
nutrients

Article

A Genetic Score of Predisposition to Low-Grade
Inflammation Associated with Obesity May
Contribute to Discern Population at Risk for
Metabolic Syndrome

Sebastià Galmés 1,2,3 , Margalida Cifre 1,2, Andreu Palou 1,2,3 , Paula Oliver 1,2,3,* and
Francisca Serra 1,2,3

1 NUO Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears,
07122 Palma, Spain; s.galmes@uib.cat (S.G.); marga.cifre@uib.es (M.C.); Andreu.palou@uib.es (A.P.);
francisca.serra@uib.es (F.S.)

2 CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
3 Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
* Correspondence: paula.oliver@uib.es; Tel.: +34-971-172-548

Received: 29 November 2018; Accepted: 24 January 2019; Published: 30 January 2019
����������
�������

Abstract: Omega-3 rich diets have been shown to improve inflammatory status. However, in an ex
vivo system of human blood cells, the efficacy of eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA) modulating lipid metabolism and cytokine response is attenuated in overweight subjects
and shows high inter-individual variability. This suggests that obesity may be exerting a synergistic
effect with genetic background disturbing the anti-inflammatory potential of omega-3 long-chain
polyunsaturated fatty acids (PUFA). In the present work, a genetic score aiming to explore the risk
associated to low grade inflammation and obesity (LGI-Ob) has been elaborated and assessed as
a tool to contribute to discern population at risk for metabolic syndrome. Pro-inflammatory gene
expression and cytokine production as a response to omega-3 were associated with LGI-Ob score;
and lower anti-inflammatory effect of PUFA was observed in subjects with a high genetic score.
Furthermore, overweight/obese individuals showed positive correlation of both plasma C-Reactive
Protein and triglyceride/HDLc-index with LGI-Ob; and high LGI-Ob score was associated with
greater hypertension (p = 0.047), Type 2 diabetes (p = 0.026), and metabolic risk (p = 0.021). The study
shows that genetic variation can influence inflammation and omega-3 response, and that the LGI-Ob
score could be a useful tool to classify subjects at inflammatory risk and more prone to suffer metabolic
syndrome and associated metabolic disturbances.
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1. Introduction

Obesity is currently considered one of the main health problems worldwide [1], and it is usually
accompanied by the abnormal production of cytokines and adipokines by the immune system and
adipose tissue, respectively, as well as by a disturbed profile of lipid mediators [2]. Although activation
of inflammatory pathways is indispensable for the organism in specific circumstances, such as fighting
against infections, undamaged inflammatory pathways are critical for tissue health and for proper
homeostasis [3], including adipose tissue expansion and remodeling [4]. However, at some step that
is still not well characterized, obesity results in a state of low-grade chronic metabolic inflammation
involving many organs, altering energy and substrate fluxes and giving rise to the development of
metabolic pathologies [5–10] (diabetes, dyslipidemia, and hypertension, among others) (see [3] for
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a comprehensive overview). According to the latest Obesity Update report of the Organization for
Economic Co-operation and Development, at present more than one in two adults and nearly one in
six children are overweight (OW) or obese (OB). The obesity epidemic continues its widespread rise
and new projections until 2030 are keeping the same trend [11]. This discouraging landscape shows
the need for more focused strategies that go far beyond the control of energy intake or expenditure,
which may fit some people, but not all. At this respect, personalized or precision interventions
for disease and health-risk mitigation are a very dynamic area of research [12]. This may drive
to nutrition-based personalized interventions, aiming either to prevent the onset of obesity or to
counteract its development in a more specific way.

Meanwhile, the beneficial effects of food bioactive compounds, such as omega-3 long-chain
polyunsaturated fatty acids (PUFA), mainly eicosapentaenoic (EPA) and docosahexaenoic acids (DHA),
have been described in various studies. The cardio-protective potential of PUFA derives from their
capacity to decrease circulating triglycerides, to show antihypertensive activity, to protect against the
formation of thrombi, and to reduce inflammatory levels [13]. Furthermore, concerning low-grade
inflammation associated with obesity, EPA and DHA are particularly interesting because they can be
endogenously metabolized to pro-resolving lipid mediators which act as facilitators of timely resolution
of inflammation [14–17]. In addition, the beneficial effects derived from PUFA intake may depend
on factors, such as adiposity or genetics [18]. A number of studies have addressed the relationship
between consumption of PUFA-rich foods and the presence of genetic variants influencing blood lipid
profile, including high-density lipoprotein cholesterol (HDLc) [19–21], inflammation [22] or coronary
artery disease risk [23]. In the present study, we aimed to assess whether genetic background could
modulate inflammatory status, and influence the response associated to PUFA exposure in an in vitro
system of human peripheral blood mononuclear cells (PBMC), a blood cell fraction composed mainly
by lymphocytes and monocytes [24] bearing a transcriptome, which in vitro had been previously
shown to reflect metabolic adaptations of key tissues involved in energy and lipid metabolism [25,26].

2. Materials and Methods

2.1. Study Participants and Design

This genetic association study is based on three observational studies: One case-control
(NUTRI-BLOOD) and two cross-sectional (OptiDiet-15 and Ob-IB) studies (Figure 1). STREGA
reporting guidelines were used.

