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.e purpose of this study is to explore the application value of artificial intelligence algorithm inmultimodal MRI image diagnosis
of cervical cancer. Based on the traditional convolutional neural network (CNN), an artificial intelligence 3D-CNN algorithm is
designed according to the characteristics of cervical cancer. 70 patients with cervical cancer were selected as the experimental
group, and 10 healthy people were selected as the reference group..e 3D-CNN algorithm was applied to the diagnosis of clinical
cervical cancer multimodal MRI images. .e value of the algorithm was comprehensively evaluated by the image quality and
diagnostic accuracy..e results showed that compared with the traditional CNN algorithm, the convergence rate of the loss curve
of the artificial intelligence 3D-CNN algorithm was accelerated, and the segmentation accuracy of whole-area tumors (WT), core
tumor areas (CT), and enhanced tumor areas (ET) was significantly improved. In addition, the clarity of the multimodal MRI
image and the recognition performance of the lesion were significantly improved. Under the artificial intelligence 3D-CNN
algorithm, the Dice values of WT, ET, and CTregions were 0.78, 0.71, and 0.64, respectively. .e sensitivity values were 0.92, 0.91,
and 0.88, respectively..e specificity values were 0.93, 0.92, and 0.9 l, respectively..eHausdorff (Haus) distances were 0.93, 0.92,
and 0.90, respectively. .e data of various indicators were significantly better than those of the traditional CNN algorithm
(P< 0.05). In addition, the diagnostic accuracy of the artificial intelligence 3D-CNN algorithm was 93.11± 4.65%, which was also
significantly higher than that of the traditional CNN algorithm (82.45± 7.54%) (P< 0.05). In summary, the recognition and
segmentation ability of multimodalMRI images based on artificial intelligence 3D-CNN algorithm for cervical cancer lesions were
significantly improved, which can significantly enhance the clinical diagnosis rate of cervical cancer.

1. Introduction

Cervical cancer is one of the most common gynecologic
malignancies worldwide, with high morbidity and mortality,
and there is a huge population of patients in China [1].
Currently known cervical cancer treatment factors include
human papillomavirus (HPV) infection, chlamydia infec-
tion, smoking, overweight or unhealthy lifestyle, and the use
of intrauterine devices [2–4]. Timely regular screening and
early diagnosis are important for the prevention and
treatment of cervical cancer because precancerous lesions
can occur before cervical cancer occurs and can develop into
cancer for years [5, 6]. Among the existing imaging diag-
nostic techniques, ultrasound is widely used in the screening

of cervical cancer because of its convenience and low cost.
CT has a high-density resolution and can clearly show or-
gans and soft tissue structures with small density differences.
However, it cannot judge the infiltration and metastasis of
cervical cancer in other locations, so its clinical application is
limited [7]. Due to the advantages of multiparameter
multisequence imaging and high tissue resolution, MRI
plain scan is very suitable for the diagnosis and staging of
cervical cancer [8], but there are still limitations. In recent
years, a variety of new multimodal MRI sequences emerged,
which greatly improved the diagnostic accuracy of MRI
images of various diseases.

However, the traditional artificial multimodal MRI
image diagnosis often requires professional doctors to
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manually outline the lesion area according to the effective
information in the image, and there is a certain degree of
image recognition and doctor experience difference, which
makes the medical image segmentation technology based on
the computer-aided artificial intelligence algorithm become
one of the key directions of development [9]. Among the
reported methods for regional segmentation of medical
images based on artificial intelligence, convolutional neural
network (CNN) algorithms based on deep learning emerge
endlessly [10, 11], and artificial intelligence learning algo-
rithms such as clustering and random forest classifier are
often used to solve the problem of tumor segmentation
[12, 13]. However, there is no report on the related research
of artificial intelligence algorithm for multimodal MRI
images of cervical cancer. .erefore, this study hopes to
design an artificial intelligence 3D-CNN algorithm for the
lesion image characteristics of cervical cancer patients under
multimodal MRI and apply it to the diagnosis of multimodal
MRI images of clinical cervical cancer. .e application
potential of the algorithm is comprehensively evaluated by
evaluating the performance of the algorithm and comparing
the diagnostic accuracy.

