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Current biomarkers used in research and in clinical practice in Alzheimer’s Disease

(AD) are the analysis of cerebral spinal fluid (CSF) to detect levels of Aβ42 and

phosphorylated-tau, amyloid and FDG-PET, and MRI volumetry. Some of these

procedures are still invasive for patients or expensive. Electroencephalography (EEG)

and Magnetoencephalography (MEG) are two non-invasive techniques able to detect the

early synaptic dysfunction and track the course of the disease. However, in spite of its

added value they are not part of the standard of care in clinical practice in dementia. In this

paper we reviewwhat these neurophysiological techniques can add to the early diagnosis

of AD, whether results in both modalities are related to each other or not, as well as the

need of its validation against current biomarkers. We discuss their potential implications

for the better understanding of the pathophysiological mechanisms of the disease as

well as the need of performing simultaneous M/EEG recordings to better understand

discrepancies between these two techniques. Finally, more studies are needed studying

M/EEG with amyloid and Tau biomarkers.
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INTRODUCTION

Alzheimer’s disease (AD) is the major cause of dementia in the elderly (Qiu et al., 2009). It
is characterized by the accumulation of amyloid beta (Aβ) protein, the hyperphosphorylation
of tau protein, and neuroinflammation, that are thought to lead to neuronal loss and synaptic
dysfunction. Current biomarkers used in research and in clinical practice are the analysis of
cerebral spinal fluid (CSF) to detect levels of Aβ42 and phosphorylated-tau, amyloid and FDG-
PET, and MRI volumetry. Pathological changes associated with AD, such as amyloid deposition,
start decades before the first clinical symptoms appear, and clinically-relevant functional loss
may be irrecoverable once the disease process has progressed. As such, it is imperative to detect
neuropathological changes, especially those at the synaptic level, as early in the development of
the disease process as possible. While the increased amyloid burden can be detected in preclinical
stages in subjects at risk of dementia (Dubois et al., 2016; Jack et al., 2017), hypometabolism,
and cortical atrophy is typically not detected until the early dementia stages, such as prodromal
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dementia (Jack et al., 2013, 2017). Amyloid load has not been
clearly associated with cognitive impairment, however, increased
tau at CSF showed high correlation with cognitive deficit (Nelson
et al., 2012; Vos et al., 2013). Amyloid PET and CSF are
too invasive and expensive to use to screen large numbers of
presymptomatic patients. Thus, a test is needed that can be
used to screen large populations, demonstrated the onset of the
neuropathology of the disease, that is easy to use and non-
invasive, to be able to detect the initial stages of the disease and to
track its course.

ELECTROPHYSIOLOGICAL TECHNIQUES
TO DETECT PRESYMPTOMATIC AD

The analysis of human and animal brain tissues has shown that
amyloid plaques may have a toxic effect on inhibitory terminals
(Garcia-Marin et al., 2009) as well as for excitatory neurons
(Pozueta et al., 2013; Wang et al., 2017). This phenomenon
disrupts the normal balance between excitation and inhibition in
neuronal activity, increasing neuronal excitability and damaging
neural network function (Busche and Konnerth, 2016; Teipel
et al., 2016; Sepulcre et al., 2017). Furthermore, hyperactivity
of hippocampal neurons precedes amyloid plaque formation,
suggesting that hyperactivity is one of the earliest dysfunctions
in the pathophysiological cascade initiated by abnormal Aβ

accumulation (Busche and Konnerth, 2016).
Various forms of p-Tau also alter the normal network

functioning. Tau deposition disrupts the axonal microtubule
architecture (Taniguchi et al., 2001) and its deposits correlates
with cognitive impairment (Nelson et al., 2012; Vos et al., 2013;
Albert et al., 2018) and network dysfunction (Schultz et al., 2017).
This progressive loss of synapse efficiency and quantity, disrupts
inter- and intra-regional communication, leading to the proposal
that AD is a disconnection syndrome (Hardy and Selkoe, 2002;
Delbeuck et al., 2003).

These pathophysiological processes have direct consequences
on neural transmission and therefore can be detected
by neurophysiological techniques. Synaptic dysfunction
and disruption of connectivity, then, can be studied with
Magnetoencephalography (MEG) and Electroencephalography
(EEG) (M/EEG). MEG records the magnetic fields induced by
intracellular post-synaptic activity (Hari and Puce, 2017) and the
EEG is a direct measure of neuronal field potentials that can be
used to assess the organization of brain functional architecture in
AD (Stam, 2010). It is true that while their temporal resolution
is high their ability to localize brain activity from deep sources
is limited. However, the time-frequency resolution allows for
detecting brain oscillatory activity which contains the “neural
code” for the local and long-range transmission of information.
MEG is reference free avoiding the need of a reference to close
the electrical current needed in EEG which could modify the
phase of the signals detected in each electrode. If synaptic
dysfunction and network impairment start decades before the
main cognitive symptoms appear (Jansen et al., 2015), they
could be detected early in time by M/EEG. Their non-invasive
nature allows the performance of as many recordings as needed

in each subject, contrary to other neuroimaging modalities.
This allows for detecting changes associated with healthy aging
(Fernández et al., 2012; Porcaro et al., 2019), tracking the
course of the disease and the assessment of pharmacological and
non-pharmacological interventions.

THE ROLE OF ELECTROPHYSIOLOGICAL
TECHNIQUES IN DETECTING ALZHEIMER
DISEASE

Until now, the use of M/EEG in dementia has had a minor role.
In fact, its use in the elderly population has been limited to the
discard of epileptogenic activity or the detection of generalized
slow wave activity. In the last two decades great advances in the
analysis of the information contained in the M/EEG temporal
series have revealed fundamental pathological mechanisms that
could constitute new signs for early diagnosis and prognosis in
the AD process.

While the advanced stages of AD may be associated with
functional disconnection (Stam et al., 2009), earlier stages
may be apparent in terms of communication disruption such
as hypersynchronization as revealed by MEG (Maestú et al.,
2008; Bajo et al., 2010; Buldú et al., 2011). Indeed, MEG
studies of patients with Mild Cognitive Impairment (MCI)
found alterations in network organization across the cortex
preceding clinical dementia (López et al., 2014; Maestú et al.,
2015). Findings in resting state activity show a dual pattern
of increasing and decreasing functional connectivity over
prefrontal and posterior regions, respectively, mainly in the
alpha band (Maestú et al., 2008; López-Sanz et al., 2017a). To
assess the clinical value of MEG and explore in more detail
whether hypersynchronization could be a hallmark of network
disruption, an international consortium of MEG laboratories
from five countries and three different continents was established
(Magnetoencephalography International Consortium for the
Study of AD;MAGIC-AD). This study evaluatedMEG functional
networks as a biomarker at the individual level in a blind study. A
machine learning approach was used to classify MCI and healthy
controls providing an accurate classification, over 80% (Maestú
et al., 2015). Again, increased synchronization between anterior
and posterior regions provided the better classification rate.

A common factor discovered in all these studies was an
increased synchronization between prefrontal and posterior
regions, reflecting an imbalance between excitation/inhibition,
leading to spurious synchrony (see Table 1). In fact, higher
synchronization did not provide better cognitive performance.
Hyposynchronization in posterior regions (López-Sanz et al.,
2017a) was also found, indicating a dual pattern, which could
reflect two different mechanism: first hypersynchrony due to
the loss of E/I balance (Busche and Konnerth, 2016) and
then hyposynchrony reflecting degeneration (López-Sanz et al.,
2017a).

An additional step was applying the principles of graph
theory to MEG analysis to test whether this disruption in
communication affected the architecture of the functional
networks in early stages. López-Sanz et al. (2017b), found that

Frontiers in Human Neuroscience | www.frontiersin.org 2 February 2019 | Volume 13 | Article 17

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Maestú et al. MEG and EEG in Alzheimer’s Disease

TABLE 1 | Studies of M/EEG in preclinical AD and MCI.

References Comparison Sample size Methodology Result

Babiloni et al., 2018 MCI vs. CN 75 MCI, 75 CN Sources, Resting, EEG,

FC

Widespread decreased alpha FC

Babiloni et al., 2016 AD vs. CN 19 AD, 40 CN Sources, Resting, EEG,

Activity

Higher delta and lower low frequency alpha activities.