Initial samples were genotyped from participants in the NUTRI-BLOOD study (IB 2112/13 PI),
in which 18 young apparently healthy males (aged from 19–36) were recruited (from October 2013 to
November 2014) based on their body mass index (half of them normo-weight and the rest overweight
or obese) to test the effect of DHA and EPA in isolated PBMC maintained in vitro [24]. Sample size was
based on the number of subjects analyzed in similar experiments conducted in ex vivo PBMC, where
the conditions were highly controlled [27,28]. Participant characteristics and data on the efficacy of the
bioactive compounds have been previously published [24]. Results suggested that genetic background
could influence the anti-inflammatory response observed in PBMC under omega-3 PUFA exposure,
evaluated in the present study. Therefore, culture media and plasma of the participants were used for
cytokine and C-reactive protein (CRP) determinations, respectively. Saliva samples were obtained for
the present study and used for genotyping. Furthermore, individual records and data, including those
concerning the response to PUFA treatments, were retrieved.

In addition, in the present study, in order to increase the number of subjects and to prevent
a potential source of bias, participants from the running studies OptiDiet-15 and Ob-IB were
incorporated to perform the genotype analysis. The respective protocols for recruitment, procedures,
and sampling were approved by the ethics committee (Comitè d’Ètica de la Investigació de les Illes Balears,
CEI-IB). All participants gave written informed consent. Procedures were followed in accordance
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with the principles of the Declaration of Helsinki and all volunteer data were codified to guarantee
anonymity accuracy.

The OptiDiet-15 (IB 2569/15 PI) and Ob-IB (IB 2009/13) studies, both contributed to the present
work by making available a representative sample of the general population of Mallorca (Spain).
Participants were mostly Caucasian and from European origin (86% European, 11% South-American;
and 3% others). Records on anthropometric, lifestyle, clinical and genetic data were collected.
Individuals were recruited from September 2013 to May 2017. Only individuals from the OptiDiet-15
and Ob-IB studies with both complete clinical and genetic data sets were included in the final report
(n = 376). To focus on the hypothesis, a representative subset of male individuals was further recalled
according to their genetic and anthropometric characteristics from either OptiDiet-15 or Ob-IB, around
10% fulfilled the requirements (41 subjects) and were further analyzed as described below.

1 
 

 

 

Figure 1. Flowchart diagram showing the main characteristics of the genetic association study to build
up the score of predisposition to low-grade inflammation associated with obesity (LGI-Ob). This is
based on three observational studies: One case-control (NUTRI-BLOOD), and two cross-sectional
(OptiDiet-15 and Ob-IB) studies. NW (Normo-weight); OW/OB (Overweight/Obese); SNP (Single
Nucleotide Polymorphism); CRP (C-reactive protein); BMI (Body Mass Index); TG (Triglyceride); HDLc
(Cholesterol-High Density Lipoprotein); LDLc (Cholesterol-Low Density Lipoprotein).

2.2. Anthropometric Measurements

Height, weight, body fat percentage (BF%), waist, and hip circumferences were measured with
a non-elastic tape during face-to-face interviews by a trained investigator with the volunteer wearing
minimum clothing. The waist-to-height ratio (WtHR) was calculated. The percentage of body fat was
measured with a bio-impedance apparatus (OMRON BF306, Hoofddorp, The Netherlands). Body
mass index (BMI) was calculated by the ratio between weight and the square of the height. Systolic
(SBP) and diastolic blood pressure (DBP) were measured in triplicate with a sphygmomanometer
(Omron HEM705CP, Hoofddorp, The Netherlands), measurement was made after the volunteer
remained seated for ten minutes. Mean of arterial pressure (MAP) was calculated by the following
formula: 2/3.DBP + 1/3.SBP [29]. The waist and hip data were only available for the OptiDiet-15 and
Ob-IB studies.

2.3. Isolation, Culture Conditions and Gene Expression Determination in PBMC

Blood from NUTRI_BLOOD volunteers was collected using Vacutainer® EDTA tubes and
PBMC were isolated using Ficoll-Paque Plus density gradient media (GE Healthcare Bio Science,
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Madrid, Spain). Cells were incubated with RPMI-1640 medium (Sigma-Aldrich, St Louis, MO, USA)
supplemented with 10% of foetal bovine serum, 1% of L-glutamine (2 mM) and a combination of
100 units/mL and 100 µg/mL of penicillin and streptomycin, respectively (Sigma-Aldrich, St Louis,
United States). Incubated cells were treated with omega-3 PUFA (DHA and EPA), prepared as a
10 mM stock solution dissolved in ethanol, and administered to PBMC in a final concentration of
10 µM. Both omega-3 PUFA (>98% purity) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
This concentration was chosen based on our previous optimization experiments showing a maximum
effect on gene expression. Control cells were incubated with ethanol.

After a 48 h-incubation period, total RNA was isolated using Direct-zol RNA Mini-Prep (Zymo
Research Corp, Irvine, CA, USA). Equal amounts of total RNA (50 ng) were transcribed into cDNA
using an iScrip cDNA synthesis kit (Bio-Rad Laboratories, Madrid, Spain) in an Applied Biosystems
2720 Thermal Cycler. Real-time Polymerase chain reaction (PCR) was performed for each Reverse
transcription (RT) product to determine mRNA expression of genes using Power SYBR Green PCR
Master Mix (Applied Biosystems, Madrid, Spain). All primers were purchased from Sigma Genosys
(Sigma Aldrich Química SA, Madrid, Spain). Gene expression data were normalized against the
housekeeping gene ribosomal protein, large, P0 (RPLP0).

