well studied
modifications [1]. Tri-methylation of lysine 4 at histone H3 (H3K4me3), if present at nucleosomes that
are associated with CpG-rich gene promoters, has been found to be positively correlated with the
transcription of the respective gene. In contrast, tri-methylation of lysine 27 at histone H3 (H3K27me3),
if present at these nucleosomes, is often associated with gene repression. Experimentally, a non-linear,
approximately sigmoidal relationship between gene transcription and the modification level of
the gene promoter has been observed for both the H3K4me3 and the H3K27me3 modification [2].
Thereby, the modification level of H3K4me3 at the promoter of a gene changes from low to high,
when the transcription rate of the gene exceeds a particular threshold. The opposite holds true for the
modification level of H3K27me3.

It has been shown that both the H3K4me3 and the H3K27me3 modification are set by specific
methyltransferase complexes (tri-thorax and polycomb group complexes, respectively) that can
not only write but also read the modification [1]. This capability results in a positive feedback
on writing the modification. Such feedback enables bi-stability, i.e., the coexistence of two stable
modification states. Accordingly, cells can either carry a modified or an unmodified gene under the
same, defined conditions. We have predicted that the occurrence of bi-stable modification states
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depends, e.g., on the histone (de)-modification rates, the methylation of the associated DNA or the
number of nucleosomes that are cooperatively modified [3].

Genes that carry both the H3K4me3 and the H3K27me3 modification at nucleosomes associated
with their promoter region are called bivalent and typically show an intermediate gene expression.
Initially, bivalency has been described as a “zonal” phenomenon only, in which a broad domain of
H3K27me3 surrounds a narrower one of H3K4me3. However, it has been demonstrated recently
that both modifications indeed can reside at the same nucleosome [4]. We here focus on such truly
bivalent nucleosomes being often enriched in the vicinity of the transcription start site of a gene [5].
Bivalent genes have come into research focus because they often change their modification state
from bivalent to monovalent during developmental processes [6]. These dynamic state changes
are accompanied by alterations in the transcription of the affected gene. Loss of H3K27me3 is
accompanied by transcriptional activation of the gene, while a loss of H3K4me3 is related to its
transcriptional repression. Well known examples of bivalent genes are genes encoding transcription
factors (TFs) involved in developmental and stem cell differentiation processes, such as GATA3 [7] and
Achaete-scute complex homolog 2 (ASCL2) [8] being involved in hematopoietic and intestinal lineage
specification, respectively, or ATOH1 controlling sensory hair cell differentiation [9]. Findings on
such TFs suggest an instructive role of bivalent histone modifications regarding cell fate decisions by
controlling heterogeneous gene expression. Nevertheless, a mechanistic understanding of this control
process is still largely missing.

In the following, we introduce a theoretical model of bivalency to gain a mechanistic
understanding of the link between histone modification and transcriptional regulation. In particular,
we analyze the stability of the bivalent state depending on the properties of the histone modification
and transcriptional machinery. By computational simulation, we demonstrate: (i) that the regulatory
circuit can induce stable gene expression heterogeneity in proliferating cell populations by (reversible)
transitions from the bivalent modification state into the monovalent states; and (ii) that these transitions
are a consequence of a particular kind of asymmetric cell division randomly distributing modified
histones from the mother onto the daughter cells. Subsequently, we investigate the role of DNA
methylation in this process. We show: (i) that following DNA methylation the bivalent state becomes
destabilized; and (ii) that under these conditions gene expression heterogeneity can be induced by
active DNA demethylation. Our findings have implications for a better understanding the control and
deregulation of cell population heterogeneity as observed, e.g., in the hematopoietic stem cell system
and during tissue transformation, as e.g., blast formation in acute myeloid leukemia (AML).

2. Basic Model Assumptions

2.1. Epigenetic Regulation of Transcription: The Basic Regulatory Circuit

In the following, we built on an established theoretical model of histone methylation, which has
been introduced by our group previously [3,10]. This model, which applies to histone modifications of
CpG-rich gene promoters, considers dynamic histone modification states due to permanent histone
de-modification processes. It quantifies modification levels as the fraction of modified nucleosomes
associated with the promoter. The modification processes are described in dependence of binding
properties of the histone methyltransferase (HMT) complexes to nucleosomes and the associated DNA,
which change depending on their respective methylation state. Details on the basic model system can
be found in [3].

In an extension of the model [11], we have recently introduced a positive feedback loop between
the transcriptional activity of the gene (T) and the H3K4me3 modification level (m4). Based on
experimental findings, we assumed that transcriptional activity facilitates recruitment of H3K4me3
HMTs [12] and that H3K4me3 contributes in recruiting Pol II [13]. In the following, we assume a
negative feedback loop between transcriptional activity (T) and the H3K27me3 level (m27) in addition.
We assume that transcriptional activity suppresses the recruitment of the H3K27me3 HMTs and that
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H3K27me3 impedes recruitment of Pol II. In fact, binding of activating TFs in the promoter region has
been reported as a major factor suppressing H3K27me3 modification [14]. Moreover, polycomb group
complexes, containing the HMTs of H3K27me3, have been suggested to suppress transcription by
preventing the binding of acetyl-transferases to target genes [15].

In a first version of the model (MV1, Figure 1A), we neglect effects of DNA methylation at the
gene promoter. We describe genes that are effectively protected from DNA methylation independent of
the histone modification states of the associates nucleosomes; as genes that undergo permanent DNA
demethylation, e.g., due to the activity of Ten-eleven Translocation (TET) proteins (reviewed in [16]).
We do not consider explicit interdependencies between the two histone modifications.

Int. J. Mol. Sci. 2017, 18, 1069 3 of 21 

promoter region has been reported as a major factor suppressing H3K27me3 modification [14]. 
Moreover, polycomb group complexes, containing the HMTs of H3K27me3, have been suggested to 
suppress transcription by preventing the binding of acetyl-transferases to target genes [15]. 

In a first version of the model (MV1, Figure 1A), we neglect effects of DNA methylation at the 
gene promoter. We describe genes that are effectively protected from DNA methylation 
independent of the histone modification states of the associates nucleosomes; as genes that undergo 
permanent DNA demethylation, e.g., due to the activity of Ten-eleven Translocation (TET) proteins 
(reviewed in [16]). We do not consider explicit interdependencies between the two histone 
modifications. 

 
Figure 1. Sketch of the interactions within the regulatory circuit. (A) The simplified model version 
MV1 focuses on the interaction between histone modification and transcription, while effects of DNA 
methylation are neglected. We consider a positive feedback (green arrows) between H3K4me3 and 
transcription and a negative one (red T bars) between H3K27me3 and transcription; (B) In an 
extended model version MV2, both histone modifications are considered to be suppressed by DNA 
methylation that weakens binding of the respective HTMs. H3K4me3 suppresses DNA methylation 
by suppressing DNA methyltransferase (DNMT) recruitment, while H3K27me3 recruits DNMTs. 

