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Abstract: Numerous approaches exist for disaggregating power consumption data, referred to as
non-intrusive load monitoring (NILM). Whereas NILM is primarily used for energy monitoring, we
intend to disaggregate a household’s power consumption to detect human activity in the residence.
Therefore, this paper presents a novel approach for NILM, which uses pattern recognition on the
raw power waveform of the smart meter measurements to recognize individual household appliance
actions. The presented NILM approach is capable of (near) real-time appliance action detection
in a streaming setting, using edge computing. It is unique in our approach that we quantify the
disaggregating uncertainty using continuous pattern correlation instead of binary device activity
states. Further, we outline using the disaggregated appliance activity data for human activity
recognition (HAR). To evaluate our approach, we use a dataset collected from actual households.
We show that the developed NILM approach works, and the disaggregation quality depends on the
pattern selection and the appliance type. In summary, we demonstrate that it is possible to detect
human activity within the residence using a motif-detection-based NILM approach applied to smart
meter measurements.

Keywords: non-intrusive load monitoring (NILM); human activity recognition (HAR); smart meter;
ambient assisted living (AAL); motif search; ambient intelligence (AmI); internet of things (IoT)

1. Introduction

To provide residents with feedback about the power consumption of the appliances
in their households, and to motivate them to save energy, numerous organizations and
researchers are working on methods to monitor household power consumption, in detail,
at the appliance level [1–4]. These methods are called Appliance Load Monitoring (ALM).
Essentially, there are two different approaches to ALM. One is Intrusive Load Monitoring
(ILM), which means that each appliance is monitored individually by sensing, for example,
with the help of individual power plugs at each appliance. This method provides precise
data, but the installation of such a system is complex and expensive [2,4]. The second
approach is called Non-Intrusive Load Monitoring (NILM) or Non-Intrusive Appliance
Load Monitoring (NIALM). In NILM, aggregated power consumption data, for example,
of a whole residential building or several circuits, are considered and disaggregated using
specific algorithms to infer the operation of individual appliances. NILM is more cost-
effective and easier to deploy than ILM because it requires only a single sense point, but
disaggregating the data is a current challenge. Due to many different appliances that can
be present in a household, and the overlapping of different appliances in the total power
consumption, it is still not possible to fully disaggregate the total power consumption of a
household [1–5].

The objective of our work is also to disaggregate the aggregated power consumption
of a household, but not for energy monitoring, which most of the related work addresses,
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but to be able to detect human activities in residence. With the help of the activity data of
the residents, Ambient-Assisted Living (AAL) systems can be implemented later on, which
can recognize untypical behaviors of the residents, which, for example, indicate a need for
help, an emergency, or a decrease in the health status [6]. As a source for the aggregated
data, we focus on measurements from commercial smart meters. The currently available
smart meters can provide power consumption data with a resolution of up to 1 Hz [5,7].
Reusing the data of commercial smart meters as a data source has the advantage that no
proprietary sensors have to be installed for Human Activity Recognition (HAR) [6].

Disaggregating power consumption data to use the appliance activity information in
an AAL system results in special requirements, usually not considered in NILM literature.
In contrast to projects with the objective of energy monitoring, it is particularly important to
optimize precision and recall of appliance activity identification for disaggregating data for
emergency detection in AAL systems. Otherwise, potential emergencies may be detected
too late.

Furthermore, it is essential to focus on appliances with direct human interaction
(e.g., coffee machines, TVs, hairdryers) and not on typical energy guzzlers that consume
electricity without human intervention (e.g., freezers, heat pumps).

A further aspect we want to address is to develop a NILM method that allows the
disaggregation on an edge system in (near) real-time, performed in the residential envi-
ronment (e.g., on a single board computer). Thus, the power consumption data do not
have to be sent to third parties, which improves privacy. Furthermore, there is no need
for an (constantly) active internet connection, which has further advantages regarding the
system’s availability.

The main contribution of this paper is a new approach for NILM, which uses pattern-
recognition and motif-search on the raw power waveform to recognize individual house-
hold appliances on the total power consumption of a household, measured by the smart
meter. In other words, to detect from the aggregated smart meter readings which specific
appliances are active at a particular time. Our method is designed for (near) real-time
appliance activity detection in a streaming setting using edge computing. We quantify the
spotting uncertainty using continuous pattern correlation instead of using binary device
activity states. The disaggregated appliance activity stream serves as the basis for HAR.

The remaining paper is structured as follows: we review the NILM literature in
Section 2 and outline how NILM is already used in the HAR context. In Section 3, we
introduce our new NILM approach based on pattern detection and evaluate this approach
in Section 4 using the ‘GeLaP’ dataset [8]. We then outline the transformation of the
disaggregated power consumption data to information on human activity based on the
literature in Section 5 and conduct a practical case study. The paper ends with a discussion
in Section 6, and a conclusion and outlook in Section 7.

2. Related Work

Investigations in the field of NILM can be traced back to George W. Hart, who pre-
sented a prototype for a ‘nonintrusive appliance load monitor’ in 1985 [9]. Hart’s prototype
can track residential electricity consumption in a ‘nonintrusive and inexpensive manner’ by
installing a microprocessor-based unit on a household’s electricity meter.

Since then, numerous researchers and organizations have been working on various ap-
proaches for NILM. By 22 August 2019, Liu [4] identified 617 relevant scientific documents
in the field of NILM. Most of the work focuses on breaking down the energy consumption
of individual household appliances and, thus, motivating the residents to save energy in
order to reduce emissions [1,2,4,10].

Further approaches exist that use NILM as a Home Energy Management System
(HEMS) to compensate peak loads and, thus, ensure grid stability (e.g., charging the batter-
ies of electric cars primarily in off-peak times) [2,11], to detect appliance malfunction [1,11],
to detect energy theft [1], or for HAR in the AAL domain [1,12–16].
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Common NILM approaches usually operate in four steps: data acquisition, event detec-
tion, feature extraction, and load identification. Thereby the approaches significantly differ
from each other in various dimensions. These are mainly: • the sample rate, collection
method, and included features of the raw data [1,2,10,11,17]; • the implementation of event
detection, where expert heuristics, probabilistic models, or matched filters, among others,
are frequently used [2,11]; • the selected features for appliance identification [2,17]; • the
methods of learning and inference (supervised, semi-supervised, and unsupervised) [2,10].

Several surveys provide a detailed overview of NILM: in particular, the frequently
cited work of Zeifman & Roth [3] from 2011 and Zoha et al. [2] from 2012 are noteworthy.
More recent, but less frequently cited, surveys in the NILM context are the works of
Sadeghianpourhamami et al. from 2018 [17], Ruano et al. from 2019 [11], or Bonfigli &
Squartini from 2020 [18].

