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Abstract: Sucrose is produced in leaf mesophyll cells via photosynthesis and exported to non-
photosynthetic sink tissues through the phloem. The molecular basis of source-to-sink long-distance
transport in cereal crop plants is of importance due to its direct influence on grain yield—pollen
grains, essential for male fertility, are filled with sugary starch, and rely on long-distance sugar
transport from source leaves. Here, we overview sugar partitioning via phloem transport in rice,
especially where relevant for male reproductive development. Phloem loading and unloading in
source leaves and sink tissues uses a combination of the symplastic, apoplastic, and/or polymer
trapping pathways. The symplastic and polymer trapping pathways are passive processes, correlated
with source activity and sugar gradients. In contrast, apoplastic phloem loading/unloading involves
active processes and several proteins, including SUcrose Transporters (SUTs), Sugars Will Eventually
be Exported Transporters (SWEETs), Invertases (INVs), and MonoSaccharide Transporters (MSTs).
Numerous transcription factors combine to create a complex network, such as DNA binding with
One Finger 11 (DOF11), Carbon Starved Anther (CSA), and CSA2, which regulates sugar metabolism
in normal male reproductive development and in response to changes in environmental signals, such
as photoperiod.

Keywords: sugar partitioning; phloem; sink; source; sugar signaling

1. Introduction

Rice (Oryza sativa), the monocot model plant, is a major crop, meeting the food
demands of more than 50% of the global population [1,2]. Reproductive development,
which connects the dominant diploid sporophytic and short haploid gametophytic stages, is
a critical element in grain production [3]. The male reproductive organ, the stamen, consists
of a filament and an anther containing multiple specialized tissues that generate mature
male gametophytes, the pollen grains, via a series of developmental events such as meristem
specification, cell differentiation, meiosis, mitosis, and starch accumulation [4,5]. Research
on anther development is essential to increase our understanding of developmental biology
and boost agricultural production reviewed by [4–8].

Sugars are the constituents of main anther, and play essential roles in cell structure
formation, energy supply, and male fertility in response to environmental conditions [9].
In rice, the expression of Cell Wall Invertase 3 (OsCWIN3/OsINV4) correlates with sucrose
accumulation and pollen sterility depending on temperature [10], while two MYB domain
proteins, Carbon Starved Anther (CSA) and CSA2, regulate sugar partitioning and male fer-
tility in response to photoperiod [11–14]. The sugar transporter OsXa13/OsSWEET11 plays
essential roles in pollen development and disease resistance against bacterial blight [15,16].
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Sugar transport processes from source leaves to anther sinks are thus directly involved
in male fertility. This review aims to provide an overview of sugar transport and its role in
anther development, focusing on the molecular basis of sugar partitioning from source to
sink, and recent findings on how sugar metabolism impacts anther development.

2. Strategies of Source-to-Sink Sugar Partitioning

Carbon is fixed from carbon dioxide into carbohydrate in chloroplasts of leaf tissues,
primarily mesophyll cells, and accumulated in the cytosol of the same cells. The energy
demands of sink tissues, such as roots, flowers, and seeds, drive the export of sugars from
the leaf, mainly in the form of sucrose, via long-distance transport in plant vasculature,
the phloem [17]. Over half of the photo-assimilates (50–80%) are exported from source
leaves to maintain non-photosynthetic sink tissues [18]. Carbohydrate partitioning from
source-to-sink tissues comprises three elements [19]: phloem loading of sugars from source
tissues; transportation in the sieve element of the phloem; phloem unloading of sugars to
sink tissues [20].
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Figure 1. Three strategies for phloem loading. (A) Symplastic pathway: sucrose accumulates in
mesophyll cells and is passively translocated to the phloem through plasmodesmata (PD) along the
concentration gradient. (B) Apoplastic pathway: sucrose is exported to the apoplast by SWEETs
and, after diffusion, imported into the phloem by SUTs. (C) Polymer trapping: sucrose is passively
exported to phloem companion cells and synthesized into RFOs that can only move into sieve element
cells due to their larger molecular mass.

Phloem is composed of several cell types, including parenchyma cells, sieve elements
(SEs), and companion cells (CCs) [21,22]. Phloem loading is the first vital step in sugar’s
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long-distance transport—transferring the sugars from mesophyll cells to the SEs and CCs
of the phloem [23–25]. Three different strategies are used for phloem loading by different
plants according to the abundance of plasmodesmata, SUT activity, and the concentration
gradient of photosynthates (Figure 1) [26].

The symplastic pathway is a passive loading process, driven by concentration gra-
dients between mesophyll cells and phloem tissue (Figure 1A) [24,27], whereby the su-
crose accumulated in mesophyll cells diffuses through plasmodesmata to reach phloem
CCs [24,27]. Most tree species employ passive loading in the mesophyll cells, which meets
the anatomical feature with high plasmodesmatal frequencies in the phloem of minor
veins [26,28,29]. In most herbaceous plants, the apoplastic pathway is the main strategy for
phloem loading [22]. Sucrose from mesophyll cells is actively exported to the apoplast by
SWEET proteins (consuming energy), diffuses within the apoplast, and is actively loaded
to phloem CCs via SUTs against a concentration gradient (Figure 1B) [22,28]. Polymer
trapping, the third phloem-loading strategy, is an energy-consuming symplastic process
adopted by a small number of specific plants (Figure 1C) [29]. For example, in Arabidopsis
(Arabidopsis thaliana), cucumber (Cucumis sativus), and bugleweed (Ajuga reptans), sucrose
diffuses into phloem CCs along the concentration gradient and is synthesized into raffinose-
family oligosaccharides (RFOs); thus, larger sugars are retained in SE/CC complex due
to the size of plasmodesmata [30,31]. In Verbascum phoenicum, RNA interference experi-
ments demonstrate that the reduced expression of two GAS genes that drive RFO synthesis
inhibits phloem transport and results in growth retardation [25].