2. Materials and Methods

2.1. Research Objects. Seventy patients with cervical cancer
diagnosed in hospital from March 2018 to March 2021 were
selected as the subjects. All patients underwent an MRI
examination. .e age of patients ranged from 34 to 75 years.
.e average age was (48.63± 6.35) years old. .e clinical
stages of all patients were as follows: 18 patients in stage 0, 5
patients in stage IA, 12 patients in stage IB, 11 patients in
stage II A, 7 patients in stage II B, 3 patients in stage III, and
12 patients in stage IV..ere was no significant difference in
general clinical data such as age, height, weight, and com-
bined diseases among all patients.

.e inclusion criteria of patients were as follows: (1)
patients were not treated with radiotherapy or chemo-
therapy or surgery before MRI examination; (2) patients had
complete medical records; and (3) patients signed informed
consent. Exclusion criteria were as follows: (1) image blur
did not meet the requirements and patients with cervical
polyps, cysts; (2) the image quality was poor and cannot
meet the minimum technical requirements; and (3) patients
with incomplete medical records or without signing in-
formed consent.

All procedures of this study were approved by the ethics
committee of the hospital, and the subjects included in the
study signed informed consent.

2.2. MRI Scanning Equipment and Parameters. All patients
in this study (set as the experimental group) needed to fast
for 6 h before MRI scanning, relieve the bowel, fill the
bladder appropriately, and receive a certain degree of re-
spiratory training before examination. In addition, the pa-
rameters of multimodal MRI scanning in 10 normal subjects
(set as the reference group) were taken as the reference, and

the parameters of multimodal MRI scanning as the control
of this experiment were obtained.

.e magnetic resonance scanning equipment used in
this study was Siemens 3.0 T magnetic resonance scanner,
Germany, and 18-channel surface phased array coils were
used to cover the pelvic cavity of patients. All patients
underwent conventional MRI plain scan and functional MRI
scan. Conventional MRI sequences included sagittal, cor-
onal, and axial T2W1 sequences and axial T1WI sequences.
Functional MRI sequences included DW1 sequence, IVIM
sequence, and DCE-MRI sequence. MRI plain scan sequence
scanning parameters included layer spacing of 0.8mm, layer
thickness of 4.0mm, TE 85ms, TR 3500ms, and FOV
300mm× 300mm. IVIM sequence scan parameters in-
cluded layer spacing of 1mm, layer thickness of 5.0mm, TE
60ms, TR 4800ms, and FOV 380mm× 380mm. DCE-MRI
sequence: T1WI-TWIST: inversion angles of 20 and 150,
layer spacing of 0.7mm, layer thickness of 3.5mm, TE
1.90ms, TR 4.91ms, and FOV 260mm× 260mm. A high
pressure intravenous contrast agent was used, with an in-
jection volume of 0.2mL/kg at a flow rate of 3mL/s. 20mL of
saline was injected into the tube. After 5 stages, gadolinium
DTPA was injected, and the same amount of 20 mL of saline
was injected into the tube. A total of 70 periods are required,
with time resolution 5s and scanning time 375s.

2.3. Establishment of Cervical Cancer Lesion Segmentation
Model Based on Artificial Intelligence 3D-CNN Algorithm.
In this study, based on the traditional CNN, the time di-
mension is introduced into the convolution kernel opera-
tion. On the basis of retaining the characteristic information
of the input data, three-dimensional data are added, so that
the output data after sliding window operation are still
arranged in three-dimensional space.

.e basic framework of the algorithm is constructed
according to the CNN structure. .e feature extractor is
deployed in the overall structure of the network to make the
input data enter the network. After the convolution layer,
pooling layer, and nonlinear function activation layer, the
characteristics of different levels of the image are gradually
extracted. .e calculation of convolution layer is

K � k Ka−1( 􏼁∗Da + Ba, (1)

where Ka−1 represents the information of the feature map of
the upper layer, Ba represents the offset, Da represents the
weight matrix, and each row in thematrix corresponds to the
weight of neurons connected to all neurons of the upper
layer. .e nonlinear activation function, ReLU function, is
introduced between the upper and lower input in the ac-
tivation layer, and its mathematical expression is shown as
follows:

ReLU � max(0, x). (2)