Differences in mRNA expression of IL-6 and TNFα by isolated PBMC incubated with DHA
and EPA were calculated in comparison with the respective untreated control cells. Summing up
these values, an overall response in the expression of pro-inflammatory genes (∆EPG) was obtained.
Therefore, ∆EPG is an integrative value that reflects the feasibility of DHA and EPA in modulating the
inflammatory potential; and a more negative ∆EPG would be suggestive of better responsiveness to
the anti-inflammatory potential of the tested omega-3 PUFA in the respective individuals.

2.4. Quantification of Circulating Parameters

Determination of glucose, total cholesterol (TC) and triglycerides (TG) in blood were assessed
with an Accu-trend device (Roche Diagnostics, Barcelona, Spain). High-density lipoprotein cholesterol
(HDLc) levels were measured in EDTA plasma by means of a colorimetric kit (Química Clínica Aplicada
S.A., Tarragona, Spain) following the manufacturer’s instructions. Low-density lipoprotein cholesterol
(LDLc) levels were calculated from Freideweld formula [30]: LDLc = TC − (HDLc + TG/5). C-reactive
protein was measured with a commercial ELISA kit of Invitrogen (Thermo-Fisher Scientific, Waltham,
MA, USA).

2.5. DNA Isolation and Genotyping

Genomic DNA was isolated from volunteer saliva sample (400 µL) using High Pure PCR template
Preparation Kit (Roche, Basel, Switzerland). The quality and the concentration of the isolated DNA
were assessed using Nanodrop 1000 UV-Vis Spectrophotometer (Thermo-Fisher Scientific, MA, USA).
A final concentration between 20–100 ng/µL of the isolated DNA was considered great. Then, aliquots
were stored at −20 ◦C until the analysis of polymorphisms. Genotyping was performed by qPCR
(LightCycler®480 FastStart DNA or Genotyping Master mix, Roche, Basel, Switzerland) using the
differential melting temperature to determine the alleles of each single nucleotide polymorphism
(SNP). The qPCRs were done following these conditions: 95 ◦C for 5 min, 45 cycles of denaturation at
92 ◦C for 15 s and annealing 60 ◦C for 1 min. The melting temperatures were recorded and analysed
to determine the presence of specific alleles. The genotyping of all SNP was done using expressly
designed probes (TIB Molbiol, Berlin, Germany).

2.6. Elaboration of the Genetic Score of Predisposition to Low-Grade Inflammation Associated with Obesity
(LGI-Ob)

Concerning the selection of genetic variants, we focused our interest on SNP related to an
altered inflammatory profile, conferring major predisposition to obesity or higher cardiovascular risk.
Genome-wide association studies (GWAS), meta-analyses and genetic association studies were the
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primary source for selection of the genes of interest. Additionally, to be part of the genetic score we
imposed that the selected SNPs fulfilled the condition of being potentially modulated by lifestyle
interventions, mainly by dietary factors. Therefore, preference was focused on SNP characterized by
genotype-nutrient-phenotype associations, with the potential to modulate the genetic risk by external
factors, and particularly in those nutrigenetic relationships involving polyunsaturated long chain fatty
acids (Table 1). LGI-Ob genetic score is based on five SNP, a number that can be easily affordable in
routinely analytical tests, each one associated with a representative gene of obesity-related metabolic
disturbances and all of them known for their interaction with plasma inflammatory biomarkers.

The main characteristics of the selected genes and SNP are summarized below. Two polymorphisms
are located in the promoter and influence both gene expression and protein levels. Rs1800629 entails the
substitution of a G for an A in the promoter of tumor necrosis factor alpha (TNFα) gene and increases
both the transcription and production rates of the cytokine. A nutrigenetic interaction with omega
3 PUFA supplementation in the modulation of plasma CRP has been observed [31]; and associated
with insulin resistance, higher levels of inflammatory metabolites in plasma [32], and other age-related
alterations [33]. Rs5082, located in the promoter region of apolipoprotein A2 (APOA2) gene, has been
shown to interact with dietary fatty acid intake to modulate inflammation [34,35], and is associated
with both lower transcription rate and lower concentration of Apolipoprotein A-II in plasma [36],
conferring higher risk of obesity and diabetes mellitus [37,38]. Furthermore, non-T subjects with high
omega 3 PUFA intake show greater capacity for oxidative stress neutralization, whereas T carriers
have been associated with resistance to increase superoxide dismutase 2 (SOD2) activity with omega 3
PUFA intake [39] and also with an increase in plasma oxidative biomarkers when they present a rich
omega 6 PUFA diet [39].

The polymorphism rs4880 on SOD2 is located in the coding region and define a missense variant,
it involves the change of Alanine to Valine at position 16 of the mitochondrial SOD2, which reduces free
radical scavenging efficiency in the cell [40,41] and has been associated with altered plasmatic cytokine
profile [42], with major risk to cardiovascular disease [43] type 2 diabetes [44], DNA damage [45] and
micro- and macro-vascular complications in diabetes [46]. Interestingly, reduced cytokine production
induced by the bioactive compound resveratrol in cultured PBMCs has been shown to be associated
with the presence of this polymorphism, being less evident in Valine carriers [42]. Besides, Val risk allele
carriers have been associated with lower benefits on inflammatory and lipid profile after lipid-lowering
drug administration [47], but this genotype has also been associated with a lower risk of breast cancer
in women who usually consume fish oil [48]. The last two SNP performing LGI-Ob genetic score
have been associated with metabolic disturbances in different GWAs and other association studies.
First, rs1260326 located in glucokinase regulator (GCKR) gene involves the change of the amino acid
Proline at position 466 for Leucine and has been strongly associated with the risk of elevated CRP [49],
dyslipidemia [49–52] and type 2 diabetes [53] in different GWAs. Nevertheless, two additional
studies pointed out a potential modulation of omega 3 PUFAs on lipid profile and inflammatory
plasma biomarkers [54,55]. Finally, we included the FTO gene, which codifies an alpha-ketoglutarate
dependent dioxygenase and is one of the genes most strongly related with metabolic syndrome and
obesity traits [56,57] and risk for type 2 diabetes (T2D) [58]. The intronic variant (rs9939609) has
been recently analyzed by its influence on inflammatory biomarkers [56,58]. Despite the greater
predisposition to obesity of AA subjects, the risk could be increased in the case of a PUFA:SFA ratio
intake lower than 0.43 [59] or depending on the quality of dietary fat [59–61].
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Table 1. Genes and single nucleotide polymorphism (SNP) forming part of the LGI-Ob genetic score 1.