Association between hypometabolism and delta activity

Bajo et al., 2010 MCI vs. CN 22 MCI, 19 CN Sensors, Task, MEG, FC Increased long distance interhemispheric FC &

decreased anteroposterior FC

Buldú et al., 2011 MCI vs. CN 19 MCI, 19 CN Sensors, Task, MEG,

Graphs

Increased network strength and outreach

Canuet et al., 2015 MCI 4 pMCI, 8 sMCI Sources, Resting, MEG,

FC

Dual increased/decreased FC pattern affecting limbic

structures. Decreased FC associated with impaired

axonal integrity

Cuesta et al., 2015 MCI vs. CN f(ApoE) 20 MCI0ε4, 16 MCI1ε4,

8 CN1ε4, 19 CN0ε4

Sources, Resting, MEG,

FC

Decreased alpha and beta hippocampal and IPL FC in

MCI. Decreased delta FC in ApoE34. Dual

increased/decreased FC pattern affecting

frontal/temporal regions

Dubois et al., 2018 SCD 88 SCDp, 230 SCDn Sources, Resting, EEG,

Power

Increase in alpha power over time in prefrontal areas in

Aβ positive subjects at baseline

Fernández et al., 2002 AD vs. CN 15 AD, 19 CN Sources, Resting, MEG,

Power

Increased bilateral temporoparietal delta and theta power

Gonzalez-Escamilla

et al., 2014

MCI vs. CN 29 MCI, 26 CN Sources, Resting, EEG,

FC

Decreased frontotemporal and parietal alpha FC

Hata et al., 2017 AD 14 AD Sources, Resting, EEG,

FC

Tau negative correlated with FC left frontal eye field and

the right auditory

Jelic et al., 1997 MCI f(ApoE) vs. CN 17 MCI0ε4, 14 MCI1ε4,

10 MCI2ε4, 18 CN

Sensors, Resting, EEG,

power, and FC

APOE ε4 seems to be associated with selective

decreases in FC

Jelic et al., 1998 AD continuum 14 AD, 12 MCI, 14 CN Sensors, Resting, EEG,

Power

Association between tau and the a/d power ratio

Koenig et al., 2005 AD continuum f(GDS) 211 AD, 92 MCI, 70

SCD, 46 CN

Sensors, Resting, EEG,

FC

Decreased FC in Alpha, Beta, and Gamma frequency

bands, and increased delta FC

Kramberger et al., 2013 AD vs. MCI vs. SCD 131 AD, 285 MCI, 310

SCD

Sensors, Resting, EEG,

Activity

Slower activity correlated with lower Aβ42/ptau ratio and

higher total tau.

López-Sanz et al., 2016 MCI vs. SCD vs. CN 51 MCI, 41 SCD, 39 CN Sources, Resting, MEG,

Power

Decreased alpha power. MCI showed slowing in their

alpha peak

López-Sanz et al.,

2017a

MCI vs. SCD vs. CN 51 MCI, 41 SCD, 39 CN Sources, Resting, MEG,

FC

Increased alpha anterior FC and decreased posterior

alpha FC

López-Sanz et al.,

2017b

MCI vs. SCD vs. CN 69 MCI, 55 SCD, 63 CN Sources, Resting, MEG,

Graphs

SCD showed an intermediate degree (between MCI and

CN) of network disruption in multiple parameters

Maestú et al., 2008 MCI vs. CN 15 MCI, 20 CN Sources, Task, MEG,

Activation

Bilateral higher activity in the ventral pathway

Maestú et al., 2015 MCI vs. CN 102 MCI, 82 CN Sensors, Resting, MEG,

FC

Enhanced fronto-parietal and interhemispheric

broadband FC

Moretti et al., 2017 MCI 23 MCI Sensors, Resting, EEG,

Power

Subjects with increased Ha/La showed hypometabolism

and higher ratio of conversion

Nakamura et al., 2017 CNp vs. CN 13 CNp, 32 CN Sources, Resting, MEG,

FC

Decreased local FC in Pcu. Increased FC between Pcu

and both IPL

Nakamura et al., 2018 MCI vs. CNp vs. CN 28 MCI, 11 MCInoAD,

13 CNp, 17 CN

Sources, Resting, MEG,

Power

Increased frontal alpha power in MCI and CNp.

Increased frontal delta power in MCI vs. CNp. Global

increased theta power in MCI

Smailovic et al., 2018 AD vs. MCI vs. SCD 197 AD, 230 MCI, 210

SCD

Sensors, Resting, EEG,

power, and FC

Aβ42 correlated inversely with theta and delta power. Tau

correlated negatively with alpha power. Alpha and beta

FC correlated inversely with increased pathology

Stomrud et al., 2010 CN 33 CN Sensors, Resting, EEG,

Power

Association between theta power and tau CSF

measurements

Teipel et al., 2018 SCD 63 SCDp, 255 SCDn Sensors, Resting, EEG,

FC

Non global significant results. Aβp participants showed

enhanced alpha FC and diminished beta FC

Unless otherwise expressly stated, the results summarized in the column “Result” are described referring to the first group in the corresponding column “comparison.” SCD, subjective

memorry complain; CN, cognitive normal; MCI, mild cognitive impairment; Aβ, Amyloid beta; XX0,1,2ε4, XX participants with 0, 1, or 2 allele/s of Apoε4; FC, functional connectivity.

MCInoAD, mild cognitive impairment not AD type; GDS, global dementia score; XXp, XX participants with positive amyloidosis; XXn, XX participants with negative amyloidosis; pMCI,

progressive mild cognitive impairment; sMCI, stable mild cognitive impairment; Ha/La, high alpha/low alpha ratio; a/d, alpha/delta ratio; PCu, precuneus; IPL, inferior parietal lobe.
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theMCI patients showed a decreased small-worldness, clustering,
and transitivity as well as increased modularity in theta and beta
bands. Another group with Subjective Cognitive Decline (SCD)
showed similar but smaller changes in clustering and transitivity,
while exhibiting alterations in the alpha band in the opposite
direction of that shown by MCI for modularity and transitivity.
Clustering was disrupted as well in MCI and SCD. Additionally,
it was observed that there is an increase in modular partition
variability in both SCD and MCI in theta and beta bands. All
these findings reflect a progressive loss of network architecture
that is associated with worsening of cognitive symptoms.

One important issue that needed further research was
the reliability of the results of the functional networks.
This was necessary to be able to track different stages of
AD continuum and to test the efficacy of pharmacological
and non-pharmacological interventions. Thus, regarding the
reproducibility of the functional network results, it was
performed a study in which subjects underwent three MEG
scans in three separate days and different functional connectivity
metrics were assessed in the source space. The intraclass-
correlation was very high for phase synchrony metrics,
in different brain networks such as the motor and the
somatosensory cortex, and the default mode network (Garcés
et al., 2016a).

While MEG studies have found a dual pattern of hyper and
hyposynchrony, a more consistent finding in EEG has been a
reduced alpha to beta coherence (Jelic et al., 1997; Jeong, 2004;
Fonseca et al., 2013). Gonzalez-Escamilla et al. (2014) showed
a reduction of alpha interhemispheric coupling in MCI patients
compared to controls, with this effect being greater in APOE4
carriers. Recently, Babiloni et al. (2018), using an advanced
technique for functional connectivity analysis, showed intra and
interhemispheric reduction of alpha band network functioning
in AD patients that were able to distinguish them from healthy
elderly subjects and Parkinson Disease patients. In early stages,
such asMCI, patients again showed a decrease of alpha functional
connectivity in several brain regions (Babiloni et al., 2018).
Combining a small world metric and APOE4 positivity, Vecchio
et al. (2018) showed a 91.7% accuracy for correct classification
of a large cohort MCI patients who did or did not convert to
AD. Finally, Dauwan et al. (2016) using an effective connectivity
metric showed that the common posterior-to-anterior pattern
of directed connectivity in controls is reduced in dementia with
Lewy bodies patients in the alpha band, and in AD patients in the
beta band.