Since the multimodal MRI image segmentation task of
cervical cancer patients in this study has four output cate-
gories, to solve the problem of uneven categories in the data
processing process, this study introduces the Dice loss
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function to be applied to the cervical cancer tumor image
segmentation task. .e Dice score coefficient (DSC) used is
an evaluation index based on the pixel overlap mentioned
above. .e calculation method is shown as follows:
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where gj represents the pixel value of point j in the pre-
diction results and hj represents the pixel value of point j in
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where i represents the i pixel. Accordingly, the loss function
for cervical cancer image segmentation can be expressed as

N �
2

|F|
􏽘 f ∈ F

􏽐jgj,fhj,f

􏽐jgj + 􏽐jhj

, (5)

where F represents the category; f represents a category in the
cervical cancer tumor segmentation task in this study; g

represents the segmentation result region predicted by the
network; h represents the segmentation region calibrated by
the true value label; j represents any pixel in the image; and gi,f

and hi, f represent the numerical parameters of the predicted
output and the pixel output in the true value label region at j.

In order to adapt to the dense connection operation in
3D-CNN, the jump structure is used to connect the feature
maps of each layer in this study [14], and then the feature
maps of all layers are connected in series. .e corresponding
expression is shown as follows:

S1 � H S0, S1, S2, . . . , Sj−1􏼐 􏼑. (6)

.en, the residual structure is introduced to solve the
gradient dispersion problem in the data processing of deep
CNN. In essence, the residual structure adds a bypass to
make a sum operation between the input data and the output
data and then constructs a deep network model, which is
also called shortcut structure. .e output expression of the
residual unit is shown as follows:

Y1 � H S0( 􏼁 + F S1,ω1( 􏼁, (7)

where H(·) represents the fitting target in the CNN,
F(S1,ω1) represents the convolution operation, ω1 repre-
sents the weight parameter in the network, and Y1 represents
the network output of the first layer. If H(·) is an identity
mapping, which is expressed as (8), the network output Y1 of
the residual structure of the first layer can be expressed as
equation (9):

H S1( 􏼁 � S1, (8)

Y1 � S1 + 1 � S1 + F S1,ω1( 􏼁. (9)

.e overall output of the residual structure unit is a
linear sum of the original data of the input image and the

output data after the convolution operation. In this way, the
output of the entire network can be represented by a sum
algorithm. It is assumed that there are a total of M residual
structure network units in the network, and the overall
output of the residual network can be expressed as follows:

SM � Sm + 􏽘

M−1

j�m

F S1,ω1( 􏼁. (10)

.e convolution layer in the residual structure unit used
in this study is set to a three-dimensional convolution mode,
and the BN (Batch Normalization) layer is changed to the
GN (Group Normalization) layer operation (Figure 1).

.e convolution layer with the size of the convolution
kernel is set to 3× 3× 3, and then the GN layer is used to
accelerate the convergence of the network. .en, the non-
linear activation function layer is used to input a convolution
layer with the size of the convolution kernel set to 3× 3× 3,
which is used to extract the feature information of the target
area of interest in the data. .e superposition of the two
three-dimensional convolution layers deepens the depth of
the network. Such a structure can greatly reduce the com-
putational complexity without reducing the network per-
formance in the image segmentation task of cervical cancer.
.e obtained structural pattern of the cervical cancer lesion
feature extraction network is shown in Figure 2, and the final
flowchart of the algorithm is shown in Figure 3.

2.4. MRI Image Quality Evaluation Based on Artificial In-
telligence 3D-CNNAlgorithm. .e data set used in this study
is the BraTS 2017 data set. .e experimental environment
uses the 12G TITAN X device and uses the deep learning
framework TensorFlow and Keras to conduct relevant
training under the Ubuntu 16.04.

In this study, the lesion range of cervical cancer lesion
(set as Q) delineated by three radiologists was compared
with the lesion area (set as W) determined by the image
segmentation of the artificial intelligence algorithm. By
fitting the coincidence degree between the real cervical
cancer lesion area (set as A) and the cervical cancer lesion
area (set as C) determined by the artificial intelligence al-
gorithm, the accuracy (Dice), sensitivity, and specificity of
the algorithm for the diagnosis of multimodal MRI images of
cervical cancer patients were calculated, and the equations
were as follows:

Dice �
|A∩C|

|A| + |C|/2
, (11)

Sensitivity �
|A∩C|

|A|
, (12)

Specificity �
|B∩D|

|B|
. (13)

B and D represent other locations outside the real cer-
vical cancer lesion area and other locations outside the
cervical cancer lesion area determined by the artificial in-
telligence algorithm. In addition, according to the different
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structural groups of cervical cancer tumors, three tumor
regions with overlapping parts are divided, namely, whole-
area tumors (WT), core tumor areas (CT), and enhanced
tumor areas (ET).