Genotype Associated Risk 2 Biomarkers/Risk
Associated with Risk Allele

Interactions Described Concerning the Risk Allele
Rs code Gene a b c a b c

rs1800629 TNFα GG GA AA 0 2 2

TNFα, CRP [31]
CAD risk [62]

IL18, IL18:IL-0 and
TNFα:IL10 ratios [63]
Ischemic Stroke [64]

Disturbed plasma levels of
PUFA [65]

Higher CRP levels after fish oil supplementation [31]
Resistance to improve in inflammatory CRP plasmatic profile

after dietary intervention [32]

rs5082 APOA2 CC TC TT 0 1 2
CRP [34,35]

Obesity and Insulin
Resistance [37,38]

More prone to high CRP levels in obesity [35]
Protective effect against T2D, but not in case of obesity [35]

Higher intakes of omega 3 are not associated with increases of
SOD activity [39]

Higher intakes of omega 6 are associated with increased
oxidative biomarkers [39]

rs4880 SOD2 CC CT TT 0 1 2

IL6, TNFα, IL1β [42]
CAD risk [43]
T2D risk [44]

DNA damage [45]

Attenuated response to statin drugs regarding lipid and
inflammatory profile [47]

Less risk of Breast Cancer in women when the consumption of
fish or vegetables are high [48]

rs1260326 GCKR CC CT TT 0 1 2

CRP [49,66]
TAGs [49–51]

TC [52]
T2D risk [53]

Omega 3 PUFAs interaction regarding triglycerides levels [54]
Lack of lowering effect of omega 3 PUFA on fasting insulin,

HOMA-IR and CRP [55]

rs9939609 FTO TT TA AA 0 1 2

BMI, BF [56]
BMI [57]

T2DM risk [67]
CRP [56,58]

Lower PUFA:SFA ratio are associated with higher obesity risk
than in TT subjects [59]

Lower effect of diet/lifestyle interventions [68]

1 Genes and SNP included in the genetic score to estimate the predisposition to low-grade inflammation associated with obesity (LGI-Ob). Identification code (rs), associated gene, and
risk value assigned to the respective genotype is shown together with related biomarkers and observed gene-diet or lifestyle interactions. 2 The weight indicated for each genotype has
been obtained from published evidence. Abbreviations: APOA2 (apolipoprotein A2); BMI (body mass index); BF (body fat percentage); CAD (Cardiovascular disease); CRP (C-reactive
protein); DHA (Docosahexaenoic acid); FTO (Fat mass and obesity-associated gene); GCKR (glucokinase regulator); HOMA-IR (Homeostatic Model Assessment of Insulin Resistance); IL
(interleukin); PUFA (Polyunsaturated Fatty Acid); SFA (Saturated Fatty Acid); SOD2 (Superoxide dismutase 2); T2D (Type 2 Diabetes); TAGs (Triglycerides); TC (Total Cholesterol); TNFα
(tumor necrosis factor alpha).
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2.7. Assessment of the Metabolic Profile and Health Status

Concerning participants from the studies OptiDiet-15 and Ob-IB, information about suffering
hypertension (HT), dyslipidemia (DL), T2D, or visceral obesity (VO) was collected to assess the
prevalence of metabolic syndrome. Participants were considered at risk of HT when they met any of
the following WHO criteria [69]: Systolic blood pressure (SBP) ≥130 mmHg, diastolic blood pressure
(DBP) ≥80 mmHg, taking medication for HT, or with a medical diagnosis of HT. The individuals who
reported diagnosis for DL and T2D were considered at risk for those conditions. VO was inferred
from the WtHR; those individuals with WtHR ≥0.51 (women) or WtHR ≥0.53 (men) were considered
at risk. Finally, participants with two or more alterations of those named above were considered as
individuals at high metabolic risk (MR) (Table 2).

Table 2. Criteria used to assess the health status and risk of the subjects 1.

Metabolic Condition No Yes

HT

• No diagnosis of HT and
• Not receiving antihypertensive

treatment and
• SBP < 130 mmHg and
• DBP< 80 mmHg

• Diagnosis of HT or
• Receiving antihypertensive treatment or
• SBP ≥ 130 mmHg or
• DBP ≥ 80 mmHg

DL
• No diagnosis of DL and
• Not receiving

lipid-lowering medication

• Diagnosis of DL and/or
• Receiving lipid-lowering medication

T2D • No diagnosis of T2D and
• Not receiving antidiabetic treatment

• Diagnosis of T2D or
• Receiving antidiabetic treatment

VO • WtHR < 0.51 (women) or < 0.53 (men) • WtHR ≥ 0.51 (women) or ≥ 0.53 (men)

MR • <2 of the previous conditions • ≥2 of the previous conditions

1 Criteria used for the consideration of individuals at risk for different conditions related to metabolic disturbances.
Abbreviations: DBP: Diastolic blood pressure; DL: Dyslipidemia; HT: Hypertension; MR: Metabolic Risk; SBP:
Systolic blood pressure; T2D: Type 2 Diabetes; VO: Visceral obesity; WtHR: Waist-to-height ratio.