In all these EEG studies, the most prominent profile was a
decreased functional connectivity with consequences on network
architecture. This discrepancy with MEG findings, i.e., the
dual pattern of hypo and hypersynchrony, should be further
investigated and evaluated as to why hypersynchrony is not
being detected regularly in EEG studies. This could be due to
differences in the population tested (more advanced cognitive
impairment in EEG studies than in MEG) or because of technical
issues (different source reconstruction methods, metrics of
functional connectivity, or reference in EEG). Simultaneous
M/EEG recordings in healthy elders and in SCD/MCI/AD
subjects are needed to evaluate similarities and differences
between both techniques in the same sample.

M/EEG AS A BIOMARKER FOR
CONVERSION FROM MCI TO DEMENTIA

A crucial factor for considering M/EEG as a biomarker for AD
is its capability to predict conversion across the different stages
of the disease (preclinical-prodromal-dementia). There are very
few longitudinal studies and all focused in the conversion from
MCI to dementia (see Table 2). In two longitudinal studies (2
years of follow-up) with a similar sample, thoseMCI patients who
developed dementia showed higher alpha band synchronization
than those who remained stable (Bajo et al., 2012; López et al.,
2014). The higher the synchronization between the anterior
cingulate cortex and the posterior cortical regions, the higher
the likelihood for developing dementia (López et al., 2014).
Furthermore, patients that showed high levels of p-tau in the
CSF and later on developed dementia showed again an increased
synchronization between the medial temporal lobe and the
anterior cingulate cortex in the beta frequency band (Canuet
et al., 2015).

In EEG, Jelic et al. (2000) did not find differences between
MCI converters and stable at the time they all were MCI, but
a subsequent evaluation showed that converters increased their
theta relative power and decreased beta in the temporal lobe.
Subsequent studies with EEGwere consistent in finding increased
delta power over temporal regions in MCI converters compared
with non-converters (Rossini et al., 2006). Alpha differences were
found as well, with a reduced posterior power density (Luckhaus
et al., 2008). However, a discrepant finding was found by Moretti
et al. (2011) where converters showed an increased alpha3/alpha2
ratio. Finally, in healthy subjects who were CSF/amyloid (+)
with subjective memory complaints, higher delta and theta
power predicted conversion to cognitive impairment, however,
no association was found with tau protein (Gouw et al.,
2017). Regarding functional connectivity, Rossini et al. (2006)
found increased fronto-parietal coherence in agreement with the
increased functional connectivity values found in converters in
MEG studies (López et al., 2014).

An interesting approach was the one proposed by Poil
et al. (2013) in which they combine the information from
multiple EEG biomarkers into a diagnostic classification index
to improve the accuracy of predicting conversion from MCI to
AD. By integrating six EEG biomarkers [Amplitude correlations
with Cz in Beta (13–30Hz); bandwidth of subject-specific
Beta frequency; peak width of dominant beta peak; range of
amplitude values in Beta (13–30Hz); ratio between theta and
alpha power; and alpha relative power normalized with 1–45Hz
broadband] into a diagnostic index the prediction achieved a
sensitivity of 88% and specificity of 82%, compared with a
sensitivity of 64%, and specificity of 62% of the best individual
biomarker.

THE RELATIONSHIP BETWEEN FINDINGS
ON MEG AND EEG IN DEMENTIA

The findings discussed thus far suggest an important potential
for using the hyper/hyposynchronization phenomena detected
with MEG as a non-invasive diagnostic biomarker. However,
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TABLE 2 | Studies of M/EEG on progression along AD continuum.

References Comparison Sample size Methodology Result

Bajo et al., 2012 pMCI vs. sMCI 5 pMCI, 14 sMCI Sensors, Task, MEG, FC Increased parieto-occipital and frontal FC

Gouw et al., 2017 pSCD vs. sSCD; pMCI

vs. sMCI

25 pSCD, 38 sSCD, 83

pMCI, 59 sMCI

Sensors, Resting, EEG,

Power

pSCD showed higher delta and theta power and lower

alpha power and peak frequency

Jelic et al., 2000 AD vs. pMCI vs. sMCI

vs. CN

15 AD, 14 pMCI, 13

sMCI, 16 CN

Sensors, Resting, EEG,

Power

MCI groups showed lower theta power than AD. pMCI

showed higher theta and lower beta

Jovicich et al., 2018 MCI vs. MCInoAD 81 MCI, 63 MCInoAD Sources, Resting and

Task, EEG, Activity

Increased delta and theta and decreased low frequency

alpha activities. Reduced parietal/posterior task activity

López et al., 2014 pMCI vs. sMCI 19 pMCI, 30 sMCI Sources, Resting, MEG,

FC

Increased alpha FC between right anterior cingulate and

temporo-occipital regions

Luckhaus et al., 2008 pMCI vs. sMCI vs. AD 44 AD, 88 MCI Sensors, Resting, EEG,

Power

Decreased alpha power over posterior regions. 22% of

MCI progressed to dementia

Moretti et al., 2011 pMCI vs. sMCI 18 pMCI, 14 DnoAD, 44

sMCI

Sensors, Resting, EEG,

Power

Increased t/g ratio associated with dementia; increased

a3/a2 ratio associated with AD

Poil et al., 2013 pMCI vs. sMCI 25 pMCI, 61 sMCI Sensors, Resting, EEG,

Power

Combination of EEG signatures in the beta band

predicted conversion to AD

Rossini et al., 2006 pMCI vs. sMCI 24 pMCI, 45 sMCI Sources, Resting, EEG,

FC

Increased FC in several frequency bands

Vecchio et al., 2018 pMCI vs. sMCI 71 pMCI, 74 sMCI Sources, Resting, EEG,

Graphs

AD like small worldness pattern in pMCI

Unless otherwise expressly stated, the results summarized in the column “Result” are described referring to the first group in the corresponding column “comparison.” SCD, subjective

memorry complain; CN, cognitive normal; MCI, mild cognitive impairment; DnoAD, dementia non-due to AD; Aβ, Amyloid beta; XX0,1,2ε4, XX participants with 0, 1, or 2 allele/s of

Apoε4; FC, functional connectivity; MCInoAD, mild cognitive impairment not AD type; GDS, global dementia score; XXp, XX participants with positive amyloidosis; XXn, XX participants

with negative amyloidosis; pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive impairment; a3/a2, alpha3/alpha2 ratio; t/g, theta/gamma ratio; PCu, precuneus;

IPL, inferior parietal lobe; pSCD, progressive subjective memory complain; sSCD, stable progressive memory complain.

the use of MEG world-wide is still not as common as MRI or
EEG, suggesting that it would be important to demonstrate how
EEG can be used to detect the findings found on MEG. M/EEG
data compatibility in epilepsy has already been demonstrated
(Aydin et al., 2015; Hunold et al., 2016), but there are no
papers indicating how functional network results in AD are
compatible between MEG and EEG. This needs simultaneous
recordings in healthy elderly subjects and in patients at different
stages of the disease. Lacking these simultaneous recordings,
we have to refer to the similarities between MEG and EEG on
the previous findings reviewed above. Their correlation is fairly
great in the majority of the studies, however, some discrepancies
still exist, especially showing reduced functional connectivity in
early stages of the disease in EEG (Babiloni, 2018), instead of a
dual pattern dominated by hypersynchronization as showed in
MEG studies (Jelic et al., 1997; Jeong, 2004; Koenig et al., 2005;
Fonseca et al., 2013; López-Sanz et al., 2017a; Nakamura et al.,
2017).

M/EEG AND CURRENT BIOMARKERS OF
AD

It would be important for M/EEG to add additional information
regarding the pathogenesis, diagnosis and prognosis of dementia,
as well as to serve as a tool for tracking the course of the disease
to evaluate the consequences of novel therapeutic interventions.
The first step in this would be to show how their findings correlate
with current biomarkers, such as cerebrospinal fluid (CSF) or
PET measures of amyloid-beta.

There are still very few papers evaluating this compatibility.
Recently, Nakamura et al. (2017) showed in a MEG study
how deposits of amyloid protein alter network organizations in
healthy elderly compared to amyloid negative elderly subjects.
Functional connectivity was especially disrupted in regions with
high amyloid deposits such as the inferior parietal lobe and the
precuneus. In fact, there was a correlation between the high
amyloid deposition and brain synchrony in those two regions.
The importance of these results is that this network impairment
preceded FDG-hypometabolism or brain atrophy. Therefore,
hypersynchrony was detected in very early preclinical stages.
In a subsequent analysis of the same data, they showed how
local networks were also altered in association with amyloid
depositions. Thus, alpha power was increased in prefrontal
regions in correlation with high amyloid deposition in healthy
elderly subjects. This time, brain magnetic activity was also
recorded inMCI patients and showed increased alpha power over
prefrontal regions where high amyloid deposition was detected
(Nakamura et al., 2018).