• Zeifman & Roth provides a fundamental overview of NILM. The paper’s primary
focus is the presentation of different methods for feature extraction, divided into
low-frequency and high-frequency measurements. The authors claim that ‘no complete
NIALM solution suitable for all types of household appliances is available’. Further, they
conclude that “No complete set of robust, widely accepted appliance features has been
identified" [3].

• Zoha et al. present the principle of NILM, but at a more detailed level than the work
of Zeifman & Roth mentioned previously. The authors present the four basic steps of
NILM, focusing on appliance features (specifically steady-state and transient-state)
as well as learning and inference in NILM systems by presenting both supervised
and unsupervised methods. Overall, Zoha et al. draw the same conclusions as
Zeifman & Roth. In addition, the authors remark that future research should focus on
unsupervised methods, since labeling data, as required for supervised methods, is not
practical [2].

• Sadeghianpourhamami et al. focus on appliance feature selection and provides a
categorization of state-of-the-art features [17].

• Ruano et al. provide a comprehensive overview of NILM in the application fields
of HEMS and AAL. The paper also includes a summary of the main characteris-
tics of 25 different NILM approaches in terms of sample rate, features, and their
methodologies for load identification [11].

• Bonfigli & Squartini provide a broad overview of the current state of the art regarding
NILM, along with a review of publicly available datasets and used evaluation met-
rics. The book focuses on approaches based on Hidden Markov Model (HMM) or
Deep Neural Network (DNN) since the authors consider these approaches the most
promising due to their capability and performance [18].

Throughout reviewing the mentioned surveys [2,3,11,17,18], we noticed that, although
there has been research in NILM for more than 35 years, there are still many open challenges.
One of the essential issues is the selection of the predictive features. Features on the
P− Q plane are most commonly used [17]. Thus, recognition of high-power ON–OFF
devices works rather well, but low-power devices often cannot be identified through the
circuit’s noise [2,17]. Existing approaches, suitable for recognizing multi-state-appliances or
continuous-state appliances are mainly based on supervised learning methods. However,
these approaches requires large labeled data sets and often high-frequency sample rate for
the learning phase, making the approaches non-scalable [2,3,11,17]. Nevertheless, other
research avoid collecting their own data set, and studies mainly refer to existing data sets,
such as REDD [19] or UK-DALE [11,20]. However, for a method that can also be applied in
practice, it is necessary to consider data collection, storage, and processing. Approaches
using low-frequency smart meter data [21,22] or edge computing [23] are rare.

Further, privacy concerns of residents arise from the practical deployment of NILM, as
disaggregated power consumption data can be used to create detailed activity
profiles [2,11,24–26].
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Within this work, we intend to use NILM for HAR in private households and use
this information in future work to implement an AAL system for detecting emergencies.
In recent years, several studies have already been carried out in this context. One of
the first activities is the AUTAGEF project, in which a demonstrator was developed to
detect unusually long periods of inactivity in residences based on aggregated power
consumption data. However, this demonstrator has so far not been evaluated in a real-life
environment [21,27,28].

The works of Alcalá et al. [13], and Chalmers et al. [29] show that it is possible to
identify common person-specific behaviors and deviations from them at the disaggregated
power consumption. For this purpose, Alcalá et al. conducted case studies on the UK-DALE
and HES datasets. The authors excluded data disaggregation and instead refers to related
work [13]. Chalmers et al. investigated whether smart meter measurements can be used
to detect behavioral changes of individuals that might indicate dementia. Unfortunately,
the paper does not clarify precisely how the appliance recognition is implemented. The
authors conclude that it may be possible to detect dementia using NILM, but the evaluation
conducted in two households is insufficient for a general statement [29].

Patrono et al. [14,15] present a hybrid approach for HAR using power consumption
data by combining smart meter measurements for appliances with high-power consump-
tion and smart plugs for low-power appliances. However, the practical evaluation of the
approach is pending.

Pascher [30] and Bousbiat et al. [16] are concerned with the practical implementation
of activity recognition systems based on smart meter measurements. Pascher focuses on
the conception of a software architecture to transfer the power consumption data from
the households to a central server system for data analysis and emergency detection [30].
From an implementation perspective, the work of Bousbiat et al. is particularly noteworthy.
The authors are trying to implement activity detection via edge computing performed
in the household. For this purpose, they retrieve the smart meter data directly from
the household, store it in a local database, and use the Grafana integration of the home
automation software OpenHAB for disaggregation. Based on the events recognized by
Grafena, the authors want to infer activities. However, the developments have so far only
been tested in a laboratory instead of an actual household. Concurrently active appliances,
or noise are not taken into account [16].

Further, more recent papers in the context of using NILM for HAR are found in the
paper by Develin & Barry [25], and Ishizu et al. [31]. In 2019, Develin & Barry published a
work that aimed to detect Activities of Daily Living (ADLs) using NILM, but it was not
aimed to develop an AAL system; instead, they focused on providing detailed feedback
to residents about their power consumption. Therefore, the disaggregation was primarily
conducted on appliances with a high load consumption (1–2 kW or larger) using multi-
layer, feedforward neural networks [25]. A paper by Ishizu et al. from 2020 investigates
whether HAR data can be identified from the power measurements of a house. The authors
use a supervised approach and restrict themselves to three activities (sleep, cooking, and
go-out) [31].

To summarize, although there has been research in the field of NILM for more than
35 years, there are still major research gaps in the disaggregation of power consumption
data. In particular, data collection, which serves as the basis for NILM, requires greater
consideration [11]. Moreover, developing solutions that take into account the privacy of
the residents should be considered [2,11,24,25].

Using disaggregated power consumption data for HAR is a recent trend. So far,
there are mainly conceptual or proof-of-concept works; real-world implementation and
evaluation are still pending.
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3. Methodology for NILM

The NILM problem can be formulated as follows: let c(t) be the aggregated total power
consumption of a household measured at the time t. The total power consumption in a
household at the time t is the sum of the active power consumption of all electrical appliances:

c(t) = ∑
ai∈A

cai (t) (1)

where A is the set of all electrical appliances in the residence, cai (t) is the individual
consumption of the appliance ai ∈ A at the time t.

To refine the equation, we add a noise term n(t), which describes the noise of the
electrical signal at time t. With this noise term, we are able to model measurement errors:

c(t) = n(t) + ∑
ai∈A

cai (t) (2)

The objective of NILM is to infer individual consumers ai ∈ A from the aggregated
dataset c(t)—to recognize appliances [2,18,32].

