Mol. Cells 2021; 44(8): 623-625 623

Molecules and Cells

Journal Club

Eyeless Worms Can Run Away from Dangerous Blues

Caenorhabditis elegans without conventional eyes are equipped with a color-detecting system that helps in avoiding blue pathogenic bacteria.

Gee-Yoon Lee and Seung-Jae V. Lee*

Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea *Correspondence: seungjaevlee@kaist.ac.kr https://doi.org/10.14348/molcells.2021.0201 www.molcells.org

The roundworm *Caenorhabditis elegans* is one of the most important model organisms for genetic research. Various environmental stimuli, including dietary cues and changes in ambient temperatures, affect the behavior and physiology of *C. elegans* (Goodman and Sengupta, 2019; Jeong et al., 2012). Interestingly, despite the lack of conventional eyes, *C. elegans* can perceive light via a signal transduction mechanism mediated by seven transmembrane receptors, including LITE-1 (high-energy LIghT unrEsponsive protein 1) (Gong et al., 2016; Iliff and Xu, 2020). Nevertheless, whether *C. elegans* can distinguish any color in the visible light, which was almost an unimaginable possibility, remained unknown.

Surprisingly, a recent study has reported that *C. elegans* can discriminate colors (Ghosh et al., 2021). They first tested whether *C. elegans* avoided harmful bacteria by detecting colored microbial pigments. *Pseudomonas aeruginosa*, a gram-negative opportunistic pathogenic bacterium in humans, is a popular model pathogen used for studying immunity and behavior of *C. elegans* (Park et al., 2017). *P. aeruginosa* secretes pyocyanin, a blue toxin that generates reactive oxygen species (ROS) (Mahajan-Miklos et al., 1999). *C. elegans* feeds on microbes enriched with potential pathogens in nature (Meisel and Kim, 2014; Schulenburg and Félix, 2017) and utilizes multiple sensory systems to avoid harmful bacteria (Meisel and Kim, 2014; Liu and Sun, 2021). Interestingly,

Ghosh et al. (2021) demonstrated that *C. elegans* avoided *P. aeruginosa* better under white light than in the dark (Fig. 1). When exposed to a mutant *P. aeruginosa* strain that cannot synthesize pyocyanin, white light did not affect the avoidance behavior of *C. elegans*. In addition, *C. elegans* exhibited an increased avoidance to paraquat, a colorless ROS-generating toxin, only with blue dye or blue light, but did not avoid either paraquat or blue dye alone under white light. These data indicate that *C. elegans* avoids pyocyanin by perceiving both ROS and the blue color of the toxin (Fig. 1).

Can *C. elegans* discriminate among different colors to better avoid other adverse stimuli? The authors exposed *C. elegans* to the odor of 1-octanol, an aversive odorant, under different color combinations of blue-to-amber light. They found that colors ranging from blue to amber differentially affected its avoidance to 1-octanol, whereas exposure to pure blue or amber light had no effect on its avoidance to 1-octanol. Thus, *C. elegans* discriminates different colors of light to avoid aversive stimuli better.

Wild *C. elegans* lives in diverse natural habitats, including rotten fruits and soil, and encounters toxic microbes with various colors (Schulenburg and Félix, 2017). Thus, the authors tested whether *C. elegans* strains from various environmental niches responded differently to color combinations during foraging. Interestingly, several *C. elegans* strains displayed

Received 26 July, 2021; accepted 4 August, 2021; published online 20 August, 2021

elSSN: 0219-1032

©The Korean Society for Molecular and Cellular Biology.

[©]This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.

Eyeless Worms Can Run Away from Dangerous Blues Gee-Yoon Lee and Seung-Jae V. Lee

Fig. 1. *C. elegans* avoids toxic bacteria better by detecting blue color. *P. aeruginosa*, a pathogenic bacterium, synthesizes pyocyanin, a blue toxin that generates reactive oxygen species (ROS). *C. elegans* avoids blue color with ROS. JKK-1 (c-Jun N-terminal kinase kinase 1) and LEC-3 (galectin-3), which are cellular stress response proteins, mediate the blue color-dependent avoidance of wild-type *C. elegans*. This color detection system of *C. elegans* may help avoid pathogens and enhance its survival in nature.

avoidance to colored light even without aversive stimuli. These results suggest that spectral sensitivity varies among wild *C. elegans* strains that live in different natural habitats.