In this review, we found just one paper attempting to
correlate levels of p-Tau in the CSF with resting state MEG
activity in patients with MCI. That study found a positive
correlation between the levels of the p-tau protein and the
functional connectivity values between medial temporal lobe and
anterior cingulate cortex in subjects with prodromal AD (Canuet
et al., 2015). This finding agrees with the tau neuropathology
network-model, as described by Braak and Braak, and with
recent ideas of “transneuronal neurodegeneration” (Fornito et al.,
2015). The potential network alterations driven by transneuronal
degeneration shape a unique framework to assess the cascade
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of neuropathological changes underlying the progression of AD
using M/EEG-tau-PET. In this study, the authors showed a
decrease in phase synchronization between the motor cortex and
posterior cingulate cortex as well as between orbitofrontal region
and temporo-occipital cortex. This decreased synchronization
could indicate a functional disconnection in these MCI subjects.
A reduction in posterior cingulate functional connectivity
mediated by p-tau was also associated with impaired axonal
integrity of the hippocampal cingulum as evaluated by diffusion
tensor imaging, which could be understood as a functional
diaschisis (Canuet et al., 2015). This supports the notion
that the disruption of anatomical networks influences brain
organization at the functional level (Kuczynski et al., 2010),
perhaps contributing to the clinical manifestations of MCI
(Pineda-Pardo et al., 2014).

Another important comparison necessary to better
understand the role of MEG in dementia was to compare
MEG results with genetic profiles of elderly subjects. One
study investigated the modulation of functional networks in
participants carrying the APOE4 allele, comparing healthy elders
and MCI patients who did or did not carry the APOE4 allele.
Healthy elderly carriers showed an increased synchronization
between anterior and posterior regions while MCI carriers
showed lower synchronization. This suggests that being a carrier
of the ε4 allele increases the risk for developing dementia and as
well increases the probability for showing hypersynchrony in key
brain regions. MCI carriers showed higher network disruption
with a decrease in functional connectivity in the same regions
where healthy elderly carriers showed increased synchrony
values (Cuesta et al., 2015).

All these studies indicate that hypersynchrony appears
in preclinical stages (healthy elders with high amyloid
deposition or carriers of APOE4 and in SCD subjects) and
in later stages hyposynchrony is a sign of neurodegeneration.
Thus, an early unbalance between excitation and inhibition
mechanisms could responsible for excessive excitatory activity
that may lead to neuronal impairment (Busche and Konnerth,
2016).

Regarding EEG and biomarkers, there are still few published
papers. Comparing EEG and glucose metabolism by FDG-PET
(Moretti et al., 2017), found hypometabolism in MCI patients
with higher high-alpha/low-alpha power ratio. A compatible
result was found by Babiloni et al. (2016) where higher activity of
delta sources and lower activity of low-alpha sources was found
in cortical regions with lower glucose metabolism. In another
study, however, no significant relationship between glucose
consumption and cortical alpha-phase coupling was found either
inMCIApoE4 carriers or non-carriers (Gonzalez-Escamilla et al.,
2014).

Regarding amyloid-PET, two related studies did not find
differences between amyloid-PET (+) and (–) individuals
(Dubois et al., 2018; Teipel et al., 2018). Analyzing just
the amyloid (+) subjects separately, they found an increased
functional connectivity in regions with high amyloid deposition;
however, the correlations were not statistically significant after
correction for multiple comparisons (Teipel et al., 2018). Taking
blood-amyloid samples, Gonzalez-Escamilla et al. (2014) found

that elevated levels of Aβ1–42 correlated with decreased parieto-
occipital functional connectivity in healthy subjects, but not in
amnestic MCI subjects.

Jelic et al. (1998) were the first comparing CSF markers with
EEG, finding a positive correlation between CSF tau levels and
the alpha/delta power ratio in AD patients. Hata and coworkers
(Hata et al., 2017) found a negative correlation between Aβ42
concentration and theta current source density in the right
temporal region. Additionally, when they assessed total tau
concentration, this parameter was negatively correlated with the
lagged phase synchronization between the left frontal eye field
and the right auditory area in the alpha band in patients with
AD. Thus, the higher total tau the less functional connectivity in
the alpha band. The increased local theta (associated with lower
amyloid in CSF) and the reduced alpha network (associated with
higher total tau), then, were indicators of functional impairment.
These results were compatible with a previous EEG study where
the combined ratio of the phosphorylated tau and Aβ42 showed
a positive correlation with theta power in the right posterior
electrodes (Stomrud et al., 2010; Kramberger et al., 2013). A
recent EEG paper, showed increased resting state delta and
theta rhythms and decreased low-frequency alpha (8–10.5Hz)
in MCI with positive biomarkers in the CSF (Jovicich et al.,
2018). Similar findings were found by another independent study
where lower Aβ42 levels and high p-tau were associated with high
delta/theta and low alpha/beta power respectively, while global
field synchronization was decreased in alpha and beta (Smailovic
et al., 2018).

Considering all these EEG studies, there seem to be
inconsistencies between amyloid-PET and CSF studies. However,
the low number of studies published could increase variability
of the results due to differences in methodologies employed in
diagnosis and data analysis. EEG/CSF studies appear to provide
a consistent result, i.e., an increased slow activity power in
posterior regions correlates with pathology at different stages
of the disease. These results are consistent with MEG studies
(Fernández et al., 2002; Nakamura et al., 2018). However,
EEG/MEG tends to also show reductions in alpha band power
(Garcés et al., 2013; Babiloni et al., 2014; López-Sanz et al.,
2016), and diminished complexity in the electrophysiological
signals (Fernández et al., 2010; Bruña et al., 2012; Smits et al.,
2016).

Functional connectivity findings with EEG and MEG in
correlation with CSF are very compatible. A dual pattern of
hyper- and hypoconnectivity associated with Aβ42 and tau
were found in the two studies available. However, M/EEG and
amyloid-PET studies are clearly incongruent as in MEG studies
there are robust differences between amyloid (+) and (–) healthy
elderly subjects (Nakamura et al., 2017, 2018).

DISCUSSION

M/EEG has shown differential profiles of functional connections
between healthy elders and patients at different stages of the
AD continuum. These profiles seem to correlate with cognitive
scores and the clinical course of the disease, being able to
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predict which of the SCD and MCI patients will convert to
dementia.

Very few studies have tested for correlations with current
biomarkers. The few studies that have been done show a
correlation of MEG with both amyloid-PET and CSF values and
EEG with CSF. There is an association with the genetic risk factor
most frequently associated with AD, i.e., being a carrier of an
APOE4 allele. This correlation with current biomarkers was an
important test for M/EEG to: (1) understand the basis of the
hyper and hyposynchrony phenomenon and power reduction,
and (2) to make possible its use in the clinical scenario. However,
some discrepant findings between MEG and EEG indicate the
need for a study where biomarkers would be acquired in the same
sample of patients where simultaneous M/EEG recordings were
being performed. A study testing whether hypersynchronization
in the alpha band can also be consistently found in EEG in
subjects with positive biomarkers at early stages is still needed.
Hypersynchronization in the alpha band found in MEG at
specific locations can also be tested and transferred to EEG in the
context of a simultaneous recording, using the same metric for
signal analysis.