As described in Section 2, there are numerous approaches that address this problem,
which differ in various dimensions. In this work, we introduce a new approach suitable
for processing aggregated data, measured by commercial smart meters in (near) real-time
to detect typical interactions with electrical appliances that are related to human activity.
To address privacy concerns, the presented approach performs disaggregation on an edge
computer (e.g., directly in the household) so that power consumption data do not reach
third parties. Furthermore, we want to ensure the transferability of the approach into a
real-world environment by relying on a pattern-detection method that does not require
label data.

To develop and evaluate our approach, we recorded the ’GeLaP’ dataset. This dataset
contains aggregated power consumption data from 20 private households in Germany
with a resolution of 1 Hz. The aggregated data were collected using a commercially
available smart meter. In addition, the individual power consumption of 10 selected
appliances in each household, where the electrical power consumption indicates direct
human interaction, was collected with a resolution of up to 7 Hz. For this purpose, single-
device-power-meters (intermediate power sockets) connected directly to the appliance to
be measured were used [8].

The data set is publicly available in anonymized form at https://mygit.th-deg.de/
tcg/GeLaP (accessed on 26 November 2021).

It is a fact that the peak power consumption and the temporal pattern in the power
consumption time series are characteristic features for a specific electrical appliance [21,33].
With this work we intend to exploit this fact and recognize appliances by detecting the
individual power pattern in the total power consumption of a household. For this purpose,
however, it is first necessary to extract relevant power patterns from the individual power
measurements. We term the extracted patterns in the raw power waveform as motifs. The
motifs are extracted independently of the actual recognition. Therefore, it is possible to
identify the motifs of a specific appliance in any household, requiring only the smart meter
once the motifs are determined.

After pre-processing the raw measurements in Section 3.1, we identify repeating
appliance power patterns (motifs) via time series clustering, in Section 3.2. We search in the
aggregated smart meter power stream for motif occurrences, as described in Section 3.3.

https://mygit.th-deg.de/tcg/GeLaP
https://mygit.th-deg.de/tcg/GeLaP
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3.1. Label Data Pre-Processing

In the ’GeLaP’ dataset, the single-device-power-meter recordings provide timestamps
for the request (timestamprequ) and reply (timestamprepl) for each sample, which is caused
by HTTP-based recording architecture [8]. We choose the mean of timestamprequ and
timestamprepl as unified timestamp because the electrical measurement happened between
timestamprequ and timestamprepl .

Furthermore, we downsample the separate recordings with varying the time axis and
sample rates to a common time axis at a 1 Hz sample rate.

Additionally, we compensate for a constant lag between the single device power meter
recordings and the smart meter recordings. The compensation maximizes the correlation
between the recordings of different meters, by varying the lag length. Aligning both time
axes increases the label quality for our evaluation (see Section 4).

Moreover, we fill up recording gaps by linear interpolation if the gap is shorter than 5%
of the motif length w. Interpolating small gaps reduces the number of sliding windows that
contain NaN entries. A single NaN entry in a sliding window causes the pattern similarity
computations to fail for the window. Interpolating short gaps keeps the overall pattern
intact and even steep slopes are preserved. We do not interpolate long gaps.

Furthermore, we eliminate sections in the recordings with constant values by adding
dithering noise to recordings. The noise magnitude is smaller than the quantization resolu-
tion of power. Therefore, the noise is too small to perturb the recordings. Sections with
constant values would cause faulty similarity computations in motif spotting according to
Section 3.3.

3.2. Motif Selection

There are multiple different repeating power patterns for each appliance ai ∈ A.
Due to the number of different appliances ai ∈ A and the number of different possible
patterns per appliance, it is infeasible to manually annotate all power consumption patterns
and events. Thus, we algorithmically identify the recurring patterns and events. Our
approach is unsupervised sliding window subsequence clustering on the time series of power
consumption of the single device power meters, which is provided by the ‘GeLaP’ dataset.
The result is a grouping of distinctive and repeating temporal patterns (motifs) M, grouped
by pattern similarity.

To quantify the similarity between subsequences within the power measurements
of a specific device cai (t), we use the z-normalized euclidean distance and its dual, the
Pearson correlation. The algorithms that compute these similarity measures are free of
tunable parameters. Furthermore, the algorithms compute the measures exactly instead of
approximating the measures. Whereas an approximated similarity measure could have
caused false positives matches [34,35].

One pitfall of this similarity measure is the information loss of the power magnitude
due to the z-normalization to 0-mean and 1-std. As a consequence, all step functions are
normalized to the same shape. For example, the power waveform of activating a 60 W
lamp or a 2 kW heater becomes normalized to the same waveform, the unit step function.

We compute the full distance matrix, which contains the pairwise distance for all
possible pairwise comparisons of subsequences in cai (t), ai ∈ A. Afterwards, we transform
the distance matrix into a weighted undirected graph. In the graph, the nodes are the
timestamps of subsequences and the edge-weights are pairwise distances. The motif
grouping emerges after we partition the graph via community detection [36].

This process is outlined in Figure 1.
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Graph Graph Clusters Grouped Motifs

Figure 1. Flowchart of processing steps for unsupervised motif selection. First Image Source:
Modified from Mueen & Eamonn [37]. Third Image Source: Modified from Ferreira & Zhao [36].

Due to the indistinguishability of singular step functions, we prefer cluster centers
consisting of multiple steps or more complex waveforms. To quantify the oscillation
information we use time series complexity [38].

We exclude timespans with a constant 0 power from the clustering to speed up
the clustering.

For each appliance ai ∈ A, the clustering extracts at least one motif moti fn ∈ M. We
record the origin appliance for each motif in the form of a mapping g := moti fn → ai,
where g(moti fn) = ai.

A parameter for the motif selection is the motif’s length. We set the motif length
to 128 s (w = 128), because 128 s is sufficiently long to capture the whole length of
appliance operation modes. Additionally, 128 is a power of 2, which speeds up pairwise
similarity computation.

3.3. Motif Spotting

The main objective of our work is to spot the clustered motifs moti fn ∈ M in the
aggregated smart meter measurements c(t), to determine when individual appliances
ai ∈ A were active. For motif-spotting, we search the smart meter measurements for
subsequences, which are similar to the motif sequences. For computing the similarity,
we use Mueen’s ultra-fast Algorithm for Similarity Search (MASS), because MASS is
algorithmically efficient and free of hyperparameters [39,40]. MASS computes the similarity
between a query-sequence and all possible sliding window subsequences in a corpus-
sequence. The output of MASS is a time series of similarities. We use the similarity as
primary decision criteria for appliance activity detection.