2.8. Statistical Analysis

Data analysis was performed with SPSS v21 (SPSS, Chicago, IL, United States). Normal
distribution of variables was tested by the Shapiro-Wilk test when the number of cases was under 50
and by Kolmogorov-Smirnov test when the number of values was greater than 50. Homoscedasticity
was tested using the Levene test; when variables did not show homoscedasticity criteria, they were
either log transformed, or a non-parametric test was used.

Population was stratified by BMI group (normal-weight, NW: BMI < 25 kg/m2 vs. overweight,
OW/OB: BMI ≥ 25 kg/m2) or by genetic risk score (low score: <5 vs. high score: ≥5; based on the
median value of the frequency distribution in general population (see point 3.3)). Subject characteristics,
mainly to assess differences between NW and OW/OB groups, were assessed using Student’s t test.
A Student’s paired t-test was used to compare levels of cytokine production between EPA or DHA
treated cells and control (no-treated) cells within high or low score groups.

Assessment of the relationship between LGI-Ob genetic score (as a continuous variable) and
biomarkers (plasma parameters and gene expression data) was assessed by Pearson’s or Spearman’s
regression tests. After stratification by BMI groups, correlation analyses adjusted by age were computed
between plasma parameters and the genetic score. The coefficient of regression between LGI-Ob
genetic score and the number of metabolic alterations was obtained using linear regression adjusting
by confounding variables.
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The contribution of the LGI-Ob genetic score (as a dichotomous variable) to find out the odds
ratios (OR) for metabolic disorders or for metabolic risk were obtained by logistic regression, using
low score subjects (<5 risk alleles) as reference (OR:1) and adjusting by the confounding variables age,
gender, overweight (except for the variable VO), and ethnicity. Other potential confounding factors
were non-reported or unknown.

Receiver operating characteristics (ROC) curve analysis was applied to test the diagnostic ability
of LGI-Ob genetic score to classify potential individuals for obesity associated metabolic disturbances.
No comparisons involving multiple simultaneous statistical tests were performed. The threshold of
significance was defined at p < 0.05 for all analyses.

3. Results

3.1. Anti-inflammatory Potential of EPA and DHA is Influenced by LGI-Ob Genetic Score

Analysis of gene expression focusing on the feasibility of omega-3 PUFA to modulate
inflammatory response (∆EPG) and taking into account genotype characteristics of the individuals
indicated that cellular response to DHA and EPA was dependent on the number of risk alleles carried.
Thus, modulation of the expression of pro-inflammatory genes (∆EPG) by treatment with the omega-3
fatty acids showed a different profile related to the LGI-Ob genetic score of the individuals (Figure 2A).
∆EPG correlated positively with the LGI-Ob score in subjects with a high score (≥5) and reached
statistical significance in the case of treatment with EPA (r = 0.669, p = 0.049; Figure 2A). However,
a negative, although not significant, correlation was found in subjects with a low score (<5), which was
in agreement with decreased pro-inflammatory cytokines in the medium of the cells (PBMC) treated
with the fatty acids (Figure 2B). In particular, both DHA and EPA were effective in decreasing the
production of cytokines in culture media of PBMC from subjects with a low genetic score. Decreased
IL6 was found after incubation with both DHA (∆ = −1.057, p = 0.035) and EPA (∆ = −1.450, p = 0.036)
and decreased TNFα concentration was observed after DHA treatment (∆ = −6.175, p = 0.043) in
samples from individuals with low score. However, in subjects with a high score only EPA decreased
IL6 concentration in the media (∆ = −2.041, p = 0.042) (Figure 2B). Thus, these data show that a
previous heterogeneous inter-individual response to omega-3 PUFA observed in an in vitro system
of PBMC of the characterized subjects [24] could be related to the presence of genetic variants linked
with a status of low-grade inflammation associated with obesity. The selected genes and role of the
variants included in the LGI-Ob score shaped the anti-inflammatory response to PUFA, showing that
individuals with elevated score were to some extent resistant to the anti-inflammatory potential of
EPA and DHA, an effect observed at the level of both transcriptional and translational processes.
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Figure 2. Effects of Docosahexaenoic Acid (DHA, 10 µM) and Eicosapentaenoic Acid (EPA, 10 µM)
on (A) overall response in the expression of pro-inflammatory genes (∆EPG), in PBMC measured by
Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR), and represented according
to the LGI-Ob genetic score of the individuals. Cells were incubated for 48h with DHA and EPA and
the effects in each individual were calculated in comparison with the respective untreated control cells.
Pearson correlations were used to assess linear association between LGI-Ob genetic score and ∆EPG;
(B) IL-6 and TNFα production in PBMC culture media by LGI-Ob genetic score: Low (<5) or high (≥5).
Two-way repeated measures ANOVA was performed to compare differential cytokine production
from control cells vs EPA or DHA treated cells in both LGI-Ob genetic score groups (* p < 0.05). Boxes
represent the dispersion (maximum and minimum) and the horizontal line represents the arithmetic
mean in each treatment. Data correspond to subjects from NUTRI-BLOOD study (n = 18).