Functional Magnetic Resonance Imaging (fMRI) can as well
provide valuable information about the organization of brain
networks (Bullmore and Bassett, 2011). In fact, multimodal
studies with the same subjects have shown strong similarities
between fMRI and MEG brain network topologies in alpha and
beta frequency bands (Garcés et al., 2016b). fMRI has shown
a disruption of brain network organization at different stages
of the disease, essentially indicating a progressive disruption
of the default mode network, both at the network level (Lim
et al., 2014; Jones et al., 2015) and at the local level (Jovicich
et al., 2018); being hub regions primarily impaired (Drzezga
et al., 2011; Crossley et al., 2014). Furthermore, patients that
convert from MCI to AD showed entorhinal/hippocampal
hypoconnectivity in comparison to those that did not covert
(Delli Pizzi et al., 2019). Interestingly, MCI patients who did
not convert to AD or did not show CSF signs of disease
showed hyperconnectivity between hippocampal/entorhinal with
neocortical/subcortical regions (Delli Pizzi et al., 2019). These
results are essentially in agreement with those found with
electrophysiological techniques in certain frequency bands such
as alpha and beta. Consequently, it is of interest to consider
an integrative approach of the different potential biomarkers

provided by M/EEG with those provided by fMRI. Poil
et al. (2013), showed how the integration between six EEG
biomarkers improve the classification between converters and
non-converters. This approach could be as well be very beneficial
for MEG biomarkers and for combining EEG and MEG findings
to achieve a global neurophysiological index. By using deep
learning approaches this combination of potential biomarkers
could go beyond electrophysiological biomarkers including
genetics, fMRI and MRI modalities as well as neuropsychological
tests and life style factors. Compatibility is always subjected
to non-redundant information. While M/EEG and fMRI data
are compatible at certain frequency bands, there are others
frequencies which seem to provide additional information.
Conversely, fMRI provide information from deep brain regions
where M/EEG sensors are nowadays not capable to achieve
good signal to noise ratios. Therefore, these two views of brain
functional activity are compatible as they provide complementary
information (see Jovicich et al., 2018). As commented above, the
use of deep learning approaches combining different sources of
information could overcome the limitations of a single modality
improving our knowledge of the structural and functional basis
of AD.

Four main conclusions come from this review: (1) more
studies are needed correlating M/EEG with current biomarkers
to validate these neurophysiological techniques for a regular
use in the clinical scenario; (2) multicenter, blind studies with
biomarkers will provide reliability and accuracy values for
classification; (3) include other sources of information such as
genetics, PET, MRI, life style factors, and neuropsychological
scores to achieve a more global view of the disease; and, (4)
simultaneous M/EEG recordings in elderly subjects would test
the compatibility of the functional connectivity results between
these two techniques.

AUTHOR CONTRIBUTIONS

FMwrote themanuscript. All authors were designing the concept
and structure of the paper and review the final manuscript.

FUNDING

This work was supported by the Spanish Ministry of Science
Grant No. PSI2015-68793-C3-1-R.

REFERENCES

Albert, M., Zhu, Y., Moghekar, A., Mori, S., Miller, M. I., Soldan, A., et al.
(2018). Predicting progression from normal cognition to mild cognitive
impairment for individuals at 5 years. Brain 141, 877–87. doi: 10.1093/brain/
awx365

Aydin, Ü., Vorwerk, J., Dümpelmann, M., Küpper, P., Kugel, H., Heers, M.,
et al. (2015). Combined EEG/MEG can outperform single modality EEG
or MEG source reconstruction in presurgical epilepsy diagnosis. PLoS ONE

10:e0118753. doi: 10.1371/journal.pone.0118753
Babiloni, C., Del Percio, C., Caroli, A., Salvatore, E., Nicolai, E., Marzano, N.,

et al. (2016). Cortical sources of resting state Eeg rhythms are related to

brain hypometabolism in subjects with Alzheimer’s disease: an Eeg-Pet study.
Neurobiol. Aging 48, 122–34. doi: 10.1016/j.neurobiolaging.2016.08.021

Babiloni, C., Del Percio, C., Lizio, R., Marzano, N., Infarinato, F., Soricelli, A.,
et al. (2014). Cortical sources of resting state electroencephalographic alpha
rhythms deteriorate across time in subjects with amnesic mild cognitive
impairment. Neurobiol. Aging 35, 130–42. doi: 10.1016/j.neurobiolaging.2013.
06.019

Babiloni, C., Del Percio, C., Lizio, R., Noce, G., Lopez, S., Soricelli, A., et al. (2018).
Functional cortical source connectivity of resting state electroencephalographic
alpha rhythms shows similar abnormalities in patients with mild cognitive
impairment due to Alzheimer’s and Parkinson’s diseases. Clin. Neurophysiol.
129, 766–782. doi: 10.1016/j.clinph.2018.01.009

Frontiers in Human Neuroscience | www.frontiersin.org 7 February 2019 | Volume 13 | Article 17

https://doi.org/10.1093/brain/awx365
https://doi.org/10.1371/journal.pone.0118753
https://doi.org/10.1016/j.neurobiolaging.2016.08.021
https://doi.org/10.1016/j.neurobiolaging.2013.06.019
https://doi.org/10.1016/j.clinph.2018.01.009
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Maestú et al. MEG and EEG in Alzheimer’s Disease

Babiloni, C., Del Percio, C., Lizio, R., Noce, G., Lopez, S., Soricelli, A.,
et al. (2018). Functional cortical source connectivity of resting state
electroencephalographic alpha rhythms shows similar abnormalities in
patients with mild cognitive impairment due to Alzheimer’s and Parkinson’s
diseases. Clin. Neurophysiol. 129, 766–82. doi: 10.1016/J.CLINPH.2018.
01.009

Bajo, R., Castellanos, N. P., Cuesta, P., Aurtenetxe, S., Garcia-Prieto, J.,
Gil-Gregorio, P., et al. (2012). Differential patterns of connectivity
in progressive mild cognitive impairment. Brain Connect. 2, 21–4.
doi: 10.1089/brain.2011.0069

Bajo, R., Maestú, F., Nevado, A., Sancho, M., Gutiérrez, R., Campo, P., et al. (2010).
Functional connectivity in mild cognitive impairment during a memory task:
implications for the disconnection hypothesis. J. Alzheimers Dis. 22, 183–93.
doi: 10.3233/JAD-2010-100177

Bruña, R., Poza, J., Gómez, C., Fernández, A., and Hornero, R. (2012).
Analysis of spontaneous MEG activity in mild cognitive impairment using
spectral entropies and disequilibrium measures. J. Neural Eng. 9:036007.
doi: 10.1088/1741-2560/9/3/036007

Buldú, J. M., Bajo, R., Maestú, F., Castellanos, N., Leyva, I., Gil, P., et al. (2011).
Reorganization of functional networks in mild cognitive impairment. PLoS
ONE 6:e19584. doi: 10.1371/journal.pone.0019584

Bullmore, E. T., and Bassett, D. S. (2011). Brain graphs: graphical models
of the human brain connectome. Annu. Rev. Clin. Psychol. 7, 113–40.
doi: 10.1146/annurev-clinpsy-040510-143934

Busche, M. A., and Konnerth, A. (2016). Impairments of neural circuit function
in Alzheimer’s disease. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 371, 1–10.
doi: 10.1098/rstb.2015.0429

Canuet, L., Pusil, S., López ME, Bajo, R., Pineda-Pardo JÁ, Cuesta, P.,
et al. (2015). Network disruption and cerebrospinal fluid amyloid-beta and
phospho-tau levels in mild cognitive impairment. J. Neurosci. 35, 10325–30.
doi: 10.1523/JNEUROSCI.0704-15.2015

Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., Mcguire, P.,
et al. (2014). The hubs of the human connectome are generally implicated
in the anatomy of brain disorders. Brain 137, 2382–95. doi: 10.1093/brain/a
wu132

Cuesta, P., Garcés, P., Castellanos NP, López ME, Aurtenetxe, S., Bajo, R., et al.
(2015). Influence of the APOE ε4 allele and mild cognitive impairment
diagnosis in the disruption of the MEG resting state functional connectivity
in sources space. J. Alzheimers Dis. 44, 493–505. doi: 10.3233/JAD-1
41872

Dauwan, M., van Dellen, E., van Boxtel, L., van Straaten, E. C. W., de
Waal, H., Lemstra, A. W., et al. (2016). EEG-directed connectivity from
posterior brain regions is decreased in dementia with Lewy bodies: a
comparison with Alzheimer’s disease and controls. Neurobiol. Aging 41, 122–9.
doi: 10.1016/j.neurobiolaging.2016.02.017

Delbeuck, X., Van der Linden, M., and Collette, F. (2003). Alzheimer’s
disease as a disconnection syndrome? Neuropsychol. Rev. 13, 79–92.
doi: 10.1023/A:1023832305702