In the following, we present the steps of our implementation of device recognition
using the MASS algorithm based on the ‘GeLaP’ dataset.

3.3.1. Smart Meter Measurements Pre-Processing

For motif detection using the MASS algorithm, it is required that the aggregated smart
meter measurements are available in the same temporal resolution as the extracted motifs,
which is 1 Hz in our case. It must also be ensured that the aggregated time series does not
contain any gaps, otherwise the MASS algorithm cannot be applied successfully.

However, the aggregated data in the ‘GeLaP’ dataset are not consistently available in a
resolution of 1Hz. Furthermore, there can be gaps in the smart meter measurements. More-
over, the smart meter time stamp increases by 1 ms after every approximately 20 samples,
consequently the average resolution of the data is lower than 1 Hz [8].

We fill up gaps, similar to the label data pre-processing (Section 3.1) and compensate
the shift in the time stamp by uniformly resampling the data, to bring the data to a
resolution of exactly 1 Hz.
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3.3.2. Corresponding Line Conductor Detection

Within the ‘GeLaP’ dataset, the power consumption of each line conductor in the
household was measured separately. The total household power consumption at time t is
defined as:

c(t) = ∑
k={1,2,3}

clck
(t) (3)

where clck
(t) is the active power consumption on line conductor k at the time t.

By monitoring the load profiles of each line conductor separately, instead of only the
total power consumption c(t), the overlapping of several active appliances and noise can
be reduced. Consequently, the untangling of c(t) facilitates the recognition [5].

Further, to save computing capacity and to exclude possible false positive detections
on the other line conductors, we only intend to search for the appliance ai ∈ A on the
line conductor k ∈ {1, 2, 3} to which the appliance ai is actually connected. Therefore, it is
necessary to know to which line conductor a specific appliance is connected.

The recorded data in ‘GeLaP’ do not provide a mapping f from appliance ai to lck,
so the mapping must therefore be inferred from recorded data. We use the following
inference approach: An electrical appliance ai, where ai ∈ A and A is the set of appliances
in the residence, is always connected to at least one line conductor lck, where k ∈ {1, 2, 3}.
Further, it is true, that an electrical appliance ai with a fixed connection is constantly
connected to the same line conductor lck. For such appliances, the explicit correlation is
valid: f (ai) = lck. Consequently, a true positive match can only occur on this line conductor
lck during appliance recognition. It is trivial that if f (ai) = lck, then the inverse also holds;
that f (ai) 6= lcj, where j ∈ {1, 2, 3}, j 6= k.

Unless the motifs M are a disjoint set and an appliance ai is constantly connected
to the same line conductor lck, a true positive match can only occur on that specific line
conductor lck. We assume that for each appliance—provided that it was active at least
once in the recording period—the maximum similarity occurs on the line conductor lck (to
which the appliance is actually connected to) and not on lcj.

We were able to verify this observation with a few samples from households to which
we also had physical access.

3.3.3. Device Activity Spotting

We apply the MASS algorithm for each motif moti fn ∈ M with the data of the cor-
responding line conductor lck: clck

(t). The result of MASS is a time series of similarities
SIMmoti fn(t) and indicates the similarity between clck

(t) at time t to the motif moti fn.
We infer that the appliance ai was active at time t, if the similarity SIMmoti fn(t) is high.
An example for a similarity time series generated by applying the MASS algorithm is

outlined in Figure 2.
To reduce false positive matches, we employ a power heuristic: Because we know

that all appliances ai ∈ A are power consumers and not generators, we infer that the line
conductor power is the sum of positive power values. We model the line conductor power
from time t to time t + w, where w is the window length as:

clck
([t : (t+w)]) = n([t : (t+w)])︸ ︷︷ ︸

energy of noise
of the electrical

signal from time
t to time t+w

+ moti fn︸ ︷︷ ︸
total energy

of the motif n

+ ∑
ah∈{A\g(moti fn)}

cah([t : (t+w)])

︸ ︷︷ ︸
energy of all other appliances
in the household to which the
motif n does not correspond
to from time t to time t+w

(4)

Assuming that the background power n([t : (t+w)]) + ∑ah∈{A\g(moti fn)} cah([t : (t+w)])
is slower changing than the motif pattern, we subtract the background power from the
line conductor sliding window clck

([t : (t+w)]). We compute the background power
background(t) as a 3-h sliding window minimum.
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In the case that several appliances (with similar power magnitudes) are concurrently
active at timespan [t : (t+w)], the power waveform is perturbed and consequently, the
pattern similarity will be low. In the other case, a high pattern similarity is not a neces-
sary condition for an active appliance because the correlation is oblivious to the power
magnitude, due to the z-normalization of MASS.

11

-1

0

Figure 2. Example for a similarity time series SIMmoti fn (t) generated by applying the MASS algo-
rithm with an example motif moti fn ∈ M on the corresponding line conductor lck in a time period
where the moti fn was active once.

We construct the following Boolean time series as features for appliance detection:

(i) max(moti fn) ∗ tol ≤ max(clck
([t : (t+w)]))− background(t)

The maximum power consumption of a motif moti fn (after deduction of a toler-
ance factor) must not be higher than the maximum power on the corresponding
line conductor lck in the period under consideration, from time t to time t + w
subtracting the calculated background power for this period.

(ii) min(moti fn) ∗ tol ≤ min(clck
([t : (t+w)]))− background(t)

The minimum power consumption of a motif moti fn (after deduction of a toler-
ance factor) must not be higher than the minimum power on the corresponding
line conductor lck in the period under consideration, from time t to time t + w,
subtracting the calculated background power for this period.

(iii) (max(moti fn)−min(moti fn)) ∗ tol ≤
max(clck

([t : (t+w)]))−min(clck
([t : (t+w)]))− background(t)

The span of the power of a motif moti fn (after deduction of a tolerance factor) must
not be higher than the span of the power on the corresponding line conductor
lck in the period under consideration, from time t to time t + w subtracting the
calculated background power for this period.

(iv) sum(moti fn) ∗ tol ≤ sum(clck
([t : (t+w)]))− background(t) ∗ w

The energy of a motif moti fn (after deduction of a tolerance factor) must not be
higher than the energy on the corresponding line conductor lck in the period under
consideration, from time t to time t + w, subtracting the background calculated
power for this period.

where tol is a tolerance factor tol ∈ [0, 1]. To give some slack, we set tol = 0.9.
Each one of the above features is a necessary condition for appliance activity. Therefore

we reject times by forcing the similarity to 0 at the times t, where one of these features
is FALSE. This rejection of times reduces the number of false positive matches, caused by
times with high similarity but without the necessary power consumption characteristics.