On this basis, this study also introduces Hausdorff
(Haus) distance as an auxiliary evaluation index for the
advantages and disadvantages of the algorithm [15, 16].
Haus distance can be understood as the maximum of the

Addition RrLU

3×3×3 conv 3×3×3 conv

GN+ReLU

Figure 1: Residual unit structure.
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Figure 2: Network structure pattern of cervical cancer characteristic lesions extraction.
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Figure 3: Flowchart based on artificial intelligence 3D-CNN algorithm.
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shortest distance from a point set to another point set. .e
mathematical expression is shown as follows:

Haus � max H(A, C), H(C, A){ }. (14)

2.5. Effect Analysis ofMRI ImageDiagnosis Based onArtificial
Intelligence 3D-CNNAlgorithm. In this study, the diagnostic
results of multimodal MRI images of cervical cancer and the
actual pathological results were compared and analyzed by
comparing the traditional CNN algorithm and artificial
intelligence 3D-CNN algorithm. .e diagnostic accuracy of
cervical cancer patients before and after treatment by the two
algorithms was calculated, and the application value of the
artificial intelligence 3D-CNN algorithm in the diagnosis of
multimodal MRI images of cervical cancer was compre-
hensively evaluated.

2.6. StatisticalMethod. .e experimental data were analyzed
by SPSS19.0 statistical software. Measurement data were
expressed as mean± standard deviation (x± s). A t-test was
used to compare the mean between groups. Count data were
expressed as percentage (%). χ2 test was used to compare the
difference between groups. P< 0.05 was considered statis-
tically significant.

3. Results

3.1. Multimodal MRI Scan Parameters of Patients.
Figure 4 shows the comparison of DCE-MRI scanning
parameters between the two groups, and Figure 5 shows the
comparison of IVIM scanning parameters between the two
groups. .e Ktrans, Kep, and Ve values of DCE-MRI
scanning in the experimental group were 0.191min,
0.952min, and 0.231, respectively, while those in the ref-
erence group were 0.081min, 0.431min, and 0.186, re-
spectively. .e apparent diffusion coefficient (ADC), true
diffusion coefficient (D), false diffusion coefficient (D∗),
and perfusion fraction (f ) of IVIM scanning in the ex-
perimental group were 1.082×10–3mm2/s, 0.932 ×

10–3mm2/s, 38.112×10–3mm2/s, and 0.244, respectively,
while the corresponding parameter values of the reference
group were 1.454×10–3mm2/s, 1.438 ×10–3mm2/s,
31.437×10–3mm2/s, and 0.163, respectively. .e differ-
ences between the two parameters were significant
(P< 0.05).

3.2. PerformanceTest Results ofArtificial Intelligence 3D-CNN
Algorithm. Figure 6 indicates the loss curves of the two
algorithms. .e blue curve represents the loss change of the
traditional CNN, and the red curve represents the loss
change of the artificial intelligence 3D-CNN algorithm. .e
comparison revealed that the convergence speed of the
network was accelerated after the continuous convolution
layer was replaced by the dense connection unit.

Figure 7 shows the Dice result analysis of the two al-
gorithms under the training set. .e results showed that the
prediction results of the three regional segmentations of the

two networks were compared. .e dice average value of the
prediction results between 30,000 and 40,000 times was
selected as a reference. .e artificial intelligence 3D-CNN
algorithm significantly improved the accuracy of the seg-
mentation results compared with the traditional CNN
(P< 0.05).