Delli Pizzi, S., Punzi, M., Sensi, S. L., and Alzheimer’s Disease Neuroimaging
Initiative. (2019). Functional signature of conversion of patients
with mild cognitive impairment. Neurobiol. Aging 74, 21–37.
doi: 10.1016/j.neurobiolaging.2018.10.004

Drzezga, A., Becker, J. A., Van Dijk, K. R., Sreenivasan, A., Talukdar, T., Sullivan,
C., et al. (2011). Neuronal dysfunction and disconnection of cortical hubs in
non-demented subjects with elevated amyloid burden. Brain 134, 1635–46.
doi: 10.1093/brain/awr066

Dubois, B., Epelbaum, S., Nyasse, F., Bakardjian, H., Gagliardi, G., Uspenskaya,
O., et al. (2018). Cognitive and neuroimaging features and brain β-
amyloidosis in individuals at risk of Alzheimer’s disease (INSIGHT-
preAD): a longitudinal observational study. Lancet Neurol. 17, 335–46.
doi: 10.1016/S1474-4422(18)30029-2

Dubois, B., Hampel, H., Feldman, H. H., Scheltens, P., Aisen, P., Andrieu,
S., et al. (2016). Preclinical Alzheimer’s disease: definition, natural
history, and diagnostic criteria. Alzheimers Dement. 12, 292–323.
doi: 10.1016/j.jalz.2016.02.002

Fernández, A., Hornero, R., Gómez, C., Turrero, A., Gil-Gregorio, P., Matías-
Santos, J., et al. (2010). Complexity analysis of spontaneous brain activity
in Alzheimer disease and mild cognitive impairment: an MEG study.

Alzheimer Dis. Assoc. Disord. 24, 182–9. doi: 10.1097/WAD.0b013e3181c
727f7

Fernández, A., Maestú, F., Amo, C., Gil, P., Fehr, T., Wienbruch, C.,
et al. (2002). Focal temporoparietal slow activity in Alzheimer’s disease
revealed by magnetoencephalography. Biol. Psychiatry 52, 764–70.
doi: 10.1016/S0006-3223(02)01366-5

Fernández, A., Zuluaga, P., Abásolo, D., Gómez, C., Serra, A., Méndez, M. A., et al.
(2012). Brain oscillatory complexity across the life span. Clin. Neurophysiol.
123, 2154–62. doi: 10.1016/j.clinph.2012.04.025

Fonseca, L. C., Tedrus, G. M., Carvas, P. N., and Machado, E. C. (2013).
Comparison of quantitative EEG between patients with Alzheimer’s disease
and those with Parkinson’s disease dementia. Clin. Neurophysiol. 124, 1970–4.
doi: 10.1016/j.clinph.2013.05.001

Fornito, A., Zalesky, A., and Breakspear, M. (2015). The connectomics
of brain disorders. Nat. Rev. Neurosci. 16, 159–72. doi: 10.1038/nr
n3901

Garcés, P., Martin-Buro, M. C., and Maestu, F. (2016a). Quantifying the test-
retest reliability of MEG resting state functional connectivity. Brain Connect.

6, 448–60. doi: 10.1089/brain.2015.0416
Garcés, P., Pereda, E., Hernández-Tamames, J. A., Del-Pozo, F., Maestú, F., Pineda-

Pardo, J. Á., et al. (2016b). Multimodal description of whole brain connectivity:
a comparison of resting state MEG, fMRI, and DWI. Hum. Brain Mapp. 37,
20–34. doi: 10.1002/hbm.22995

Garcés, P., Vicente, R., Wibral, M., Pineda-Pardo, J. Á., López, M. E.,
Aurtenetxe, S., et al. (2013). Brain-wide slowing of spontaneous alpha
rhythms in mild cognitive impairment. Front. Aging Neurosci. 5:100.
doi: 10.3389/fnagi.2013.00100

Garcia-Marin, V., Blazquez-Llorca, L., Rodriguez, J.-R., Boluda, S., Muntane,
G., Ferrer, I., et al. (2009). Diminished perisomatic GABAergic terminals
on cortical neurons adjacent to amyloid plaques. Front. Neuroanat. 3:28.
doi: 10.3389/neuro.05.028.2009

Gonzalez-Escamilla, G., Atienza, M., and Cantero, J. L. (2014). Impaired
cortical oscillatory coupling in mild cognitive impairment: anatomical
substrate and ApoE4 effects. Brain Struct. Funct. 220, 1721–37.
doi: 10.1007/s00429-014-0757-1

Gouw, A. A., Alsema, A. M., Tijms, B. M., Borta, A., Scheltens, P., Stam, C. J.,
et al. (2017). EEG spectral analysis as a putative early prognostic biomarker
in nondemented, amyloid positive subjects. Neurobiol. Aging 57, 133–42.
doi: 10.1016/j.neurobiolaging.2017.05.017

Hardy, J., and Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s
disease: progress and problems on the road to therapeutics. Science 297, 353–6.
doi: 10.1126/science.1072994.

Hari, R., and Puce, A. (2017).MEG-EEG Primer. New York, NY: Oxford University
Press. doi: 10.1093/med/9780190497774.001.0001

Hata, M., Tanaka, T., Kazui, H., Ishii, R., Canuet, L., Pascual-Marqui, R. D.,
et al. (2017). Cerebrospinal fluid biomarkers of Alzheimer’s disease correlate
with electroencephalography parameters assessed by Exact Low-Resolution
Electromagnetic Tomography (eLORETA). Clin. EEG Neurosci. 48, 338–47.
doi: 10.1177/1550059416662119

Hunold, A., Funke, M. E., Eichardt, R., Stenroos, M., and Haueisen, J. (2016).
EEG and MEG: sensitivity to epileptic spike activity as function of source
orientation and depth. Physiol. Meas. 37, 1146–62. doi: 10.1088/0967-3334/37/7
/1146

Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P.
S., et al. (2013). Tracking pathophysiological processes in Alzheimer’s disease:
an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12,
207–16. doi: 10.1016/S1474-4422(12)70291-0

Jack, C. R., Wiste, H. J., Weigand, S. D., Therneau, T. M., Knopman, D. S.,
Lowe, V., et al. (2017). Age-specific and sex-specific prevalence of cerebral
β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired
individuals aged 50–95 years: a cross-sectional study. Lancet Neurol. 16, 435–44.
doi: 10.1016/S1474-4422(17)30077-7

Jansen, W. J., Ossenkoppele, R., Knol, D. L., Tijms, B. M., Scheltens, P., Verhey, F.
R., et al. (2015). Prevalence of cerebral amyloid pathology in persons without
dementia: a meta-analysis. JAMA 313, 1924–38. doi: 10.1001/jama.2015
.4668

Jelic, V., Blomberg, M., Dierks, T., Basun, H., Shigeta, M., Julin, P., et al.
(1998). EEG slowing and cerebrospinal fluid tau levels in patients with

Frontiers in Human Neuroscience | www.frontiersin.org 8 February 2019 | Volume 13 | Article 17

https://doi.org/10.1016/J.CLINPH.2018.01.009
https://doi.org/10.1089/brain.2011.0069
https://doi.org/10.3233/JAD-2010-100177
https://doi.org/10.1088/1741-2560/9/3/036007
https://doi.org/10.1371/journal.pone.0019584
https://doi.org/10.1146/annurev-clinpsy-040510-143934
https://doi.org/10.1098/rstb.2015.0429
https://doi.org/10.1523/JNEUROSCI.0704-15.2015
https://doi.org/10.1093/brain/awu132
https://doi.org/10.3233/JAD-141872
https://doi.org/10.1016/j.neurobiolaging.2016.02.017
https://doi.org/10.1023/A:1023832305702
https://doi.org/10.1016/j.neurobiolaging.2018.10.004
https://doi.org/10.1093/brain/awr066
https://doi.org/10.1016/S1474-4422(18)30029-2
https://doi.org/10.1016/j.jalz.2016.02.002
https://doi.org/10.1097/WAD.0b013e3181c727f7
https://doi.org/10.1016/S0006-3223(02)01366-5
https://doi.org/10.1016/j.clinph.2012.04.025
https://doi.org/10.1016/j.clinph.2013.05.001
https://doi.org/10.1038/nrn3901
https://doi.org/10.1089/brain.2015.0416
https://doi.org/10.1002/hbm.22995
https://doi.org/10.3389/fnagi.2013.00100
https://doi.org/10.3389/neuro.05.028.2009
https://doi.org/10.1007/s00429-014-0757-1
https://doi.org/10.1016/j.neurobiolaging.2017.05.017
https://doi.org/10.1126/science.1072994.
https://doi.org/10.1093/med/9780190497774.001.0001
https://doi.org/10.1177/1550059416662119
https://doi.org/10.1088/0967-3334/37/7/1146
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1016/S1474-4422(17)30077-7
https://doi.org/10.1001/jama.2015.4668
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Maestú et al. MEG and EEG in Alzheimer’s Disease

cognitive decline. Neuroreport 9, 157–60. doi: 10.1097/00001756-199801050-
00032

Jelic, V., Johansson, S. E., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., et al.
(2000). Quantitative electroencephalography in mild cognitive impairment:
longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol.
Aging 21, 533–40. doi: 10.1016/S0197-4580(00)00153-6