4. Evaluation of Motif-Detection-Based NILM

In Section 3, we introduced a new approach for NILM using motif detection. In the
following, we evaluate our NILM approach based on the ‘GeLaP’ dataset.
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The NILM literature distinguishes two primary types of errors that can occur by
disaggregating power data [3,41,42]:

• Type I: false detection.
The NILM algorithm detects that an appliance ai was active at time t, although it was
actually not active. This is called false positive (FP) detection.

• Type II: missed detection.
The NILM algorithm indicates that an appliance ai was not active at time t, although
it was actually active. This is called false negative (FN) detection.

All correctly detected cases are referred to as true positive (TP); (it was correctly
detected that an appliance ai was active at time t) or true negative (TN) (it was correctly
indicated that an appliance ai was not active at time t).

This section first provides an overview of standard performance metrics used in NILM
literature in Section 4.1. Since the regressor presented in this work differs from related
approaches, specifically in the fact that the output of our regressor is not binary, but a
time series of Pearson-R correlations, the common standard cannot be directly applied.
Therefore, in Section 4.2, we present our approach to evaluating our NILM approach by
exploiting the inter-observer reliability. Finally, we present and interpret the evaluation
results in Section 4.3.

4.1. Evaluation Metric

In the NILM context, numerous performance metrics exist to evaluate the disaggrega-
tion approaches. An overview of standard metrics is provided by Pereira & Nunes [42].

Frequently, authors refer to calculating a confusion matrix and to determine the accuracy
for a NILM algorithm [2,43]. However, Zoha et al. [2] and Makonin & Popowich [43] note
that even the definition of accuracy is not consistent in the NILM context. Liang et al. [41]
specify this issue and present in their work various accuracy measures, namely the detection
accuracy (ηdet), the disaggregation accuracy (ηdis), and the overall accuracy (ηall). In addition,
Liang et al. propose considering the accuracy at the appliance level [41].

Another commonly used method for evaluating NILM approaches is the receive op-
erating characteristics—area under curve (ROC–AUC) [41,42]. The ROC curve represents
the dependency between true positive-rate (TPR) and false positive-rate (FPR), where TPR
is defined as: TPR = #TP

#TP+#FN and FPR is defined as FPR = #FP
#FP+#TN .

Because the individual appliances ai ∈ A are rarely active, there is an imbalanced
ratio between positive and negative classes; therefore, this is referred to as an imbalanced
classification problem. Consequently, the accuracy or the ROC–AUC is not a suitable
metric for performance evaluation since even a classifier/regressor that states an appliance
is off at any time would achieve a high accuracy or high ROC–AUC values [2,44,45]. The
fact that accuracy or ROC–AUC is nevertheless often used as a performance metric is a
limitation in many related papers.

Overall, it appears that there is no standardized approach for the performance evalua-
tion of NILM [46].

To avoid this limitation, we use precision P = #TP
#TP+#FP and recall R = #TP

#TP+#FN as
performance metrics. Precision and recall are not affected by the imbalanced class ratios.

Since our NILM approach differs from existing approaches by the facts that the output
is not binary, and we further consider different motifs moti fn ∈ M of an appliance ai
independent from each other, it is not possible to directly determine #TP, #TN, #FN,
and #FP. Therefore, it is necessary to introduce a specific methodology to calculate the
confusion matrix, which is a basis to determine P and R. We present a complementary
approach in the following Section 4.2.

4.2. Inter-Observer Reliability-Based Evaluation Metric

The ‘GeLaP’ dataset contains, for selected appliances A′ ⊆ A, individual power
consumption measurements cai (t), ai ∈ A′ in addition to aggregated power measurements
from each line conductor of the smart meter clck

(t), k ∈ {1, 2, 3} [8]. The individual



Sensors 2021, 21, 8036 11 of 23

measured values are collected independently of the aggregated data, but synchronized
in time. If an arbitrary power-consuming event e occurs on any appliance aj ∈ A′, this is
independently observed by both the individual power meter caj(t), connected directly to
the appliance aj and the smart meter clck

(t), where f (ai) = lck.
We exploit this independence of the observers for the evaluation, since with a perfectly

working classifier/regressor, any event e at time t on an appliance aj ∈ A′, would have
to be detected similarly in the individual power measurements caj(t) as well as from the
aggregated measurements clck

(t), as by definition:

clck
(t) = caj(t) + ∑

al∈{Ã\ai}
(cal (t)) + n(t) (5)

where Ã ⊆ A defines all appliances, connected to the line conductor lck.
Because we cannot detect arbitrary events e using our presented NILM approach, but

rather spot for specific motifs moti fn ∈ M, we first determine our ground truth for the eval-
uation by applying the previously specified devices activity spotting approach on the down
sampled (1 Hz) measurements of the individual power meters. Applying the algorithm
for each motif moti fn ∈ M, with the respective individual power meter measurements
belonging to the motif moti fn results in a time series of Pearson-R correlations, which we
interpret as ground truth Lmoti fn(t).

Since there exist some gaps in the individual power meter measurements cai (t), we
ignore all time intervals with any gaps for the evaluation.

Having obtained the ground truth, we are now able to compare this ground truth
Lmoti fn(t) individually with the output of the regressor on the aggregated measurements
SMmoti fn(t), for each motif moti fn ∈ M. It is required to consider each time t separately,
thereby the following applies by definition:

(i) if SMmoti fn(t) = Lmoti fn(t) classify as true positive / true negative.
(ii) if SMmoti fn(t) < Lmoti fn(t) classify as false negative.
(iii) if SMmoti fn(t) > Lmoti fn(t) classify as false positive.

Figure 3 shows four exemplary plots for the point-by-point comparison of the regressor
on Lmoti fn(t) and SMmoti fn(t). Each point in the plot represents a specific time t. The red
line represents a target line for correct classifications (TP/TN).

It is obvious from Figure 3 that the classification described above is too strict, since an
exact match SMmoti fn(t) = Lmoti fn(t) is very uncommon, since due (measurement) noise
already SMmoti fn(t) 6= Lmoti fn(t) can be observed.