3.3. MRI Image Analysis of Cervical Cancer Patients Based on
Artificial Intelligence3D-CNNAlgorithm. Figure 8 shows the
MRI images processed by different algorithms, including the
sagittal T2W1 image, the transverse T1W1 image, and the
T2W1 image. Compared with the multimodal MRI images
before the algorithm processing, the clarity and the recog-
nition performance of the MRI images processed by the
traditional CNN algorithm and the artificial intelligence 3D-
CNN algorithm were significantly improved, so that the
structure of the parauterine, adjacent organs, pelvic wall, and
lymph nodes on the transverse position was displayed more
clearly, and the sagittal image can show the relationship
between the lesion and the vagina, bladder, and rectummore
intuitively.

Figure 9 indicates the visualization results of multi-
modal MRI images in the experiment, including the images
of transverse and sagittal positions. Compared with the
multimodal MRI images before the algorithm processing,
the visualization results of tumor lesions obtained by the
traditional CNN algorithm and the artificial intelligence
3D-CNN algorithm accounted for a similar proportion of
the tumor core region (yellow) and the whole region
(green). Compared with the true value label, the seg-
mentation results of the three regions by the traditional
CNN were fuzzy, and there were many misclassification
phenomena in the whole area of the tumor. Most of the
right upper corner of the enhanced tumor area (red) was
not recognized. After adding the residual network of ar-
tificial intelligence 3D-CNN, the misclassification of the
whole area of the tumor was significantly reduced, and the
segmentation effect of the enhanced tumor area was also
improved.
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Figure 4: Comparison of DCE-MRI scanning parameters between
the two groups of patients. (Note. ∗ represents a significant dif-
ference relative to the CNN algorithm (P< 0.05).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: MRI images processed by different algorithms. (a) T2W1 image of normal abdominal MRI sagittal position. (b) T1W1 image of
normal abdominal MRI transverse position. (c) T2W1 image of normal abdominal MRI transverse position. (d) T2W1 image of abdominal
MRI sagittal position of traditional CNN. (e) T1W1 image of abdominal MRI transverse position of traditional CNN. (f) T2W1 image of
abdominal MRI transverse position of traditional CNN. (g) T2W1 image of abdominal MRI sagittal position of artificial intelligence 3D-
CNN algorithm. (h) T1W1 image of abdominal MRI transverse position of artificial intelligence 3D-CNN algorithm. (i) T2W1 image of
abdominal MRI transverse position of artificial intelligence 3D-CNN algorithm.
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3.4. MRI Image Quality Evaluation Based on Artificial In-
telligence 3D-CNN Algorithm. .e differences between the
diagnostic Dice value, sensitivity, specificity, and Haus
distance indexes of multimodal MRI image processing of
traditional CNN algorithm and artificial intelligence 3D-
CNN algorithm were compared, and the obtained results are
shown in Figure 10. .e Dice values of WT, ET, and CT
regions of the multimodal MRI images processed by the
traditional CNN algorithm were 0.78, 0.71, and 0.64, re-
spectively. .e sensitivity values were 0.76, 0.68, and 0.65,

respectively. .e specificity values were 0.89, 0.86, and 0.81,
respectively. .e Haus distances were 0.73, 0.67, and 0.66,
respectively. .e Dice values of WT, ET, and CT regions of
multimodal MRI images processed by artificial intelligence
3D-CNN algorithm were 0.78, 0.71, and 0.64, respectively.
.e sensitivity values were 0.92, 0.91, and 0.88, respectively.
.e specificity values were 0.93, 0.92, and 0.9 l, respectively.
.e Haus distances were 0.93, 0.92, and 0.90, respectively.
.e various index data of the two algorithms were signifi-
cantly different (P< 0.05).

(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 9: Visual comparison results of multimodal MRI images in the experiment. (Note. A and E are the transverse and sagittal images of
multimodal MRI in patients under normal conditions. B and F are the prediction results of cervical cancer lesions in transverse and sagittal
planes delineated by doctors. C and G are the prediction results of cervical cancer lesions in transverse and sagittal positions of the
traditional CNN algorithm. D is the prediction of cervical cancer lesions in transverse and sagittal positions by the artificial intelligence 3D-
CNN algorithm).