This model constraint will be released in a second version of the model (MV2, Figure 1B) that 
includes interactions between histone and DNA methylation at the gene promoter. In order to 
describe the DNA methylation level of the gene promoter mDNA, i.e., the fraction of methylated CpGs 
at the promoter, we basically use the same mathematical formulation of the DNA methylation 
machinery as described in [10]. Thus, we consider maintenance and de novo DNA methylation, 
controlled by the DNA methyltransferases 1 (DNMT1) and 3a,b (DNMT3a,b), respectively. Both 
processes are assumed to be active during cell division only. In accordance with experimental 
observations, we assume DNA methylation to be subject to regulatory feedback loops with both 
H3K4me3 and H3K27me3. We assume that H3K4me3 suppresses binding of de novo DNMTs [17] 
and that DNA methylation weakens the binding of H3K4me3 HMTs to DNA [18]. The latter is 
assumed also for H3K27me3 HMTs [14]. In contrast to H3K4me3, H3K27me3 is assumed to 
contribute in recruiting de novo DNMTs, and thus destabilizes itself. This is in agreement with 
experimental findings showing that the H3K27me3 HMT Enhancer of zeste homolog 2 (EZH2) 
recruits DNMTs, but the DNMTs subsequently do not induce de novo DNA methylation before 
H3K27me3 is removed [19]. 

DNA methylation is assumed to have no direct impact on transcription. This assumption is in 
agreement with experimental findings, which show that transcriptional silencing of promoters 
precedes their DNA methylation [20]. 

2.2. Simulations of Cell Populations 

We analyze the dynamics of transcription, histone modifications and DNA methylation in a 
small cell population of 100 cells by stochastic simulations of the behavior of the bivalent circuit. One 
simulation consists of 10,000 simulation steps. We record the state of the cells every 100 simulation 
steps, here referred as one time step. Thereby, changes of the regulatory state of an individual cell 
originate in fluctuations of the histone methylation states that depend on the methylation state of the 
associated DNA and on gene transcription. We neglect all other types of permanent fluctuations, 
e.g., fluctuations in Pol II binding [21]. Fluctuations of histone modifications are simulated 

Figure 1. Sketch of the interactions within the regulatory circuit. (A) The simplified model version
MV1 focuses on the interaction between histone modification and transcription, while effects of DNA
methylation are neglected. We consider a positive feedback (green arrows) between H3K4me3 and
transcription and a negative one (red T bars) between H3K27me3 and transcription; (B) In an extended
model version MV2, both histone modifications are considered to be suppressed by DNA methylation
that weakens binding of the respective HTMs. H3K4me3 suppresses DNA methylation by suppressing
DNA methyltransferase (DNMT) recruitment, while H3K27me3 recruits DNMTs.

This model constraint will be released in a second version of the model (MV2, Figure 1B) that
includes interactions between histone and DNA methylation at the gene promoter. In order to describe
the DNA methylation level of the gene promoter mDNA, i.e., the fraction of methylated CpGs at the
promoter, we basically use the same mathematical formulation of the DNA methylation machinery as
described in [10]. Thus, we consider maintenance and de novo DNA methylation, controlled by the
DNA methyltransferases 1 (DNMT1) and 3a,b (DNMT3a,b), respectively. Both processes are assumed
to be active during cell division only. In accordance with experimental observations, we assume
DNA methylation to be subject to regulatory feedback loops with both H3K4me3 and H3K27me3.
We assume that H3K4me3 suppresses binding of de novo DNMTs [17] and that DNA methylation
weakens the binding of H3K4me3 HMTs to DNA [18]. The latter is assumed also for H3K27me3
HMTs [14]. In contrast to H3K4me3, H3K27me3 is assumed to contribute in recruiting de novo
DNMTs, and thus destabilizes itself. This is in agreement with experimental findings showing that the
H3K27me3 HMT Enhancer of zeste homolog 2 (EZH2) recruits DNMTs, but the DNMTs subsequently
do not induce de novo DNA methylation before H3K27me3 is removed [19].

DNA methylation is assumed to have no direct impact on transcription. This assumption is
in agreement with experimental findings, which show that transcriptional silencing of promoters
precedes their DNA methylation [20].

2.2. Simulations of Cell Populations

We analyze the dynamics of transcription, histone modifications and DNA methylation in a
small cell population of 100 cells by stochastic simulations of the behavior of the bivalent circuit.
One simulation consists of 10,000 simulation steps. We record the state of the cells every 100 simulation
steps, here referred as one time step. Thereby, changes of the regulatory state of an individual cell
originate in fluctuations of the histone methylation states that depend on the methylation state of the
associated DNA and on gene transcription. We neglect all other types of permanent fluctuations, e.g.,
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fluctuations in Pol II binding [21]. Fluctuations of histone modifications are simulated considering
modification and de-modification of individual histones that are associated with the gene promoter
with rate kmod θ

K and kde, respectively. Here, kmod and kde are constants and θK (K = 4, 27) is the
binding affinity of the respective HMT [3]. Subsequent changes in DNA methylation and transcription
are simulated according to differential equations given in the text below. The regulatory states are
mapped on discrete cell fates (e.g., the bivalent state) that define subpopulations of cells.

It has been shown experimentally that during cell division the histones of the mother cell are
randomly distributed onto the two daughters [22]. Accordingly, cell division results in a strong
dilution of the modified histones in both daughter cells. We simulated these effects of cell division by
performing a dilution of the modified histones after a (gamma-distributed) waiting time, i.e., after cell
cycle time τ [23]. Whenever one daughter cell retains a fraction x of the modified nucleosomes present
in the mother, the other daughter retains a fraction (1− x). We consider that the cells compete for space
within their niches. Accordingly, we keep the total number of cells fixed assuming that each increase
due to a cell division event is exactly balanced by cell loss from the niche. Thereby, subpopulations
might differ in their specific cell loss probability.

3. Results

3.1. The Occurrence of the Bivalent Modification States

Our model is consistent with the experimental finding of a non-linear, approximately sigmoidal
relationship between gene transcription and the modification level of the gene promoter; for both the
H3K4me3 and the H3K27me3 modification [2]. The H3K4me3 (H3K27me3) modification level of a
gene changes from low to high (high to low), when its transcription rate exceeds a particular threshold.
Depending on the transcriptional level at which this change occurs for the individual modification,
here referred as TK (K = K4, K27), one can, in general, distinguish two cases (Figure 2A).
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Figure 2. Occurrence of the bivalent state: (A) Shown are the H3K4me3 (red) and H3K27me3 (blue)
modification levels for different binding efficiencies of the HMTs. Intersections with the black line
mmax/2 define TK (K = K4, K27). For TK27 < TK4 (System A1, thin lines) an unmodified state is
associated with transcription levels TK27 < T < TK4 (box with horizontal lines), while for TK27 > TK4,
(System A2, thick lines) a bivalent state is associated with transcription levels TK4 < T < TK27 (box with
vertical lines); (B) Increasing the number of cooperative nucleosomes at the promoter, here for system
A1, enforces bistable modification states (red: H3K4me3, blue: H3K27me3). They can occur as exclusive
solutions (range II) or can co-occur with one of the monovalent states (ranges I: K27 and III: K4).
These states are hard to measure experimentally as averages over many cells will pretend intermediate
modification levels.