3.2. Plasma Biomarkers of Inflammation are Influenced by LGI-Ob Genetic Score

To further assess the extent of genetic impact on inflammation, CRP levels were measured in
plasma from the above individuals (volunteers of the NUTRI-BLOOD study, n = 18). A positive
correlation (Rho = 0.580 p = 0.015) was observed between CRP concentration and the LGI-Ob score.
Interestingly, stratification by BMI gave a stronger correlation when only OW/OB (BMI ≥ 25)
individuals were included (Rho = 0.737, p = 0.023, n = 9), which was lost for NW subjects (BMI
< 25) (Rho = 0.275, p = 0.509, n = 8). To rule out these data as a result of the specific population
studied or associated with the low number of individuals analysed, data from the initial core
group of participants (NUTRI-BLOOD study, n = 18) were pooled with a subset of individuals from
Optidiet-15 study (n = 41), all of them adult men and representative of the general population (Table 3).
Accordingly, subjects covered a wider range of age (19–74 years old) and overweight and obesity
were more prevalent in individuals 10 years older than in normo-weight subjects (p = 0.002). After
grouping by BMI, higher MAP (p = 0.037), plasma triglycerides (p = 0.016), and CRP (p < 0.0001)
levels were observed in OW/OB subjects, but no differences were found in glucose, or cholesterol
plasma levels (Table 3). Positive correlations were found between CRP and obesity related indicators,
such as BMI (Rho = 0.664, p < 0.0001), body weight (Rho = 0.554, p < 0.0001), and %BF (Rho = 0.612,
p < 0.0001; n = 52). Correlation analyses confirmed the positive relationship between plasma CRP and



Nutrients 2019, 11, 298 10 of 19

LGI-Ob genetic score (Rho = 0.309, p = 0.026; n = 52) (Figure 3A), as well as the positive correlation
found in OW/OB subjects (Rho = 0.526, p = 0.003; n = 29), and the lack of it in NW individuals
(Rho = 0.027, p = 0.903; n = 23). Analyses performed after adjusting by age, a potential confounder
co-variable, remained significant (r = 0.503, p = 0.005) in the overweight/obese group, but not in NW
group (r = 0.056, p = 0.806) (Figure 3B). In addition, we tested the association between CRP in the
non-segregated population using the simple linear regression model adjusted by age and by BMI
(p = 0.059) and adjusted by age and presence of overweight (p = 0.018). Therefore, the risk of higher
basal inflammation entailed by adiposity seems to affect individuals unequally depending on their
LGI-Ob genetic score. Furthermore, NW subjects with a high genetic score would be more susceptible
to low-grade chronic inflammation in case of increasing body fat.

Elevated levels of TG and low levels of HDLc have been described as key contributors to the
development of inflammation and atherosclerosis [70], being associated with insulin resistance and
T2D [71–74]. Although HDLc was not altered in the obese population studied, TG levels were 36%
higher than in NW subjects (Table 3). Therefore, a positive correlation between the TG/HDLc ratio and
LGI-Ob score was also found in overweight/obesity group (r = 0.418, p = 0.030; n = 28), adjusting by
age, but not among NW subjects (Figure 3C). Using the same model (adjusted by age and overweight),
the association between TG/HDL ratio and LGI-Ob score remained significant (p = 0.038); and if
adjusted by BMI, the significance was not reached either (p = 0.061). Then, to determine the potential
interaction between BMI and the genetic risk score, in relation to the levels of CRP and TG/HDL,
both variables were dichotomized, and a two-way ANOVA test was performed, adjusting by age.
Under these conditions, simple effects were statistically significant, but interaction effect was not seen.

Recently, the TG/HDLc ratio has been proposed as a reliable biochemical index predictor for
insulin resistance, particularly in overweight diabetic patients [75]. Our results allow for a further level
of precision, suggesting that the presence of the risk alleles considered in LGI-Ob genetic score is able
to influence the TG/HDLc ratio. Therefore, individuals with a high genetic score are more susceptible
to showing a disturbed ratio, and would thereby be at higher risk to develop insulin resistance and
associated co-morbidities [71].

Table 3. Subjects characteristics 1.

Subset Population
(n = 59)

BMI < 25 (kg/m2)
(n = 28)

BMI ≥ 25 (kg/m2)
(n = 31)

Mean SD Mean SD Mean SD p-Value

Age (years) 33.4 13.8 28.0 9.6 38.3 15.2 0.002
Anthropometric measures
Height (m) 1.80 0.07 1.80 0.07 1.80 0.07 0.696
Weight (kg) 81.7 18.2 68.8 8.7 93.4 16.5 <0.0001
BMI (kg/m2) 26.4 5.5 22.1 2.0 30.4 4.7 <0.0001
Body fat percentage (%) 23.6 7.7 18.1 5.7 28.6 5.6 <0.0001
Cardiovascular health indicators
SBP (mmHg) 132.5 15.6 128.6 14.7 136.0 15.8 0.056
DBP (mmHg) 80.3 11.5 77.3 9.3 83.0 12.8 0.055
MAP 97.7 11.7 94.4 10.1 100.7 12.3 0.037
Circulating parameters
Glucose (mg/dL) 96.10 28.35 91.93 25.08 100.00 31.01 0.195
Total cholesterol (mg/dL) 190.39 45.74 184.71 36.26 195.86 53.42 0.313
LDLc (mg/dL) 106.90 39.30 104.43 34.12 109.29 44.21 0.645
HDLc (mg/dL) 60.57 18.65 61.61 18.25 59.64 19.26 0.695
Triglycerides (mg/dL) 120.30 58.69 101.71 30.82 138.24 72.77 0.016
CRP (ng/mL) 1.26 1.10 0.67 0.63 1.73 1.18 <0.0001