There are two further properties that have to be considered within the evaluation; let
moti fn ∈ M:

(i) for two times t1 and t2, where t1 6= t2, the absolute error at time t1 is more valued
than at time t2, if:

|SMmoti fn(t1)− Lmoti fn(t1)| > |SMmoti fn(t2)− Lmoti fn(t2)|

(ii) for two times t′1 and t′2, where t′1 6= t′2, the classification at time t′1 is to be valued
higher than at time t′2, if :

SMmoti fn(t
′
1) > SMmoti fn(t

′
2)

To involve these causalities in the evaluation and to obtain a less strict regression
to determine true positive/true negative cases, we consider the following four sections,
depending on thres ∈ [0; 1]:

(i) SMmoti fn(t) ≥ thres and Lmoti fn(t) ≥ thres classify as true positive.
(ii) SMmoti fn(t) < thres and Lmoti fn(t) < thres classify as true negative.
(iii) SMmoti fn(t) < thres and Lmoti fn(t) ≥ thres classify as false negative.
(iv) SMmoti fn(t) ≥ thres and Lmoti fn(t) < thres classify as false positive.
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These sections are sketched in Figure 4.

(a) (b)

(c) (d)

Figure 3. Scatter plot of correlations between Lmoti fn (t) and SMmoti fn (t) for four exemplary motifs. (a) Motif of a fully
automatic coffee machine (’GeLaP’: household 05; device: 003). (b) Motif of a washing machine (’GeLaP’: household 05;
device: 007). (c) Motif of a water pump (’GeLaP’: household 05; device: 008). (d) Motif of a television (’GeLaP’: household
05; device: 009).



Sensors 2021, 21, 8036 13 of 23

0.0 0.2 0.4 0.6 0.8 1.0
SMmotifn(t)

0.0

0.2

0.4

0.6

0.8

1.0

L m
ot

if n
(t)

true-negative

false-negative true-
positive

false-
positive

(thres,thres)

Figure 4. Exemplary division of the point-by-point comparison of the regressor on Lmoti fn (t) and
SMmoti fn (t) to a confusion matrix (thres = 0.76).

For our evaluation approach, however, we do not fix the value thres, but sweep in the
interval from 0 to 1 over it (step: 0.001) and calculate P and R for each thres separately.

As an example, the swept P and R values for the motifs from Figure 3 are shown
in Figure 5.

It is worth mentioning the behavior at the edge thres → 1, here it can regularly be
observed that Pmoti fn → ∞ and Rmoti fn → 0 applies. This behavior is due to the fact that
the observer very rarely identifies SMmoti fn(t)→ 1 or Lmoti fn(t)→ 1 and, therefore, there
are only few positive cases for calculating P and R. This fluctuation at thres→ 1, is shown
in Figure 5 where the precision spikes to 1 and recall dips to 0.

Overall, Figure 5 shows that the fully automatic coffee machine motif, for example, is
detected more completely, i.e., consistently with higher recall than all other sample motifs.
However, the fully automatic coffee machine achieves lesser precision than the motifs of
the washing machine and the water pump.

For the television motif, it can be observed that both precision and recall indicate that
the recognition does not work properly, which is in line with the intuitive assumption from
Figure 3.

To compare the evaluation of the motifs amongst each other, we define the score
PSa

moti fn
as the median of all Pmoti fn(thres) values, where thres ∈ [a; 1]. Analogously, we

define RSa
moti fn

as the median of all Rmoti fn(thres) values, where thres ∈ [a; 1].
For the following analyses, we set a = 0.5. PSa

moti fn
and RSa

moti fn
for the previous

outlined example motifs are shown in Table 1.

Table 1. PSa
moti fn

and RSa
moti fn

for four exemplary motifs.

Appliance PSa
moti fn

RSa
moti fn

fully automatic coffee machine 0.44 0.81
washing machine 0.83 0.1

water pump 0.87 0.48
television 0.02 0.14
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(a) (b)

(c) (d)

Figure 5. Precision Pmoti fn (thres) and Recall Rmoti fn (thres) for four exemplary motifs. (a) Motif of a fully automatic coffee
machine (’GeLaP’: household 05; device: 003). (b) Motif of a washing machine (’GeLaP’: household 05; device: 007). (c) Motif
of a water pump (’GeLaP’: household 05; device: 008). (d) Motif of a television (’GeLaP’: household 05; device: 009).

4.3. Evaluation Results

For each appliance ai ∈ A′ from the ’GeLaP’ dataset (in summary, around 200 appli-
ances), we repeat the evaluation method as described in Section 4.2 and calculated PS0.5

moti fn

and RS0.5
moti fn

, ∀moti fn ∈ M.

We group the appliances ai by appliance type and present PS0.5
moti f and RS0.5

moti f for
each appliance group in a box plot in Figures 6 and 7. Each appliance group consists of
several physical appliances ai ∈ A′ across different households. Additionally, each physical
appliances ai consists of several motifs moti fn, stemming from the unsupervised clustering
(see Section 3.2).

Figures 6 and 7 show that both precision and recall are highly dependent on the
appliance group. We notice that some appliance groups are generally (almost) not detected
(PS0.5

AGi
→ 0) these are specifically: water baller, television receiver, stereo system, extractor

fan, circulation pump, or bread slicer. For other appliance groups, the recall varies sig-
nificantly even within the appliance group and there are motifs that are recognized with
a high recall and others with a low recall. A particular example is the washing machine,
where the minimum recall is 0 and the median is less than 0.1, but there is an outlier with
PS0.5

moti f = 1.
We observe an analogous situation for the precision; here, again, we consider the

washing machine, for example, and observe that the plot spans the entire range between 0
and 1, with a median of 0.3.

This effect, both for recall and for precision, can be explained by the fact that within
the appliance groups there are some motifs that can be spotted very well (high precision
and/or high recall), and other motifs are recognized very weakly or not at all.
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Figure 6. Box plot on PS0.5
moti fn

for all extracted motifs moti fn ∈ M grouped by appliance.
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Figure 7. Box plot on RS0.5
moti fn

for all extracted motifs moti fn ∈ M grouped by appliance.

5. Detecting Human Actions Using NILM

Our work’s higher objective is to use the disaggregated power consumption data to detect
human actions within the residence. After introducing a NILM approach in Section 3 and
evaluating it in Section 4, we finally want to describe the transition to HAR in this section.
Section 5.1 describes the theoretical approach for exploiting the disaggregated power
consumption data for HAR before we conduct a specific case study with Section 5.2 based
on the ‘GeLaP’ dataset.



Sensors 2021, 21, 8036 16 of 23

First of all: in the context of HAR, the two terms ‘action’ and ‘activity’ are commonly
used, which we would like to introduce briefly in this section, following Chen et al. [47]. An
‘action’ describes a simple, usually short-time, behavior executed by a single person (e.g.,
opening a door). On the other hand, an ‘activity’ refers to complex behaviors consisting of
a sequence of actions and/or interleaving or overlapping actions (e.g., making a meal) [47].
Sensors only detect the ‘actions’ of the residents. However, there are already numerous
methods in the literature for inferring from ‘actions’ to ‘activities’ like HMM, Hidden Semi
Markov Model (HMM), or conditional random field (CRF) [48–50]. Within this work, we
focus on detecting simple ‘actions’. Further processing of the data to identify specific
‘activities’ can be carried out in future work if required.