Jelic, V., Julin, P., Shigeta, M., Nordberg, A., Lannfelt, L., Winblad, B., et al.
(1997). Apolipoprotein E epsilon 4 allele decreases functional connectivity
in Alzheimer’s disease as measured by EEG coherence. J. Neurol. Neurosurg.
Psychiatr. 63, 59–65.

Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clin.

Neurophysiol. 115, 1490–505. doi: 10.1016/j.clinph.2004.01.001
Jones, D. T., Knopman, D. S., Gunter, J. L., Graff-Radford, J., Vemuri, P., Boeve,

B. F., et al. (2015). Cascading network failure across the Alzheimer’s disease
spectrum. Brain 139, 547–62. doi: 10.1093/brain/awv338

Jovicich, J., Babiloni, C., Ferrari, C., Marizzoni, M., Moretti, D. V., Del Percio,
C., et al. (2018). Two-year longitudinal monitoring of amnestic mild cognitive
impairment patients with prodromal Alzheimer’s disease using topographical
biomarkers derived from functional magnetic resonance imaging and
electroencephalographic activity. J. Alzheimers Dis. doi: 10.3233/JAD-180158.
[Epub ahead of print].

Koenig, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L. O., John,
E. R., et al. (2005). Decreased EEG synchronization in Alzheimer’s
disease and mild cognitive impairment. Neurobiol. Aging 26, 165–71.
doi: 10.1016/j.neurobiolaging.2004.03.008.

Kramberger, M. G., Kåreholt, I., Andersson, T., Winblad, B., Eriksdotter, M., and
Jelic, V. (2013). Association between EEG abnormalities and csf biomarkers
in a memory clinic cohort. Dement. Geriatr. Cogn. Disord. 36, 319–28.
doi: 10.1159/000351677

Kuczynski, B., Targan, E., Madison, C., Weiner, M., Zhang, Y., Reed, B., et al.
(2010). White matter integrity and cortical metabolic associations in aging and
dementia. Alzheimers Dement. 6, 54–62. doi: 10.1016/j.jalz.2009.04.1228

Lim, H. K., Nebes, R., Snitz, B., Cohen, A., Mathis, C., Price, J., et al. (2014).
Regional amyloid burden and intrinsic connectivity networks in cognitively
normal elderly subjects. Brain 137, 3327–38. doi: 10.1093/brain/awu271

López, M. E., Bruña, R., Aurtenetxe, S., Pineda-Pardo, J. Á., Marcos, A., Arrazola,
J., et al. (2014). Alpha-band hypersynchronization in progressive mild cognitive
impairment: a magnetoencephalography study. J. Neurosci. 34, 14551–9.
doi: 10.1523/JNEUROSCI.0964-14.2014

López-Sanz, D., Bruña, R., Garcés, P., Camara, C., Serrano, N., Rodríguez-
Rojo, I. C., et al. (2016). Alpha band disruption in the AD-continuum starts
in the Subjective Cognitive Decline stage: a MEG study. Sci. Rep. 6:37685.
doi: 10.1038/srep37685

López-Sanz, D., Bruña, R., Garcés, P., Martín-Buro, M. C., Walter, S., Delgado,
M. L., et al. (2017a). Functional connectivity disruption in subjective cognitive
decline andmild cognitive impairment: a common pattern of alterations. Front.
Aging Neurosci. 9:109. doi: 10.3389/fnagi.2017.00109

López-Sanz, D., Garcés, P., Álvarez, B., Delgado-Losada, M. L., López-Higes,
R., and Maestú, F. (2017b). Network disruption in the preclinical stages
of Alzheimer’s disease: from subjective cognitive decline to mild cognitive
impairment. Int. J. Neural Syst. 27:1750041. doi: 10.1142/S0129065717500411

Luckhaus, C., Grass-Kapanke, B., Blaeser, I., Ihl, R., Supprian, T.,Winterer, G., et al.
(2008). Quantitative EEG in progressing vs stable mild cognitive impairment
(MCI): results of a 1-year follow-up study. Int. J. Geriatr. Psychiatry 23,
1148–55. doi: 10.1002/gps.2042

Maestú, F., Campo, P., Del Río, D., Moratti, S., Gil-Gregorio, P., Fernández,
A., et al. (2008). Increased biomagnetic activity in the ventral pathway
in mild cognitive impairment. Clin. Neurophysiol. 119, 1320–7.
doi: 10.1016/j.clinph.2008.01.105

Maestú, F., Peña, J.-M., Garcés, P., González, S., Bajo, R., Bagic, A., et al.
(2015). A multicenter study of the early detection of synaptic dysfunction
in Mild Cognitive Impairment using magnetoencephalography-derived
functional connectivity. NeuroImage Clin. 9, 103–9. doi: 10.1016/j.nicl.2015.
07.011

Moretti, D. V., Frisoni, G. B., Fracassi, C., Pievani, M., Geroldi, C., Binetti, G.,
et al. (2011). MCI patients’ EEGs show group differences between those who
progress and those who do not progress to AD. Neurobiol. Aging 32, 563–71.
doi: 10.1016/j.neurobiolaging.2009.04.003

Moretti, D. V., Pievani, M., Pini, L., Guerra, U. P., Paghera, B., and Frisoni,
G. B. (2017). Cerebral PET glucose hypometabolism in subjects with mild
cognitive impairment and higher EEG high-alpha/low-alpha frequency power
ratio. Neurobiol. Aging 58, 213–24. doi: 10.1016/j.neurobiolaging.2017.06.009

Nakamura, A., Cuesta, P., Fernández, A., Arahata, Y., Iwata, K., Kuratsubo, I., et al.
(2018). Electromagnetic signatures of the preclinical and prodromal stages of
Alzheimer’s disease. Brain 141, 1470–85. doi: 10.1093/brain/awy044

Nakamura, A., Cuesta, P., Kato, T., Arahata, Y., Iwata, K., Yamagishi, M.,
et al. (2017). Early functional network alterations in asymptomatic elders
at risk for Alzheimer’s disease. Sci. Rep. 7:6517. doi: 10.1038/s41598-017-06
876-8

Nelson, P. T., Alafuzoff, I., Bigio, E. H., Bouras, C., Braak, H., Cairns, N. J.,
et al. (2012). Correlation of Alzheimer disease neuropathologic changes with
cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71,
362–81. doi: 10.1097/NEN.0b013e31825018f7

Pineda-Pardo, J. Á., Martínez, K., Solana, A. B., Hernández-Tamames, J. A.,
Colom, R., and del Pozo, F. (2014). Disparate connectivity for structural and
functional networks is revealed when physical location of the connected nodes
is considered. Brain Topogr. 28, 187–96. doi: 10.1007/s10548-014-0393-3

Poil, S. S., de Haan, W., van der Flier, W. M., Mansvelder, H. D., Scheltens,
P., and Linkenkaer-Hansen, K. (2013). Integrative EEG biomarkers predict
progression to Alzheimer’s disease at theMCI stage. Front. Aging Neurosci. 5:58.
doi: 10.3389/fnagi.2013.00058

Porcaro, C., Balsters, J. H., Mantini, D., Robertson, I. H., and Wenderoth,
N. (2019). P3b amplitude as a signature of cognitive decline in the older
population: An EEG study enhanced by Functional Source Separation.
Neuroimage 184, 535–46. doi: 10.1016/j.neuroimage.2018.09.057

Pozueta, J., Lefort, R., and Shelanski, M. L. (2013). Synaptic changes
in Alzheimer’s disease and its models. Neuroscience 251, 51–65.
doi: 10.1016/j.neuroscience.2012.05.050

Qiu, C., Kivipelto, M., and von Strauss, E. (2009). Epidemiology of Alzheimer’s
disease: occurrence, determinants, and strategies toward intervention.
Dialogues Clin. Neurosci. 11, 111–28.