1 Main characteristics of the subset of population characterised as a whole and grouped by BMI. This includes
subjects from NUTRI-BLOOD study (n = 18) pooled with OptiDiet-15 (n = 41). The data are presented as the
mean and standard deviation (SD). p-value was assessed by Student’s t test comparing BMI groups. Abbreviations:
BMI: body mass index; CRP: C-reactive protein; DBP: diastolic blood pressure; HDLc: high density lipoprotein
cholesterol; LDLc: low density lipoprotein cholesterol; MAP: mean of arterial pressure; SBP: systolic blood pressure.
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Figure 3. Linear correlation between plasma biomarkers and LGI-Ob genetic score. Relationship
between C-reactive protein (CRP) and LGI-Ob genetic score in subjects classified by (A) source of
study and (B) BMI: Normoweight (NW, BMI < 25); overweight/obese (OW/OB, BMI ≥ 25) (n = 52).
(C) Relationship between triglycerides-to-HDLc (TGs/HDLc) ratio and LGI-Ob genetic score in subjects
grouped by BMI (n = 55). Spearman and Pearson (adjusted by age) correlation analysis were applied.
Rho: Spearman’s correlation coefficient; r: Pearson’s correlation coefficient. Data belong to both
NUTRI-BLOOD (n = 18) and OptiDiet-15 (n = 41) studies.

3.3. LGI-Ob Genetic Score May Contribute to Identify Subjects at Higher Risk to Develop Metabolic Syndrome

All the above data point to the fact that the LGI-Ob genetic score could be relevant in mediating a
higher rate of adverse events in the relationship with obesity and cardio-metabolic health. The next
step was to assess the association of genetic score with known risk factors of metabolic syndrome
in a wider, representative sample of the general adult population, incorporating the female gender.
Information about health status and genotypes of interest was obtained from 376 subjects (63% women)
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(Table 4). The frequency of LGI-Ob score followed a normal distribution with a median of 4 (IQR = 2)
and a mean of 4.36 (SD = 1.7) alleles of risk (Figure 4A). Therefore, the median value was used to stratify
the subjects in two subgroups of genetic risk: Low (<5) and high score (≥5) throughout the study.

Additionally, information concerning the presence of metabolic alterations (i.e., hypertension,
dyslipidaemia, diabetes, and visceral obesity) in these subjects was recorded and analysed.
Interestingly, the number of altered metabolic alterations showed a positive linear regression with
the LGI-Ob genetic score (β = 0.145, p = 0.001). In fact, higher prevalence of two or more metabolic
alterations was observed in individuals with a high genetic score, whereas individuals with a low
score were more represented in the categories with no or only one metabolic alteration (Figure 4B).
In order to characterise the prevalence of metabolic risk, a logistic regression analysis was undertaken.
When compared to low score subjects (OR = 1), the high scoring group had higher odds ratio for
all metabolic alterations registered, and reached statistical significance for hypertension (OR = 1.58,
p = 0.047), T2D (OR = 3.26, p = 0.026), and for the presence of two or more risk factors (relative
metabolic risk, MR) (OR = 1.87, p = 0.021) (Figure 4C). To check the accuracy of predicting the incidence
of metabolic disturbances associated with obesity, MR variable was selected as a binary outcome
and ROC analysis was performed. The ROC analysis showed a significant discriminant accuracy of
the LGI-Ob in identifying subjects having metabolic disturbances related with obesity (Area Under
Curve, AUC= 0.613, p = 0.001, confidence interval, CI = 0.551–0.674) (Figure 4D). Genetic variants in
FTO gene are highly relevant in obesity and to assess whether LGI-Ob score would perform better
than FTO on its own, we tested the removal of FTO polymorphism from the model. This had a
minor impact on AUC value (AUC = 0.582, p = 0.036), suggesting that the remaining SNP in LGI-Ob
model had major influence with the inflammatory profile associated with obesity than FTO per se.
Therefore, the LGI-Ob score as initially defined (i.e., including the influence of FTO polymorphism)
would support a higher degree of confidence in the discriminant accuracy of LGI-Ob score identifying
subjects having metabolic disturbances related with obesity.

Table 4. General population characteristics 1.

General Adult Population
Mean SD

Demographic Descriptors
Gender (% female) 63.0
Age (years) 36.0 15.0
European (%) 86.4
Overweight/obese (%) 41.0
Anthropometric measures
Height (m) 1.67 0.90
Weight (kg) 69.7 16.3
Hips (cm) 95.6 11.2
Waist (cm) 84.1 15.8
Waist to Height Ratio 0.50 0.10
BMI (kg/m2) 24.9 5.2
Body fat percentage (%) 29.3 8.9
Cardiovascular health indicators
SBP (mmHg) 125.4 15.6
DBP (mmHg) 73.1 9.9
MAP 72.1 33.1