In the case TK27 is smaller than TK4 (System A1) one observes an “unmodified” state for
transcription levels between TK27 and TK4. In this state the nucleosomes associated with the gene
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promoter are neither H3K4me3 nor H3K27me3 modified. Increasing the transcription in this case,
the promoter modification state will change from “H3K27me3” to “unmodified” to “H3K4me3”.
In the opposite case, where TK27 is larger than TK4 (System A2), one observes a “bivalent” state for
transcriptional levels between TK4 and TK27. In this state, the nucleosomes associated with the gene
promoter are H3K4me3 and H3K27me3 modified.

Which of these cases is actually realized for a particular gene depends, among others, on the
promoter accessibility for HMTs. Thus, system A1 (Figure 2A, thin lines) can be changed to system
A2 (Figure 2A, thick lines) just by assuming a more open chromatin state (see: Appendix A).
Accordingly, our model predicts that cells with an open chromatin state, such as embryonic stem cells
(ESC), will have more bivalent genes than cells with more condensed chromatin, in agreement with
experimental observations [24]. Another way to induce bivalent states is increasing the cooperativity
of HTM binding and thereby inducing bi-stable states of the both histone modifications (Figure 2B,
regions I and III, [3]). In the System A1 (Figure 2A), such an increase of the cooperativity switches the
unmodified state, seen for transcriptional levels between TK27 and TK4 into a bivalent state (Figure 2B,
region II). Our further studies are focused on systems with high cooperativity of HTM binding.

3.2. Balance between Histone Modification States (the Histone Modification Machinery)

In our model each value of the H3K4me3 modification level (m4) and the H3K27me3 modification
level (m27) is associated with a well-defined transcription level T1(m4) and T2(m27), respectively,
via a self-consistent equation. In contrast, due to potential bi-stability of the modifications, a specific
transcription level can be associated with either one or three different modification levels (compare:
Figure 2). The explicit functions T1(m4) and T2(m27) used in our model are given in the Appendix A.
All modification states, i.e., all pairs {m4*, m27*}, which can be realized given a particular organization
of the histone modification machinery, need to solve the equation:

T1(m4∗; {X}) = T2(m27∗; {X}) (1)

Thereby, the solutions depend on the parameter set {X}. Among these parameters are the
binding energies of the HMTs, the histone (de-)modification rates and the number NH of cooperative
nucleosomes associated with the gene promoter. Examples of the set of possible modification states
{m4*, m27*} are shown in Figure 3A for genes with different numbers of cooperative nucleosomes
NH. For NH > 5, bi-stable regions for m4 and m27 are induced (compare: Figure 2B). Thus, for a
limited range of m4 (m27) three possible pairs {m4*, m27*} exist for each value of m4 (m27). Under the
same conditions, a range of bivalent states becomes manifest that extents with increasing NH. The full
parameter sets {X} applied in these examples are given in Table A1.

3.3. Transcription Controls Epigenetics (the Transcriptional Machinery)

According to the assumptions described above, the histone modification machinery defines all
possible modification states that potentially can be realized. Which of them actually become realized is
defined by the transcriptional machinery. The fix points of the modeled regulatory circuit {m4

#, m27
#,

T#} are the solutions of the equation:

dT/dt = f (m4∗, m27∗, T; {Y}) = 0 (2)

Here, dT/dt is the time derivative of T and {Y} refers to the parameter set describing the
transcriptional machinery. Among the parameters of {Y} are the maximum promoter activity of
a gene and the effective transcript degradation rate. In case a gene encodes a TF that auto-activates
itself—which is observed for several key developmental or differentiation regulators, such as the TFs
PU.1 or ASCL2 [25,26]—the parameter set {Y} contains also the parameters describing this kind of
feedback; as e.g., the number NTF of TF binding sites contained in the gene promoter that are bound
by the TF encoded by the gene itself.
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As m4 and m27 depend on T, solving Equation (2) in general requires solving a
self-consistent equation:

T# = g
(

m4
#, m27

#, T#; {Y}
)

(3)

Details about the functions g applied in our study are given in the Appendix B. Figure 3B shows
typical solutions of Equations (1)–(3) for different degrees of auto-activation (NTF = 0 and 3). The gene
without auto-activation (NTF = 0) possesses three transcriptional states; two of them being stable and
one being unstable. The stable, low expression state is associated with an H3K27me3 state and the
intermediate expression state with a bivalent one. Introducing auto-activation (NTF = 3) enables a third
stable state—a high expressing H3K4me3 state—and increases the expression level of the bivalent
state. Figure 3C shows the localization of the obtained solutions and their transcriptional level in the
{m4, m27} space. It can be seen that: (i) H3K27me3 states are always related to low gene expression;
(ii) the H3K4me3 states are associated with high gene expression; and (iii) the bivalent states show a
broad range of intermediate expression values. For the chosen parameter set {X}, there exists no stable
unmodified state independent of the chosen parameter set {Y}. The set {Y} applied in these examples is
given in Table A2.
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induced, e.g., by a TF network that is linked to the gene of interest [10]. The modification states and 
the transcriptional activity of such a “network-driven” genes are shown in Figure 3D–F. The gene 
that is solely activated by the TF network (NTF = 0, FTF = 4, Figure 3D) has only a single stable bivalent 
state. However, small changes of its transcriptional activity can induce state transitions. In 
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Figure 3. The bivalent state in MV1: (A) Shown are the possible pairs {m4*, m27*} applying parameter
set {X} for different numbers (NH = 4 (orange), 12 (green), and 20 (black)) of the cooperative nucleosomes
associated with the promoter. The range of m4 and m27 is exponentially spread approaching its
maximum and minimum values (see: Appendix A). The boxes indicate the specific modification
states; (B) Transcription states derived applying parameter set {Y} for NH = 20 without (brown:
NTF = 0) and with (black: NTF = 3) transcriptional auto-feedback. The solutions are given as the
intersections of the functions g with the function y = x (dots); (C) Solutions of Equations (1)–(3) in the
{m4, m27} space. The solid (open) dots on the curve indicate the stable (unstable) fix points for NTF = 3.
The transcriptional level of all other pairs is color coded; (D) Transcriptional activation (brown line,
FTF = 4); and (E) repression (black line, FTF = 1/4) changes the solutions quantitatively as well as
qualitatively. (D,E) References (FTF = 1) are shown as grey lines; (F) Solutions of Equations (1)–(3) and
fix points for the system shown in (E).