To identify genetic factors responsible for variations in the color-dependent avoidance behaviors of *C. elegans*, the authors analyzed the genomes of 59 wild *C. elegans* strains. They found that single nucleotide variations in two cellular stress response genes of *C. elegans*, *jkk-1* (*c-Jun N-terminal kinase kinase 1*) and *lec-3* (*galectin 3*), were highly variable among the strains. The authors then showed that the genetic inhibition of *jkk-1* or *lec-3* in laboratory wild-type strains suppressed their color-dependent avoidance to 1-octanol. Overall, these results indicate that JKK-1 and LEC-3 are the key factors responsible for the color-dependent avoidance response of *C. elegans* (Fig. 1).

In summary, the authors showed that *C. elegans*, which do not have conventional eyes or color-detecting opsin receptors, can discriminate colors, and this trait is crucial for avoiding potentially harmful stimuli. They demonstrated that *C. elegans* that lives in various natural environments responds differently to colors and harmful odorants. This is the first report showing that *C. elegans* can distinguish among different colors of light by utilizing a newly discovered color-detecting system.

This ground-breaking work conducted by Ghosh et al. (2021) raises exciting possibilities regarding the evolution of color perception. *C. elegans* have been known to avoid ultraviolet light, and this study demonstrated that *C. elegans* avoids toxic bacteria via color perception. Many new questions arise from this study, as is the case for almost all the important discoveries. The color-detecting system in *C. elegans* may have evolutionarily emerged to avoid harmful

stimuli for survival. If so, do *C. elegans* strains from different environmental niches avoid certain colors to enhance their survival in their own habitats? Do colors help *C. elegans* detect beneficial food sources as well? How do JKK-1 and LEC-3, which potentially play roles in cellular stress responses, mediate the color perception of *C. elegans*? In which neural circuits and molecular signaling pathways do JKK-1 and LEC-3 act? Do color-perceiving systems exist in other eyeless species, including mammals? Some mammals probably retain ancient color-detecting systems that may be utilized when their conventional visions are compromised. Addressing all these questions will help understand and devise novel biological systems that perceive colors without "seeing" them.

ACKNOWLEDGMENTS

We thank all Lee laboratory members for helpful discussion and comments. This study is supported by the Korean Government (MSIT) through the National Research Foundation of Korea (NRF-2017R1A5A1015366) to S.J.V.L.

AUTHOR CONTRIBUTIONS

G.Y.L. and S.J.V.L. wrote the paper.

CONFLICT OF INTEREST

The authors have no potential conflicts of interest to disclose.

ORCID

Gee-Yoon Lee Seung-Jae V. Lee https://orcid.org/0000-0002-4142-8842 https://orcid.org/0000-0002-6103-156X

REFERENCES

Ghosh, D.D., Lee, D., Jin, X., Horvitz, H.R., and Nitabach, M.N. (2021). *C. elegans* discriminates colors to guide foraging. Science *371*, 1059-1063.

Gong, J., Yuan, Y., Ward, A., Kang, L., Zhang, B., Wu, Z., Peng, J., Feng, Z., Liu, J., and Xu, X.Z.S. (2016). The *C. elegans* taste receptor homolog LITE-1 is a photoreceptor. Cell *167*, 1252-1263.e10.

Goodman, M.B. and Sengupta, P. (2019). How *Caenorhabditis elegans* senses mechanical stress, temperature, and other physical stimuli. Genetics *212*, 25-51.

lliff, A.J. and Xu, X.Z.S. (2020). C. elegans: a sensible model for sensory biology. J. Neurogenet. 34, 347-350.

Jeong, D.E., Artan, M., Seo, K., and Lee, S.J. (2012). Regulation of lifespan by chemosensory and thermosensory systems: findings in invertebrates and their implications in mammalian aging. Front. Genet. *3*, 218. Liu, Y. and Sun, J. (2021). Detection of pathogens and regulation of immunity by the *Caenorhabditis elegans* nervous system. mBio *12*, e02301-20.

Mahajan-Miklos, S., Tan, M.W., Rahme, L.G., and Ausubel, F.M. (1999). Molecular mechanisms of bacterial virulence elucidated using a *Pseudomonas aeruginosa-Caenorhabditis elegans* pathogenesis model. Cell *96*, 47-56.

Meisel, J.D. and Kim, D.H. (2014). Behavioral avoidance of pathogenic bacteria by *Caenorhabditis elegans*. Trends Immunol. *35*, 465-470.

Park, H.H., Jung, Y., and Lee, S.V. (2017). Survival assays using *Caenorhabditis elegans*. Mol. Cells *40*, 90-99.

Schulenburg, H. and Félix, M.A. (2017). The natural biotic environment of *Caenorhabditis elegans*. Genetics *206*, 55-86.