5.1. Theoretical Approach

The theoretical background for the recognition of human actions is provided by the
works of Perkowith et al. [51], Philipose et al. [52], and Wyatt et al. [53]. The authors
validated that it is possible to derive a human action from the interaction with specific
objects/devices (e.g., the coffee machine). For validation, they tagged different objects with
Radio Frequency Identification (RFID) tags and attached RFID readers on the wrists of
the residents.

However, when transferring this knowledge to the disaggregated power consumption
data, we have to consider that there are different appliances, which partly also change
their states, even without a human interacting with them. We identify the following types
of appliances :

Type I Fully manual appliances:
appliances that change their operation state only after user interaction, such
as simple on-off operations.

Type II Partial automated appliances:
appliances that react to user interaction, but also partially perform autonomous
functions (e.g., automatic switch-off, cleaning program).

Type III Fully Automated appliances/stand alone appliances:
fully automated appliances that change state without any user interaction
(e.g., in the smart home) or appliances that are continuously active and self-
regulating to change state (e.g., refrigerator).

For unambiguously inferring human actions from the disaggregated power consump-
tion data, only those state changes of the individual appliances shall be interpreted as
human actions initiated by direct human interaction with the corresponding appliance. For
Type I appliances, any state change—in our case, this means any motif detection—can be
immediately interpreted as human action.

For Type II appliances, it is necessary to consider the individual events, i.e., the
individual motifs, in a differentiated manner. Only those state changes exclusively triggered
by human interaction with the appliance shall be interpreted as human actions without
any restrictions. Status changes that are performed (partially) autonomously, i.e., without
human intervention (e.g., sleep timer/energy saving shutdown), may not be considered
unlimited as activity signals. Depending on the use case, it is possible to completely ignore
such status changes as signals for human action or interpret them further using device-
specific logic operations. However, it is necessary to obtain more detailed information
about the motifs for Type II appliances. For each motif, it must be determined whether the
underlying appliance activity is generated unambiguously by human interaction with the
appliance or whether a (partially) autonomous appliance function can also generate the
specific power consumption pattern.

Type III appliances are not suitable for detecting human actions.

5.2. Case Study

To illustrate how our approach works, i.e., in detecting human actions in residences,
based on disaggregated power consumption data, we conducted a case study in the
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following matter. For this purpose, we refer, as an example, to the data from the ‘GeLaP’
dataset for household 07 in the time period from 28 October to 3 November 2019.

According to the metadata provided by Wilhelm et al. [8], the residence is located
in Bavaria (Germany), has a size of >150 m3, and ≤2 persons live in it. ‘GeLaP’ contains
submetered data from a total of ten appliances in the residence, which are described in
Table 2.

Table 2. Submetered appliances in the household 07 including the assignment of device type.

Appliance Type

Fully automatic coffee machine Type II
Microwave Type I

Electric kettle Type I
Vacuum cleaner Type I

Floor lamp Type I
Computer Type II

Printer Type II
Television Type II
Floor lamp Type I

Radio Type I

In the context of this case study, we will only consider the first three appliances A
(namely: fully automatic coffee machine, microwave, and electric kettle), as these are
characterized by a particularly high load intensity, and are, therefore (with the knowledge
from Section 4) considered to be particularly suitable for disaggregation.

According to Section 3.2, the first step is extracting common motifs M from the
submetered data of appliances A.

After the extraction of the common motifs M, it has to be determined manually for
Type II devices by adding external knowledge, which, of the extracted motifs, can be
unambiguously assigned to a human activity M′ ⊆ M. In our case, this step has to be
carried out exclusively for the fully automatic coffee machine. Expert knowledge made it
possible to identify all motifs that could be caused by an automatic process (e.g., switch-off
process). These motifs are then excluded in M′.

Finally, it is now possible to detect the selected motifs M′ directly from the smart
meter measurements clck

(t), k ∈ {1, 2, 3} by using the sporting approach we presented in
Section 3.3. The detection results for 7 days are summarized in Figure 8.

Figure 8. Human activity profile of household 07 of the ’GeLaP’ dataset in the period from 28 October to 3 November 2019,
which was created using the presented NILM methodology on the smart meter data for the appliances fully automatic
coffee machine, microwave, and electric kettle. Values between 0 and 1 are possible on the Y-axis, which show the Pearson-R
correlation of the corresponding motifs to the aggregated data. The higher the value, the better the agreement between the
motif and the aggregated power.
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Figure 8 shows directly that no human activities can be identified between approx-
imately 00:00 a.m. and 06:30 a.m. during the observed period for interacting with the
appliances fully automatic coffee machine, microwave, and electric kettle. During the morning
hours (between approximately 06:30 a.m. and 08:30 a.m.), regularly performed human
activities can be detected and during lunchtime (between 11:00 a.m. and 12:30 p.m.). In the
afternoon and evening, activities of the resident are also present, but much more irregularly.

Overall, we already obtain a comprehensive activity profile of the household based
on disaggregated data from the smart meter based on three appliances.

Further case studies are available in the Supplementary Material and Section 7.

6. Discussion

In contrast to most common NILM approaches, which work event-based [2,10,11,54],
we developed a non-event-based approach. The common processing steps event detection,
feature extraction, and load identification are not executed separately, but in one processing
step. It is continuously checked in the series of the total power measurements clck

(t),
k ∈ {1, 2, 3} whether a known motif moti fn ∈ M may have been spotted and, thus, an
appliance activity—respectively, a human action—can be detected.

In general, non-event-based approaches are not as computationally efficient as event-
based approaches, but they do not rely on edge detection schemes before classification.
This, in turn, they have advantages, in that the type of identifier does not have to be
determined in advance. Thus, this method can represent a more generic approach to NILM
than an event-based NILM method.

The application of our approach requires continuous spotting for all known motifs
M to determine whether any motif moti fn ∈ M could be present at time t. Although the
MASS comparison algorithm runs in O(n log n) [39], this can cause performance problems
as the number of appliances to be recognized, i.e., the number of possible motifs, increases.
One way to prevent this problem would be to determine which appliances Â are potentially
available in a specific household and then just spot only for motifs M̂, which corresponds
to appliances aj ∈ Â. Assuming that the number of electrical appliances in a household
is limited and that only a subset of the existing appliances is relevant for NILM, the
calculation effort can be significantly reduced.