The described circuit can control transitions between regulatory states characterized by different
histone modification levels and, thus, transcriptional activities. Such transitions can be induced,
e.g., by a TF network that is linked to the gene of interest [10]. The modification states and the
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transcriptional activity of such a “network-driven” genes are shown in Figure 3D–F. The gene that
is solely activated by the TF network (NTF = 0, FTF = 4, Figure 3D) has only a single stable bivalent
state. However, small changes of its transcriptional activity can induce state transitions. In particular,
an increase (decrease) of less than 35% of the transcriptional activity through the background TF
network enables the gene to switch into a monovalent H3K4me3 (H3K27me3) state. This option does
not exist for the reference gene (FTF = 1), which can only switch between a bivalent and a monovalent
H3K27me3 state. The gene with auto-feedback that is repressed by the background TF network
(NTF = 3, FTF = 1/4, Figure 3E) possesses a bivalent state with low transcriptional activity, while the
reference system (FTF = 1) shows a bivalent state with high activity. Thus, switches into H3K4me3 and
H3K27me3 states will occur with different frequencies. Figure 3F shows the localization of the fix points
following gene repression and their transcriptional level in the {m4, m27} space. Remarkably, for genes
that are slightly less repressed, two stable bivalent states can be observed, i.e., multiple bivalent states
can exist for a single gene that is embedded in a larger regulatory network structure.

Changes between the stable states require fluctuations of the histone modification level. Details on
the stability of the fix points of the system under permanent histone (de-)modification are given in
Appendix C. These results demonstrate that, for the applied parameter sets, the bivalent states are
more or less long term stable. Hence, cell division-related fluctuation, i.e., cell division-related dilution
of modified nucleosomes, are required to resolve the bivalent states. This effect was considered in the
following stochastic simulations.

3.4. Histone Modification Can Instruct Gene Expression

Epigenetic lineage priming and specification have been described for different stem cell systems
including the hematopoietic system [27]. Thereby, resolution of bivalent chromatin states of TFs
has particularly been associated with T-cell specification. The maybe best analyzed example is
GATA3 [7,27,28]. The promoter of this gene is bivalent modified in hematopoietic stem cells (HSCs),
multipotent (MPPs) and common lymphoid progenitors (CLPs) as well as in B-cells and becomes
activated, i.e., it loses H3K27me3, in T-cells. In contrast, GATA3 expression becomes repressed,
i.e., its promoter loses H3K4me3, in common myeloid (CMPs), granulocyte-macrophage (GMPs),
and megakaryocyte-erythroid Progenitors (MEPs). Moreover, GATA3 is auto-activated [29] and the
promoter DNA of GATA3 remains unmethylated in all analyzed cell types [28]. Thus, resolving the
bivalent mark at nucleosomes associated with the GATA3 promoter during proliferation can serve as
an example of an instructive role of histone modifications regarding gene expression. If the promoter
loses the H3K27me3 marks, GATA3 expression becomes up-regulated. Up-regulation of GATA3
increases the potential to specify into T-cell lineages [30]. If the promoter loses the H3K4me3 marks,
GATA3 expression becomes down-regulated and the cell starts to specify more likely into the myeloid
lineage [31].

In order to study the establishment and long-term maintenance of such a heterogeneous cell
population, we translated the experimental findings on a GATA3-dependent lineage specification
into a general model. As illustrated in Figure 4A, the model accounts for three different
cell types that are defined by their histone modification state: bivalent stem cells (SC),
H3K27me3-monovalent, pro-myeloid progenitors (P1), and H3K4me3-monovalent, pro-lymphoid
progenitors (P2). Furthermore, we assumed that all cell types proliferate with an average cell cycle
time τ0 of 2.5 time steps (250 simulation steps). Subsequent to each cell division P1 or P2 cells leave
the system providing space for the daughters.

Starting from a homogeneous cell population of bivalent SCs, over time a heterogeneous,
albeit dynamically stabilized cell population is established. This heterogeneity inherently emerges
due to a random loss of H3K4me3 or H3K27me3 modifications in individual cells after cell division,
which leads to bimodal H3K4me3 and H3K27me3 distributions as shown in Figure 4C. As transitions
from the bivalent to a monovalent histone modification state are directly linked to changes in gene
expression, the different cell types can also be distinguished based on their transcriptional activity
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(Figure 4B). In the model, bivalent SCs are characterized by an intermediate transcription (0.01 < T < 1),
while P1 cells express low levels (T < 0.01) and P2 cells high levels (T > 1) of GATA3 (Figure 4B) closely
mimicking experimental results. In contrast to typical flow cytometry measurements, which can
only provide a snapshot of the population heterogeneity, computer simulations allow monitoring the
dynamic changes of transcriptional (Figure 4D) and epigenetic states (Figure 4E,F) over time. It can be
seen that the heterogeneity of the cell population remains long-term stable.

Systematic imbalance of the expression states of GATA3 can lead to disease. For example,
loss of GATA3 induces B cell lymphoma [32]. This can be due to changes in the histone modification
machinery [33]. Examples of related simulations are given in the Appendix D (Figure A4).
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Figure 4. An instructive role of histone modification for GATA3 expression heterogeneity: (A) Sketch
of the model of GATA3 heterogeneity. All cells proliferate. Expansion of the compartment is balanced
by loss of pro-myeloid progenitors (P1) or pro-lymphoid progenitors (P2) cells that change into a
differentiated compartment; (B–F) Simulation results for a system with stable self-renewal of the
bivalent GATA3 state (SC); (B) Simulated distribution of GATA3 expression in the proliferative
compartment at t = 100 (see: D–F). All three states, SC, P1 and P2, are observed; (C) Bimodal
distributions of H3K4me3 and H3K27me3 states are observed within the population; (D,E) Time
dependent composition of the population as seen for: transcription (D); H3K4me3 (E); and H3K27me3
(F) modification (color coded). Shown are cell numbers averaged over 50 simulations with 100 cells
each. Black lines separate the cell types based on transcription levels: P1 < 0.01 ≤ SC ≤ 1 < P2.

3.5. DNA Methylation Destabilizes Bivalent States

Thus far, we have neglected DNA methylation. However, transcription of many genes has been
demonstrated to be affected by DNA methylation. In particular, methylation of CpG-rich promoters is
frequently accompanied by repression of the associated gene [16]. Moreover, age-related changes in
DNA methylation can be predicted by histone modification states in young individuals [34]. Thus,
we considered effects of promoter DNA methylation on bivalent histone modification in a second
model version (MV2).