8 Contrast Media & Molecular Imaging



3.5. Evaluation of MRI Image Diagnosis Effect Based on Ar-
tificial Intelligence 3D-CNN Algorithm. From Figure 11, the
diagnostic accuracy of the conventional multimodal MRI
image diagnosis, the multimodal MRI image diagnosis
processed by the traditional CNN algorithm, and the
multimodal MRI image diagnosis processed by the artificial
intelligence 3D-CNN algorithm were 68.65± 6.44%,
82.45± 7.54%, and 93.11± 4.65%, respectively. Compared
with the diagnostic accuracy of the conventional multimodal
MRI image, the diagnostic accuracy of the images processed
by the two algorithms was significantly increased (P< 0.05),
and the accuracy of the artificial intelligence 3D-CNN al-
gorithm was also significantly higher than that of the tra-
ditional CNN algorithm (P< 0.05).

4. Discussion

In recent years, clinical computer-aided diagnosis and
treatment methods for various common clinical diseases
emerged one after another [17], and deep learning tech-
nology gradually replaced supervised learning as an effective
computer-aided artificial intelligence medical image seg-
mentation scheme relying on its strong model learning
ability and highly automatic extraction of target feature
information [18], which was widely used in medical image

segmentation fields of brain tumors, lung cancer, liver
cancer, breast cancer, and gastric cancer, such as ultrasound,
CT, and MRI images [19, 20].

In this study, an artificial intelligence 3D-CNN algo-
rithm was designed for the lesion image characteristics of
cervical cancer patients under multimodal MRI and applied
to the multimodal MRI image diagnosis of clinical cervical
cancer. .e results showed that compared with the tradi-
tional CNN algorithm, the convergence rate of the loss curve
of the artificial intelligence 3D-CNN algorithm was
accelerated, and the segmentation accuracy of WT, CT, and
ET was significantly improved. In addition, the clarity of
multimodal MRI images and the recognition performance of
lesions were significantly improved. Under the artificial
intelligence 3D-CNN algorithm, the Dice values of WT, ET,
and CT regions were 0.78, 0.71, and 0.64, respectively. .e
sensitivity values were 0.92, 0.91, and 0.88, respectively. .e
specificity values were 0.93, 0.92, and 0.9 l, respectively. .e
Haus distances were 0.93, 0.92, and 0.90, respectively. .e
data of various indicators were significantly better than those
of the traditional CNN algorithm (P< 0.05). In addition, the
diagnostic accuracy of the artificial intelligence 3D-CNN
algorithm was 93.11± 4.65%, which was also significantly
higher than that of the traditional CNN algorithm
(82.45± 7.54%) (P< 0.05). .is is consistent with the
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Figure 10: Image processing quality evaluation index comparison chart of different algorithms. (a) Dice value comparison diagram.
(b) Sensitivity value comparison chart. (c) Specificity value comparison diagram. (d) Haus distance comparison chart. ∗ represents a
significant difference relative to the CNN algorithm (P< 0.05).
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research results of Chen et al. [21]. .e diagnostic accuracy
of the 3D-CNN algorithm is better than that of the tradi-
tional CNN algorithm. But the relevant optimization pro-
cedures of the artificial intelligence 3D-CNN algorithm are
very complex and need further in-depth study.

5. Conclusions

In this study, an artificial intelligence 3D-CNN algorithm is
designed for the imaging characteristics of cervical cancer
patients under multimodal MRI, and it is applied to the
multimodal MRI imaging diagnosis of clinical cervical
cancer. .e results showed that the recognition and seg-
mentation ability of multimodal MRI images based on ar-
tificial intelligence 3D-CNN algorithm for cervical cancer
lesions was significantly improved, which could significantly
enhance the clinical diagnosis rate of cervical cancer.
However, there are still some shortcomings in this study.
When discussing the fusion of multimodal MRI images, it
was not found that a 3D-CNN image fusion scheme high-
lighted the characteristics of each modal MRI image. In
addition, the algorithm in this study is not very good for the
whole tumor segmentation edge, and it needs to be further
optimized in the future. In conclusion, multimodal MRI
images based on artificial intelligence 3D-CNN algorithm
can significantly improve the clinical diagnostic accuracy of
cervical cancer, which brings certain reference value for
improving the clinical diagnosis and treatment efficiency of
cervical cancer patients.
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Figure 11: Comparison of image diagnostic accuracy of different algorithms. (Note. ∗ represents a significant difference in diagnostic
accuracy compared with conventional multimodal MRI images (P< 0.05). # shows a significant difference compared with the CNN al-
gorithm (P< 0.05).
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