Rossini, P. M., Del Percio, C., Pasqualetti, P., Cassetta, E., Binetti, G., Dal Forno,
G., et al. (2006). Conversion from mild cognitive impairment to Alzheimer’s
disease is predicted by sources and coherence of brain electroencephalography
rhythms. Neuroscience 143, 793–803. doi: 10.1016/j.neuroscience.2006.08.049

Schultz, A. P., Chhatwal, J. P., Hedden, T., Mormino, E. C., Hanseeuw, B.
J., Sepulcre, J., et al. (2017). Phases of hyper and hypo connectivity
in the Default Mode and Salience networks track with amyloid and
Tau in clinically normal individuals. J. Neurosci. 37, 3263–3216.
doi: 10.1523/JNEUROSCI.3263-16.2017

Sepulcre, J., Sabuncu, M. R., Li, Q., El Fakhri, G., Sperling, R., and
Johnson, K. A. (2017). Tau and Aβ proteins distinctively associate to
functional network changes in the aging brain. Alzheimers Dement. 13, 1–9.
doi: 10.1016/j.jalz.2017.02.011

Smailovic, U., Koenig, T., Kåreholt, I., Andersson, T., Kramberger, M. G.,
Winblad, B., et al. (2018). Quantitative EEG power and synchronization
correlate with Alzheimer’s disease CSF biomarkers.Neurobiol. Aging 63, 88–95.
doi: 10.1016/j.neurobiolaging.2017.11.005

Smits, F. M., Porcaro, C., Cottone, C., Cancelli, A., Maria Rossini, P.,
and Tecchio, F. (2016). Electroencephalographic fractal dimension
in healthy ageing and Alzheimer’s disease. PLoS ONE 11:e0149587.
doi: 10.1371/journal.pone.0149587

Stam, C. J. (2010). Use of magnetoencephalography (MEG) to study functional
brain networks in neurodegenerative disorders. J. Neurol. Sci. 289, 128–34.
doi: 10.1016/j.jns.2009.08.028

Stam, C. J., de Haan, W., Daffertshofer, A., Jones, B. F., Manshanden, I., van
Cappellen van Walsum, A. M., et al. (2009). Graph theoretical analysis of
magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain
132, 213–24. doi: 10.1093/brain/awn262

Stomrud, E., Hansson, O., Minthon, L., Blennow, K., Rosén, I., and Londos, E.
(2010). Slowing of EEG correlates with CSF biomarkers and reduced cognitive
speed in elderly with normal cognition over 4 years. Neurobiol. Aging 31,
215–23. doi: 10.1016/j.neurobiolaging.2008.03.025

Taniguchi, T., Kawamata, T., Mukai, H., Hasegawa, H., Isagawa, T., Yasuda, M.,
et al. (2001). Phosphorylation of tau is regulated by PKN. J. Biol. Chem. 276,
10025–31. doi: 10.1074/jbc.M007427200

Frontiers in Human Neuroscience | www.frontiersin.org 9 February 2019 | Volume 13 | Article 17

https://doi.org/10.1097/00001756-199801050-00032
https://doi.org/10.1016/S0197-4580(00)00153-6
https://doi.org/10.1016/j.clinph.2004.01.001
https://doi.org/10.1093/brain/awv338
https://doi.org/10.3233/JAD-180158
https://doi.org/10.1016/j.neurobiolaging.2004.03.008.
https://doi.org/10.1159/000351677
https://doi.org/10.1016/j.jalz.2009.04.1228
https://doi.org/10.1093/brain/awu271
https://doi.org/10.1523/JNEUROSCI.0964-14.2014
https://doi.org/10.1038/srep37685
https://doi.org/10.3389/fnagi.2017.00109
https://doi.org/10.1142/S0129065717500411
https://doi.org/10.1002/gps.2042
https://doi.org/10.1016/j.clinph.2008.01.105
https://doi.org/10.1016/j.nicl.2015.07.011
https://doi.org/10.1016/j.neurobiolaging.2009.04.003
https://doi.org/10.1016/j.neurobiolaging.2017.06.009
https://doi.org/10.1093/brain/awy044
https://doi.org/10.1038/s41598-017-06876-8
https://doi.org/10.1097/NEN.0b013e31825018f7
https://doi.org/10.1007/s10548-014-0393-3
https://doi.org/10.3389/fnagi.2013.00058
https://doi.org/10.1016/j.neuroimage.2018.09.057
https://doi.org/10.1016/j.neuroscience.2012.05.050
https://doi.org/10.1016/j.neuroscience.2006.08.049
https://doi.org/10.1523/JNEUROSCI.3263-16.2017
https://doi.org/10.1016/j.jalz.2017.02.011
https://doi.org/10.1016/j.neurobiolaging.2017.11.005
https://doi.org/10.1371/journal.pone.0149587
https://doi.org/10.1016/j.jns.2009.08.028
https://doi.org/10.1093/brain/awn262
https://doi.org/10.1016/j.neurobiolaging.2008.03.025
https://doi.org/10.1074/jbc.M007427200
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Maestú et al. MEG and EEG in Alzheimer’s Disease

Teipel, S., Bakardjian, H., Gonzalez-Escamilla, G., Cavedo, E., Weschke, S., Dyrba,
M., et al. (2018). No association of cortical amyloid load and EEG connectivity
in older people with subjective memory complaints. NeuroImage Clin. 17,
435–43. doi: 10.1016/j.nicl.2017.10.031

Teipel, S., Grothe, M. J., Zhou, J., Sepulcre, J., Dyrba, M., Sorg, C., et al. (2016).
Measuring Cortical Connectivity in Alzheimer’s disease as a brain neural
network pathology: toward clinical applications. J. Int. Neuropsychol. Soc. 22,
138–63. doi: 10.1017/S1355617715000995

Vecchio, F., Miraglia, F., Iberite, F., Lacidogna, G., Guglielmi, V., Marra,
C., et al. (2018). Sustainable method for Alzheimer dementia prediction
in mild cognitive impairment: electroencephalographic connectivity and
graph theory combined with apolipoprotein E. Ann. Neurol. 84, 302–14.
doi: 10.1002/ana.25289

Vos, S. J., Xiong, C., Visser, P. J., Jasielec, M. S., Hassenstab, J., Grant, E. A.,
et al. (2013). Preclinical Alzheimer’s disease and its outcome: a longitudinal
cohort study. Lancet Neurol. 12, 957–65. doi: 10.1016/S1474-4422(13)
70194-7

Wang, Z., Jackson, R. J., Hong, W., Taylor, W. M., Corbett, G. T., Moreno, A.,
et al. (2017). Human brain-derived Aβ oligomers bind to synapses and disrupt
synaptic activity in a manner that requires APP. J. Neurosci. 37, 11947–66.
doi: 10.1523/JNEUROSCI.2009-17.2017

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Maestú, Cuesta, Hasan, Fernandéz, Funke and Schulz.

This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction

in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Human Neuroscience | www.frontiersin.org 10 February 2019 | Volume 13 | Article 17

https://doi.org/10.1016/j.nicl.2017.10.031
https://doi.org/10.1017/S1355617715000995
https://doi.org/10.1002/ana.25289
https://doi.org/10.1016/S1474-4422(13)70194-7
https://doi.org/10.1523/JNEUROSCI.2009-17.2017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	The Importance of the Validation of M/EEG With Current Biomarkers in Alzheimer's Disease
	Introduction
	Electrophysiological Techniques to Detect Presymptomatic AD
	The Role of Electrophysiological Techniques in Detecting Alzheimer Disease
	M/EEG as a Biomarker for Conversion from MCI to Dementia
	The Relationship Between Findings on MEG and EEG in Dementia
	M/EEG and Current Biomarkers of AD
	Discussion
	Author Contributions
	Funding
	References