In this setting, we describe changes of the fraction mDNA of methylated CpGs at the gene promoter,
neglecting effects of stochastic methylation of individual CpGs [35]. As consequence of the interactions
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between histone modifications and DNA methylation (Figure 1B), all possible modification states of
the gene, i.e., all triples {m4*, m27*, mDNA*}, need to solve, beside Equations (1)–(3), the equation:

τdmDNA/dt = H(m4∗, m27∗, mDNA∗; {Z}) = 0 (4)

where dmDNA/dt is the time derivative of mDNA and {Z} refers to the parameter set describing the
DNA methylation machinery. This set includes the probability of de novo DNA methylation Dnovo

and the probability of maintaining DNA methylation Dmain. The parameter set {Z} is given in Table A3.
A general difference compared to the system without DNA methylation is that the two histone states
are now linked not only via transcription but also via DNA methylation. Details can be found in
Appendix E.

Figure 5A shows all possible pairs {m4*, m27*} for such a regulatory system, using the same
parameter set as in the unmethylated system (Figure 3A–C) for a fixed number of cooperatively
acting nucleosomes (NH = 20). It can be seen that with increasing de novo DNA methylation activity
unmodified states become possible, where the nucleosomes carry neither H3K4me3 nor H3K27me3.
For the system with a de novo DNA methylation probability of 0.3, four stable states are observed
(Figure 5B,C); among them, two intermediate expressing states that are distinguished by their DNA
methylation level. The bivalent state shows low, while the unmodified state shows high methylation.
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Figure 5. The bivalent state in MV2: (A) Shown are all possible modification states applying the
parameter sets {X} and {Z}. Increasing de novo DNA methylation probabilities Dnovo (black: 0,
dark yellow: 0.1, violet: 0.3), unmodified states become possible and bivalent states move to lower
modification levels; (B) Shown is the transcription associated with the modification states; and (C) the
DNA methylation level of the CpGs of the associated promoter for Dnovo = 0.3. Values are color coded.
The solid (open) dots on the curve indicate the stable (unstable) fix points of the system observed for
parameter set {Y}.

As discussed above, state fluctuations are required to switch between the stable modification
states. In simulations, we observed that DNA methylation reduces the stability of the bivalent state
against fluctuations. The basin of attraction of the bivalent state shrinks and the state becomes less
frequent populated (see: Appendix C, Figure A2). Thus, in the model, DNA methylation has similar
effects on bivalent states as chromatin compaction (compare: Figure 2A and Appendix A) but can
occur independently. In cells these events are often linked [24].

3.6. A Model of Blast Formation during AML

Besides GATA3, PU.1 is a second gene encoding a major TF responsible for specification into
either the myeloid or the lymphoid lineage. In HSCs and MPPs the PU.1 promoter is associated with
H3K4me3 only and accordingly the gene is expressed [27]. In myeloid progenitors PU.1 expression
becomes further up-regulated, while in T-cell progenitors the gene becomes down-regulated [36].
In T-cells, the promoter loses H3K4me3 [27] and becomes methylated [37]. PU.1 can become
auto-activated because it encodes a TF that binds back to its promoter [25]. This binding was suggested
to result in recruitment of TET2-proteins and subsequently in active demethylation of the promoter



Int. J. Mol. Sci. 2017, 18, 1069 10 of 21

in all cells where PU.1 is activated [38]. Strikingly, in myeloma cells, PU.1 becomes down-regulated
and methylation of the PU.1 promoter is found similar to T-cells [39]. Based on these observations,
we suggest a mechanistic model of TET2 mutation associated AML.

Figure 6A shows a sketch of a model of undisturbed PU.1 regulation (SC: unmodified,
multi-potent progenitors: 0.01 < T < 1, P1: H3K4me3-monovalent, pro-myeloid progenitors: T < 0.01,
P2: H3K27me3-monovalent, pro-lymphoid progenitors: T > 1), which considers both DNA methylation
and demethylation. Thereby, DNA demethylation occurs permanently and its rate is assumed to be
proportional to the expression of the PU.1 gene as suggested by the experimental finding mentioned
above (see also: Appendix E). As in the GATA3 model, we assume that all cell types proliferate and that
subsequent to each cell division (if available) only P1 or P2 cells are transferred into a differentiated
compartment, providing space for the daughters.

Simulation results of that model are shown in Figure 6B,C. In contrast to the GATA3 model, SCs are
characterized by an unmodified and partially DNA methylated state. A bistable state is not observed
because both H3K4me3 and H3K27me3 have been destabilized by DNA methylation. In committed
cells, PU.1 becomes either up-regulated (P1) following gain of H3K4me3 or down-regulated (P2)
following gain of H3K27me3 (Appendix F, Figure A5A,B). Thereby, gain of modification is enabled
as a consequence of the ongoing active DNA demethylation between two cell division events. Thus,
it depends on the cell cycle time τ. Increasing τ, such that DNA demethylation is effective even
for slowly demethylating promoters of repressed genes (compare: Appendix E, Equation (A9)),
the bivalent state becomes stabilized (Appendix F, Figure A5C,D). In contrast to the GATA3 system,
an expansion of the SC state is observed, accelerating and not decelerating proliferation (Appendix F,
Figure A6).
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Figure 6. Model of blast formation: (A) Sketch of the assumed model of PU.1 regulation. Note that
DNA demethylation is expression dependent. As in the GATA3 model, only P1 and P2 cells exit the
proliferative compartment; (B,C) PU.1 regulation in undisturbed cells. Stable high expression (P1)
is enabled by permanent active DNA demethylation. In P2 cells PU.1 is repressed by H3K27me3
and DNA methylation; (D,E) PU.1 regulation in blast cells. Loss of active DNA demethylation
(at t = 50) compromises PU.1 activation and leads to expansion of SC-like blasts SC’; (B–E) Shown
are cell numbers averaged over 50 simulations with 100 cells each. Colors encode expression
(B,D) or DNA methylation (C,E). Black lines separate the cell types based on transcription levels:
P1 < 0.01 ≤ SC ≤ 1 < P2.

To model blast formation, we assume that active DNA demethylation is no longer functional,
e.g., according to mutations in the gene encoding TET2 [40]. Consequently, the promoter of the PU.1
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gene, as other promoters being under the control of active DNA demethylation by TET2-proteins,
becomes methylated independent of the expression of PU.1. This results in complete de-modification
of the PU.1 promoter also in cells where PU.1 is expressed under normal conditions. The affected cells
express PU.1 at an intermediate level and thus are assumed to remain in the expansive niche (see cell
type definition). This copes the phenotype known from so-called “blast cells” (SC′), which show
PU.1 hypermethylation and are proliferative active [41]. Simulations of the system (Figure 6D,E and
Appendix F, Figure A5E,F) actually show that nearly all cells become fixed in the unmodified and
DNA methylated state immediately after the TET2 mutation is induced (t = 50).