A key aspect in the design of our NILM approach was to be able to perform the
disaggregation of smart meter measurements on an edge system directly in the residential
environment (e.g., on a single board computer) in (near) real-time. Once the motifs have
been identified (see Section 3.2), performed independently of the household, but only in
relation to the appliance, the spotting methodology presented in Section 3.3 can be applied
to an edge system. For spotting, it is only necessary to cache the aggregated data for as
long as the corresponding motifs are long—so it does not require supervised systems or
large databases of historical data. In concrete terms, this means that it is possible to cache
the aggregated data directly in the household (e.g., using a ring buffer) and perform motif
spotting in a streaming setting. Thus, human activity is detected directly in the household,
and it is no longer necessary to transfer the aggregated data to a remote server. For multi-
state appliances, in particular, this approach extends to the current state-of-the-art, as
described in Section 2.

However, since our approach is based on motif spotting, full real-time activity detec-
tion is not achievable. In order to perform spotting of a specific moti fn ∈ M of motif-length
w by analyzing the most recent time window, it is always necessary that w new samples of
the aggregated data are in the cache. Thus, when an appliance activity occurs, there is a
delay of up to w seconds until the power consumption pattern arrives in the ring-buffer.
Due to the constant lag, we refer strictly to (near) real time in this article.

Using an edge system has two major advantages: On the one hand, the system is not
dependent on a (stable) internet connection. On the other hand, privacy and security con-
cerns can be overcome, as neither consumption data nor activity data must be transmitted
to third parties, which is considered an important aspect of the literature [2,11,24,25].



Sensors 2021, 21, 8036 19 of 23

To interpret the performance evaluation for our NILM approach from Section 4.3,
we created a stratified random guessing baseline observer by permuting on the time
axis of SMmoti f (t). This results in a baseline performance for random guessing, which is
approximately 0.01 for precision and recall, because the appliances are inactive 99% of
the time. Consequently, we can state that our NILM approach works better than random
guessing for a number of appliances.

However, it can also be noted that some appliance types can be better recognized
than other types. This can be explained by the fact that appliances, such as the fully
automatic coffee machine, which achieves high precision and recall, produce more distinctive
patterns in their power consumption than constant low-power appliances, such as a stereo
system. Variations in the quality of recognition (concerning precision and recall) can also be
observed within the same appliance group. Even within the same physical appliance, there
are performance variations across the motifs. One reason explaining this quality fluctuation
is that the unsupervised clustering (see Section 3.2) does not incorporate knowledge about
the appliance operating mode. Consequently, the clustering does not pre-select the motifs.

For assessing the evaluation, it is also worth mentioning that, across the threshold
sweep, we use the median performance instead of the maximum performance. The preci-
sion and recall could be higher if we would choose the optimal threshold value. However,
the performance curve across the threshold sweep is spiky and fluctuates at thresh → 1.
Furthermore, the optimal value for precision and recall occur at different threshold values.
However, the advantage of our median evaluation methodology is that this is fully deter-
ministic and has no dependency on cross-validation. Thus, the performance of our NILM
approach is evaluated in a more generalized way.

The main focus of our work is to use the disaggregated NILM information to recognize
human activity within the residence. The information about the human activity will later
be used to develop AAL systems that can identify atypical behaviors of the residents that
indicate, for example, a need for assistance, an emergency, or a decrease in health [6].
We were able to achieve this objective, as the case studies in Section 5.2 show. However,
it was necessary to manually assign the motifs to human activities (especially for Type
II appliances) through expert knowledge, as there are no ground truth data for human
activities in the ‘GeLaP’ dataset.

Contrary to Patrono et al. [14,15] or Pascher [30], our approach differentiates essen-
tially in the fact that we do not perform NILM or HAR on a central server or a cloud system.
However, our approach can be applied directly in the household on an edge system. Our
work follows the conceptual paper of Bousbiat et al. [16] instead. However, in contrast
to Bousbiat et al., we do not use simulated data for our analysis, but rather data from
actual households using the ’GeLaP’ dataset. Thus, our work is more practice-oriented with
concerning HAR.

It is noteworthy that our NILM algorithm has no binary outputs. Therefore we cannot
binarize HAR, but rather give weighted assumptions about the presence or absence of
human activity. This “non-binary” differentiates our research from any related work.

7. Conclusions and Further Work

This paper presented a novel approach for NILM, which uses the pattern recogni-
tion/motif search on the raw power waveform to recognize individual household ap-
pliances on the total power consumption of a household measured by the smart meter.
The approach is based on extracting repeating patterns—so-called motifs—of specific
household appliances from individual power measurements of the appliance and spotting
the motifs in the aggregated power consumption measurement of the household. This
spotting is done using similarity search with the MASS algorithm and finally results in
continuous Pearson-R correlations, which quantify the uncertainty of the disaggregation.
Our approach enables disaggregation on an edge system in (near) real-time in a streaming
setting, directly in the residential environment, which means that power consumption data
do not have to be sent out of the house for processing.
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However, the evaluation of the developed NILM approach shows that the quality
of the disaggregation (in terms of precision and recall) strongly depends on the motif
extraction and the selection of the relevant motifs spotted.

The further objective of the work was to use the disaggregated power consumption
data for HAR. Based on the literature, we were able to show that the information on device
activity can be transferred to human activity information using simple semantics. In this
context, we conducted a case study in Section 5.2 with selected motifs for one exemplary
household from the ‘GeLaP’ dataset.

In summary, we demonstrated that it is possible to detect human activity within the
household using a motif-detection-based NILM approach applied to smart meter data.

In further work, the motif extraction should be revised and/or a preprocessing should
be introduced to exclude those motifs that are recognized only insufficiently (low precision
or low recall) and, thus, increase the overall quality of the NILM approach. Furthermore, a
global database of ’known motifs’ should be built up so that our NILM approach can be
transferred easily, since the complex pre-processing/motif extraction process is eliminated.

Subsequently, our NILM approach should be verified with other datasets and bench-
marked against common (event-based) NILM methods. Furthermore, in a further step,
the presented NILM approach should be integrated into a real-world environment and
applied cumulatively using ring-buffered smart meter data.

With the help of advanced algorithms, the inferred data on human activity can be
used for intelligent AAL systems, e.g., for emergency detection, which does not require
proprietary sensors for HAR.

Supplementary Materials: Further case studies, like Figure 8, are available online as supplementary
material at https://mygit.th-deg.de/tcg/HAR-NILM (accessed on 26 November 2021).
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