1 Main characteristics of general adult population studied (n = 376). Only individuals with the whole set of data
were considered. Data are presented as percentage or as the mean and standard deviation (SD). Overweight/obese:
Subjects with BMI ≥ 25. BMI: body mass index; DBP: diastolic blood pressure; MAP: mean of arterial pressure; SBP:
systolic blood pressure.
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 Figure 4. (A) Distribution of the frequency of LGI-Ob genetic score computed in the general adult
population studied (n = 376); (B) Prevalence of the number of metabolic disorders suffered by the
population analysed and categorised according to low (<5, n = 201) or high (≥5; n = 175) LGI-Ob
genetic score; (C) Odds ratio (OR) for the metabolic disorders: Hypertension (HT), dyslipidemia (DL),
type 2 diabetes (T2D), visceral obesity (VO), and metabolic risk (MR) of individuals with high LGI-Ob
score (≥5) in comparison with individuals with low LGI-Ob score (<5). OR was estimated by binary
logistic regression taking as a reference (OR = 1, indicated by the dashed line) individuals with low
LGI-Ob score and adjusting for age, sex, and ethnicity. (D) Receiver operating characteristics (ROC)
curve analysis showing the performance of LGI-Ob genetic score to classify potential individuals for
obesity-associated metabolic disturbances. * p < 0.001.

4. Discussion

Obesity is a multifactorial condition associated with metabolic disturbances, such as type 2
diabetes and cardiovascular diseases. Its treatment and prevention are difficult as it is highly influenced
by both genetic and environmental factors, as well as by their interactions. In fact, the contribution
of genetics to obesity and adiposity traits has been extensively analyzed and, to date, over 500
loci have been identified and constitute targets for active research (see [76,77] for recent reviews).
Interestingly, functional characterization of the genes involved has revealed the role of immune-related
cells and pathways, which pin-points the relevance of low-grade inflammation observed in obesity [3].
Thus, preventive or therapeutic strategies aiming to counteract immune-metabolic dysfunction may
constitute an essential step in resolving obesity. In this respect, long chain omega 3 PUFA have been
shown to induce an anti-inflammatory profile at the level of gene expression in immune cells [78–80].
In a previous study, we contributed to show the anti-inflammatory potential of EPA and DHA in
humans, measuring the expression of inflammatory key genes and determining levels of cytokines
in the medium of an in vitro system of PBMC isolated from apparently healthy adult men. However,
the attenuated anti-inflammatory reaction was observed in cells from overweight/obese individuals,
together with highly heterogeneous inter-individual responses [24]. Thus, in the present study we
aimed to investigate to what extent inflammatory status and the beneficial effect associated with
long chain omega 3 PUFA would be modulated by genetic background. A number of nutrigenetic
studies have implemented the use of genetic risk scores, as they seem to have greater power than
single variants and may be useful in elucidating the biological function of the SNP [77,81]. Therefore,
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a genetic score expected to identify the risk of Low-Grade Inflammation associated with Obesity
(LGI-Ob) was elaborated. The score was based on the presence of 5 common variants known for
their influence on plasma inflammatory biomarkers (TNFα and CRP), some of which have already
been analyzed as regards PUFA interaction [31,34,42,53,56]. Application of LGI-Ob genetic score was
initially performed in the core group of participants of the previous study, then it was tested in a
medium-sized group of men, and finally in a totally heterogeneous sample of people representative
of the general Caucasian population. The LGI-Ob genetic score followed a bell-shaped distribution
with an observed range from 0 to 10. Taking the median value of the whole population, the score was
predictive of higher risk (odds ratio) of metabolic disturbances, reaching statistical significance for HT,
T2D, and MR. Furthermore, when the genetic predictor was contrasted with phenotypic features in the
smaller subsets of individuals, it was positively correlated with a disturbed TG/HDL ratio, higher CRP,
and also even decreased anti-inflammatory response to EPA and DHA. ROC analysis of the LGI-Ob
score as a predictor of developing metabolic disturbances and associated low-grade inflammation gave
an AUCROC of 0.613, which is not a very high value. However, the current genetic models to predict
obesity based on SNP associated with BMI loci deal with AUCROC between 0.546 (when FTO is the
only gene considered) up to 0.575 (when considering 12 or 32 loci) [82]. Therefore, available genetic
information is relatively poor and does not allow for accurate discrimination between those at high
risk of obesity. The LGI-Ob score identified in our study may represent a good genetic marker and may
be useful at earlier steps aimed at evaluating an individual’s predisposition to metabolic disturbances
associated with obesity and low-grade inflammation. Thus, an individual’s genetic information may
enable the prevention and management of metabolic syndrome, following the current trend towards
personalized nutritional approaches, which in addition may efficiently contribute to tailored dietary
advice aiming for precision nutrition [12,83]. In summary, our results show that genetic data could be
combined with other usual analytical parameters (i.e., CRP, HDLc, and TG) and/or contrasted with a
functional test assessing in vitro performance of DHA/EPA concerning anti-inflammatory response.
In this regard, the possibility of using the results from functional assays, for example testing in PBMC
the response to omega 3, or other bioactive compounds with anti-inflammatory potential, can help
determine the most appropriate intervention for each individual, as stated in previous works [24,84,85].
The knowledge provided by introducing the analysis of specific genetic variants could help to clarify
some of the null or contradictory results found on Omega-3 supplementation studies [86,87].

Obesity may be exerting a synergistic effect with genetic background to disturb the
anti-inflammatory potential of DHA and EPA. Hence, this study highlights that a set of relevant
genetic variants associated with genes involved in energy metabolism and inflammatory processes
could contribute to a better prediction of an individual’s metabolic resistance to the anti-inflammatory
capacity of omega 3 PUFA. Therefore, the genetic score of predisposition to low-grade inflammation
associated with obesity (LGI-Ob) defined in this study may efficiently contribute to discern population
at risk for metabolic syndrome.
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