The system can be re-transformed by external triggered DNA demethylation but will fall
back into the blast system in case this trigger is taken away. In contrast to recruited DNA
demethylation, external triggered DNA demethylation (e.g., applying DNMT1 inhibitors) will affect
all expression states in the same way and thus induces the bivalent and not the unmodified state.
Under such forced DNA demethylation the PU.1 expression might be similar to the un-mutated
system, but the specification of P1 and P2 is enforced by higher and not by lower cell division
frequency (see discussion).

4. Discussion

Transcriptional feedback loops that enable switches between gene expression states have
been identified as basic motifs of gene regulatory networks [42]. Combination of feedback
mechanism allows triggering decision processes between alternative gene expression programs.
Histone modifications have been originally thought to stabilize the so achieved states [43].
Nevertheless, bivalent modifications have early been implicated also in decision making regarding
developmental and stem cell differentiation processes [6]. Here, we provided a mechanistic model on
how they might confer their regulatory capacity. In our model, both the activity of TFs as well as cell
division events can change the state of bivalent modified promoters. Accordingly, circuits of bivalent
genes can be considered as responsive or instructive, respectively. The latter because cell division can
not only induce switches between histone modification states [3], but can also robustly trigger cell
intrinsic decision processes. In contrast to extrinsically triggered decisions, these decisions do not
require a heterogeneous or fluctuating environment. They only require random distribution of histones
from the mother onto the daughter cells. Thereby, cell cycle time affects the proportions of decision
making. Consequently, the model predicts proliferation activities to be essential for gene expression
heterogeneity. Interestingly, a recent report on bivalent genes suggests that in fast proliferating cells,
as ESCs, histone modification is under cell cycle control [44].

We focused on the case where the nucleosomes associated with the gene promoter carry both
H3K4me3 and H3K27me3. ChIP-seq measurements alone do not provide this information and cannot
distinguish this case from a case where a fraction of cells carries one and the complementary fraction
the other modification. However, such kind of heterogeneity might be equally important for lineage
specification and developmental processes as shown for H3K27me3 heterogeneity [45].

Our theoretical studies build on previous results of our group on the dynamics of histone
modifications that are set by HMTs, being part of protein complexes that can read the modification.
The gene promoters bound by these HMTs can assume bi-stable modification states capable of
encoding a memory. Similar approaches have been published for the first time by Dodd et al. [46,47].
More complex models of cooperative pattern formation of histone modifications have been suggested
by Anink-Groenen et al. [48]. Here, we studied a model combining histone modifications that can
activate and repress gene transcription. Such a circuit has also been approached mathematically by Ku
et al. but without a direct link between histone modification and transcription [49]. The regulation
proposed by our model defines a set of histone modification states that can be realized in general,
while the specific coupling of the gene’s transcription to the modifications specifies the states that are
actually realized under given conditions. Thus, our approach allows separating the properties of the
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regulatory circuit that rely on the histone modification machinery from those relying on the TF-network.
Thereby, existence of bivalency depends, among others, on the accessibility of the promoter.

In our model, DNA methylation de-stabilizes bivalent states reducing the effective binding
energy of the HMTs to the promoter, i.e., reducing its accessibility. Such de-stabilization can induce an
unmodified histone state. We have shown that introducing active DNA demethylation, gene expression
heterogeneity can also result from this unmodified state as a consequence of successive DNA
demethylation during the cell cycle; increasing the accessibility again. Assuming that the effectiveness
of this process depends on the expression of the gene, first activated and at later times also repressed
genes become DNA demethylated. Thus, also in this case, cell cycle time affects gene expression
heterogeneity. Consequently, the response of gene expression heterogeneity on changing proliferation
activities might dependent of the promoter methylation dynamics of the gene under consideration.
Recent experimental findings suggest that they show large clonal differences [35].

We applied our circuits to explain gene expression heterogeneity in hematopoietic cells.
The examples provided describe qualitative features of expression heterogeneity of two genes encoding
basic TFs of hematopoietic lineage specification, GATA3 and PU.1. Activation of these genes is
known to be associated with an increased potential to specify into lymphoid and myeloid lineages,
respectively. These models may not qualify to explain the entire specification process into these
two lineages, as e.g., [36], but they provide, for the first time, clear hypotheses on how histone
modification might be involved. Thereby, the models are consistent with different experimental
findings on histone modification profiles of HSCs and their progeny. Formally, they could be used to
fit fluorescence-activated cell sorting (FACS) data on the decision process, but this would overstress
their potential at the current state of the art.

The two examples (GATA3, PU.1) were chosen as closely related as possible, sharing all
parameters of the histone and transcriptional machinery. This allows us to demonstrate that the
introduction of DNA methylation can impair one regulatory principal while potentially introducing a
“complementary” one. Thus, tight regulation of DNA methylation is an essential mechanism not only
controlling bivalency but also a regulatory mechanism during lineage specification in general.

Our AML model bases on break down of an active lineage specification mechanism.
Under normal conditions, self-renewal of the stem cells (SC) requires DNA methylation, in agreement
with experimental findings on HSC self-renewal [50], and specification of P1 requires active
DNA demethylation. Loss of demethylation, i.e., of the active lineage specification mechanism,
induces hypermethylation of the PU.1 promoter and a differentiation block in agreement with
experimental findings in AML [39] as well. Such loss of demethylation can be expected in about
28% of AML cases, where either the TET2 gene or the isocitrate dehydrogenase 1/2 (IDH1/2) genes
are mutated [51]. Beside PU.1 many other demethylation targets are affected in these cases. However,
a similar affect can be expected by down-regulation of PU.1 alone, as TET2 is recruited to PU.1 binding
sites. Consistently, a moderate down-regulation of PU.1 indeed is sufficient to induce AML in mice [52].
Moreover, in about 26% of AML cases mutations of DNMT3a have been found [51]. Changes in
DNMT3a function will affect the DNA methylation efficiency and thus also affect the outcome of
our model. However, we have shown that lineage specification in the PU.1 system can be repressed
simply by accelerating proliferation. This agrees with experimental findings that DNMT3a-mediated
promoter hypermethylation is rather a consequence of AML progression, in particular of enforced
proliferation, than the origin of AML [53].

We already mentioned that, analog to PU.1, also systematic imbalance of the expression states
of GATA3 can lead to tissue transformation and that loss of GATA3 has been found to induce B cell
lymphoma [32]. In the last years, it has been shown that PU.1 and GATA3 interact to control the
myeloid-lymphoid switch [31]. Thus, the models introduced here can be considered as basic modules
of a more complex model of this essential switch in hematopoietic lineage specification.
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5. Conclusions

In agreement with experimental observations, our model suggests that bivalent states are fostered
by open chromatin and a high degree of cooperative binding of H3K4me3 and H3K27me3 HMTs.
Loss of bivalency due to promoter de-modification subsequent to cell division can instruct gene
expression. Accordingly, major effectors of gene expression heterogeneity are the kinetics of histone
modification reactions and the cell cycle time. Decreasing the cell cycle time de-stabilizes the bivalent
state. This could be experimentally tested, e.g., for the GATA3 promoter.

Such destabilization can also be achieved by DNA methylation, which potentially replaces bivalent
by unmodified states. In such a case, active DNA demethylation during the cell cycle can instruct gene
expression similar to loss of bivalency after cell division. In addition, here, emerging gene expression
heterogeneity depends on the time scale of histone modification reactions and on the cell cycle time.
We suggest that this kind of regulation is impaired during AML blast formation following loss of
function mutation of the TET pathway.

Computational models of epigenetic regulation of transcription enable testing hypotheses on the
interactions between different (activating and repressive) epigenetic marks. Thus, they can support
a mechanistic understanding of chromatin dynamics and its impact on decision processes during
development and lineage specification.
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Appendix A. Model of Histone Modification

Regulation of Histone Modification

The binding probabilities of the HMTs, θK (K = 4, 27), are calculated assuming a positive feedback between
the presence of the histone mark K and the recruitment of its HMTs. Such a feedback has been demonstrated for
both H3K4me3 and H3K27me3 [1]. According to this assumption, the binding probability of the HMT of histone
mark K depends on the fraction mK (K = 4, 27) of modified nucleosomes of the NH cooperative nucleosomes
associated with the promoter and is given by:

θK =
1

1 + exp
(
εK

0 + (1−mDNA)ε
K
BS + mKε

K
HMNH + λK log(T)

) (A1)

where ε0
K is the ground enthalpy per bound HMT complex and εBS

K and εHM
K are the free energies of HMT

binding to DNA and to histone mark K, respectively. They are specific for histone mark K and are scaled by the
Boltzmann unit. A decrease (increase) of ε0

K describes an increase (decrease) of the promoter accessibility. In this
way, System A1 was changed to A2 by decreasing ε0

K by 2.
For MV1 (stable DNA methylation), the fraction of methylated CpGs of the promoter mDNA is a

constant. Setting mDNA = 0, we describe a completely unmethylated promoter DNA. In MV2, mDNA can
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vary (see: Appendix E). The factor λk is−1 for H3K4me3 and +1 for H3K27me3. Assuming a dynamic equilibrium
between modification and de-modification, ΘK has to solve:

θK =
CKmK
1−mK

(A2)

where CK is the de-modification constant CK = kde/kmod; i.e., the ratio between the de-modification rate kde and
the modification rate kmod for the respective modification. Using Equation (A2), rearrangement of Equation (A1)
according to log10(T) yields:

log10(T) =
ln
(

1−mK

CKmK
− 1

)
−

(
εK

0 + (1−mDNA)ε
K
BS + mKε

K
HM

)
λK

(A3)

where K specifies the modification, i.e., T = T1 (K = 4) and T = T2 (K = 27) as described in the text.
Changes of the solutions of Equations (1)–(3) according to parameter changes are often hard to follow in a

linear plot of m27 versus m4. We therefore used a transformation of both variables which spreads their values if
they approach their minimum and maximum. We used: mK* = 4000 − 500 × ln((mmax −mK)/mK), with mmax
being the maximum modification level of the respective modification, given by: 1/(1 + CK) [3].

Table A1. Parameter set {X} of the histone modification machinery. * scaled by the Boltzmann unit.

Parameter Value Description

ε0
4, ε0

27 9.0, 10.0 ground enthalpy per bound HMT *

εBS
4, εBS

27 −5.0, −5.0 free energy of CpG binding *

εHM
4, εHM

27 −0.5, −0.5 free energy of histone binding *
C4, C27 0.1, 0.1 de-modification constant

NH 4/12/20 number of cooperative nucleosomes

Appendix B. Model of Transcriptional Regulation

Regulation of Gene Expression

In the original model, we introduced a double positive feedback between transcription and the activating
histone mark H3K4me3. Here, we extended the model by introducing a double negative feedback between
transcription and the repressive histone mark H3K27me3 (see text). We assumed the transcription of the gene to
depend on modification levels m4 and m27 of the gene promoter. Accordingly, the transcription of the individual
genes is calculated by solving:

dT
dt

=
Pmax((m0+m4)(1−m27))

1 +
Pmax − 1
FTFFauto

− δT (A4)

where Pmax is the maximum promoter activity and δ the transcript degradation rate. FTF and Fauto are the
regulation factors for the TF-network and the auto-regulation of the gene, respectively. The constant m0 << 1
ensures that genes can be transcribed with a small rate also if the promoter is devoid of H3K4me3 (m4 = 0).
Details about the underlying regulatory principles, which are based on thermodynamics [54]. Fauto is given by:

Fauto =

(
1 + Texp(εA)

1 + T

)NTF

(A5)

where εA is the decrease of the free energy of polymerase binding to the promoter, following auto-activation of
the gene. It is scaled by the Boltzmann unit. NTF is the number of binding sites at the promoter for the TF encoded
by the gene. Assuming a dynamic equilibrium of the transcription T, the function g of Equation (3) is given by:

(T) =

Pmax(m0+m4)(1−m27)

1 +
(Pmax − 1)

FTFFauto
δ

(A6)
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Table A2. Parameter set {Y} of the transcription machinery. Rates are given in events per simulation
step. * scaled by the Boltzmann unit.

Parameter Value Description

Pmax 100 maximum transcription rate
δ 1.5 transcript degradation rate
εA 2 free energy of polymerase binding *
FTF 4/1/0.25 regulation factor of the TF-network
NTF 0/3 number of binding sites for auto-activation

Appendix C. Stochastic Simulation

In a first series of computer simulations of the model, we enabled changes of the histone modification level
with defined rates, kde and kmod (CK = kde/kmod, K = 4, 27). In this series, we did not consider: (i) dilution
of modifications due to cell division events; and (ii) active DNA demethylation. The so-defined stochastic
system shows similar solutions as the deterministic one. This is shown in Figure A1 providing simulation
results for systems without (NTF = 0) and with transcriptional feedback (NTF = 3). The borders between the
attractors of the fix points are clearly separated from the fix points themselves. Thus, at the given level of
fluctuations, transitions between the different states are rare, i.e., the states are stable over several cell cycles.
Figure A2 demonstrates that DNA methylation destabilizes the bivalent state. For the simulations shown in
Figures A1 and A2, the parameter sets of the GATA3 and PU.1 system have been applied, respectively.
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Figure A1. Effects of stochastic histone (de-)modification I. Shown are results for the simulated
distribution of histone modification states for a system: without (A–C) (NTF = 0); and with
(D–F) (NTF = 3) transcriptional auto-activation. The color codes for transcription of the gene (A,D);
and the frequency of the states (B,E) are as follows: blue, low; and red, high. All NH

2 (400) possible
initial states {m4, m27} have been considered in 100 realizations; (C,F) The basins of attraction separate
the fix points (blue: H3K27me3, green: bivalent, red: H3K4me3).
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bivalent state. In Figure A3, additional simulation results for system shown in Figure 4 are 
provided. Figure A3A–C demonstrates that the fix point of P2 is long term stable, as regeneration of 
the system from P2 cells takes up to 16 cell cycles (40 time steps). Figure A3D–F demonstrates that 
the population of bivalent cells expands if the cell cycle time τ is increased. Changes of the 
parameters of the epigenetic machinery lead to changes in the population heterogeneity. Figure A4 
shows simulation results for the dependence of the systems composition on the absolute values of 
the histone modification rates. 

 
Figure A3. Regulatory states of the GATA3 circuit. Time dependent composition of the system, as 
seen for: transcription (A,D); H3K4me3 (B,E); and H3K27me3 (C,F) obtained in simulations with 
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Figure A2. Effects of stochastic histone (de-)modification II. Shown are results for the simulated
distribution of histone modification states for a system with transcriptional auto-activation (NTF = 3).
In contrast to Figure A1D–F, DNA methylation changes are considered (Dnovo = 0.3). The color codes
(blue: low, red: high) for transcription of the gene (A); the frequency of the states (B); and the basins of
attraction (C) are as follows: blue, H3K27me3; green, bivalent; red, H3K4me3; and yellow, unmodified.
Introducing DNA methylation, the basin of attraction of the attractor of the bivalent state shrinks
(compare Figure A1F).

Appendix D. The GATA3 Circuit

Simulations of the GATA3 circuit have been performed using the parameter sets {X} and {Y} with NH = 20.
As an exception, εHM

K was changed to 0.55 for K = 4 and 27 in order to stabilize the bivalent state. In Figure A3,
additional simulation results for system shown in Figure 4 are provided. Figure A3A–C demonstrates that the fix
point of P2 is long term stable, as regeneration of the system from P2 cells takes up to 16 cell cycles (40 time steps).
Figure A3D–F demonstrates that the population of bivalent cells expands if the cell cycle time τ is increased.
Changes of the parameters of the epigenetic machinery lead to changes in the population heterogeneity. Figure A4
shows simulation results for the dependence of the systems composition on the absolute values of the histone
modification rates.
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Figure A3. Regulatory states of the GATA3 circuit. Time dependent composition of the system, as seen
for: transcription (A,D); H3K4me3 (B,E); and H3K27me3 (C,F) obtained in simulations with different
initial conditions ((A–C) P2 cells only, τ = τ0) and increased cell cycle time ((D–F) τ = 10 τ0). The values
are color coded. Black lines separate SC from P1 and P2 cells. In (D–F), the regulatory states have been
recorded every 1000th simulation steps to show the same number of cell cycles as in Figure 4D–F.
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Figure A4. Epigenetic de-regulation of the GATA3 circuit. Shown are simulation results demonstrating
the dependence of the systems composition on the absolute values of the (de-)modification rates kmod

and kde. At time t = 5, these rates are decreased: (A) for both modifications; (B) for H3K4me3 only;
and (C) for H3K27me3 only, by a factor of 10, while their ratio CK remains conserved. All other
parameters and color code are set as in Figure 4.

Appendix E. DNA Methylation Model

In order to calculate regulatory states of genes in the presence of DNA methylation, a simple model of DNA
methylation was applied. This model considers the processes of maintenance and de novo DNA methylation at
CpG rich promoters. Accordingly, the time derivative of the fraction of methylated CpGs within the promoter
mDNA is given by:

τ
dmDNA

dt
= Dnovoh(m4, m27)(1−mDNA)− (1−Dmain)mDNA (A7)

where Dmain and Dnovo are the maintenance and de novo DNA methylation probabilities, respectively.
The function h depends on the histone modification state of the nucleosomes associated with the promoter.
It is given by:

h =
1 + exp

(
−D27

CGm27

)
1 + exp

(
D4

CGm4 −D27
CGm27

) (A8)

where DCG
K (K = 4, 27) are constants which describe the impact of histone modification K on binding of the de

novo DNMT to the promoter. H3K4me3 methylation suppresses the binding. Thereby, DCG
4 is the free energy

change associated with binding at m4 = 1 scaled by the Boltzmann unit. Presence of H3K27me3 weakens the
effect of H3K4me3, while at m4 = 0 it has no effect. Calculating solutions of Equations (1)–(3) in presence of DNA
methylation, a stationary state dmDNA/dt = 0 is assumed (see Equation (4)). In stochastic simulations of the
system, DNA methylation is updated after each cell division only, i.e., the Dmain and Dnovo are probabilities per
cell division event.

In the model of the PU.1 circuit active DNA demethylation is assumed in addition. According to the
experimental finding that binding of the PU.1 protein to the promoter recruits DNA demethylation enzymes
(TET-proteins), the rate of (de-)modification is assumed to be PU.1 expression dependent. Thus, in the simulations,
demethylation occurs with a rate:

DDE =
D0

DETδ
Pmax

(A9)

where DDE
0 is the maximum DNA demethylation rate per simulation step.

Table A3. Parameter set {Z} of the DNA methylation machinery. Rates are given in events per
simulation step. * scaled by the Boltzmann unit.

Parameter Value Description

Dmain 0.8 probability of maintaining DNA methylation
Dnovo 0.0/0.1/0.3 probability of de novo DNA methylation

DCG
4, DCG

27 6, 4 interaction energy between HMTs and DNMTs *
DDE

0 6/2 maximum rate of active DNA demethylation
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Appendix F. The PU.1 Circuit

Simulations of the PU.1 circuit have been performed using the same parameter sets as for the GATA3 circuit.
DNA (de-)methylation was enabled applying the parameter set {Z} (see: Table A3).
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Figure A5. Histone states of the PU.1 circuit: (A,B) simulation results on the histone states of the system
shown in Figure 6 ((A) H3K4me3; and (B) H3K27me3); and (C,D) results for the same system assuming
an increase of the cell cycle time τ = 10τ0 ((C) H3K4me3l and (D) H3K27me3) enabling re-establishment
of the bivalent state. The time is scaled to show the same number of cell cycles, as in (A–F). Loss of
function of the DNA demethylation in the blast system (at t = 50) leads to expansion of the unmodified
state ((E) H3K4me3; and (F) H3K27me3). Black lines separate cell types. All values are color coded.
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Figure A6. Expansion of the SC population following accelerated proliferation. Shown are simulation
results for the PU.1 circuit assuming an acceleration of the proliferation τ = 0.6τ0: (A) PU.1 expression;
(B) H3K4me3; and (C) H3K27me3. The number of unmodified cells increases similar to the blast system.
The time is scaled to show the same number of cell cycles as in Figures 6 and A5A,B. All values are
color coded.
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