3. Proteins Involved in Sugar Partitioning
3.1. Sucrose Transporters (SUTs)

Sucrose transporters (SUTs) act as symporters to import the sucrose from the apoplasm
into phloem CCs against the concentration gradient, driven by the motive force generated
by H+-ATPases (Figure 1B) [28,32]. The 12 transmembrane domains of the SUT protein
forms a pore to transport sucrose across the plasma membrane [33].

The first sucrose transporter (SoSUT) was found in spinach (Spinacea oleracea) by an
elegant yeast complementation strategy [34]. Nine and five SUTs have been found in
Arabidopsis and rice, respectively [35,36]. Based on sequence, sub-cellular location, and
activity, SUTs have been classified into three types: type I (specific to eudicots, plasma
membrane–localized); type II (present in all plants, plasma membrane–localized); and type
III (present in all plants, vacuolar membrane–localized) [37]. In rice, OsSUT1, OsSUT3,
OsSUT4, and OsSUT5 are type II SUTs, and OsSUT2 is a type III tonoplast SUT (Table 1) [37].

3.2. Sugars Will Eventually Be Exported Transporters (SWEETs)

SWEETs are a group of evolutionally conserved genes expressed in eukaryotes,
prokaryotes, and archaea [52,53]. These genes, encoding MtN3/saliva domain proteins,
were initially found to encode glucose transporters [54], and have since been found to be
capable of transporting a variety of mono- and di-saccharides [42,55–57]. According to their
protein structures, SWEET proteins encode either one or two MtN3/saliva domains [58].

Rice encodes 21 SWEET proteins that are involved in multiple biological processes
(Table 1) [58]. OsSWEET11, containing two MtN3/saliva domains, acts as a glucose uni-
porter in panicles and anthers [15]. Its knockdown mutant reveals defects in microspore
development, suggesting a function in male development [15]. OsSWEET11 is also upregu-
lated in response to bacterial infection by Xanthomonas oryzae pv. oryzae [15]. OsSWEET14
has a similar disease response, and its knockout mutant showed growth retardation, re-
duced plant size, and insensitivity to bacterial infection [16]. An overexpressing OsS-
WEET5 line shows significant changes in leaf sugar levels, which indicates the function
of OsSWEET5 in sugar metabolism and transport [42]. This transgenic line also showed
low expression of genes involved in auxin signal transduction, suggesting a function for
SWEETs in regulating the crosstalk between auxin and sugar in rice [42]. In addition, five
SWEET genes, including OsSWEET1a, OsSWEET2a, OsSWEET4, OsSWEET11, OsSWEET15,
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are highly expressed in panicles, indicating a putative function in sugar transport during
rice reproductive development [59].

Table 1. Proteins involved in sugar metabolism in rice.

Gene Family Number of Genes Reported Genes/Reference

SUT 5

SUT1 [38,39];
SUT2 [40];
SUT3 [41];

SUT4, SUT5 [35]

SWEET 21

SWEET5 [42];
SWEET6a [43,44];

SWEET6b [44];
SWEET11 [15];
SWEET14 [16];
SWEET15 [45]

MST 64
AZT subfamily 6 AZT3 [13]
ERD subfamily 6

pGlcT subfamily 4
Xylose subfamily 2

STP subfamily 15

MST1, MST2, MST3 [46];
MST5 [47];
MST6 [48];
MST8 [11];

SPT17, SPT27 [43,44]
PLT subfamily 28
INT subfamily 3

Invertases 18
VIN 2 VIN2 [49]
CIN 8 CIN8/Cyt-INV1 [50]

CWIN 8
GIF1 [51];
INV4 [10];

CWIN6 [44]
The shaded areas represent subfamilies of these proteins.

3.3. Invertases (INVs)

Invertases (INVs) encode proteins that hydrolyze sucrose into glucose and fructose [60],
classified according to sub-cellular location into vacuolar (VIN), cell wall (CWIN), or
cytoplasmic (CIN) invertases (Table 1) [61,62]. CINs prefer a neutral pH of 7.0–7.8 in the
cytosol, while VINs and CWINs have an optimal pH of 4.5–5.5 [61]. Rice has 19 invertase
genes, including nine CWINs, two VINs, and eight VINs (Table 1) [63]. CWIN proteins bind
to the cell wall and play essential roles in sugar transmembrane transport during phloem
unloading [61].

3.4. Monosaccharide Transporters (MSTs)

Monosaccharide transporters (MSTs) are membrane proteins involved in the trans-
membrane transport of hexoses, hydrolyzed from sucrose by INVs, in sink tissues in the
apoplastic pathway (Figure 1B) [64]. An Arabidopsis phylogeny of 53 MST proteins sug-
gests seven subfamilies—AZT, XTPH, ERD, pGlcT, PLT, INT, and STP (Table 1)—many
of whose expression patterns or function have not yet been characterized [65]. Among
the seven subfamilies of MST proteins, AZT and XTPH proteins localize on the tonoplast
and play essential roles in sugar transport to the tonoplast [66–68]. AtERD6, a member
of ERD proteins, was proved to be involved in the transport of monosaccharides, whose
expression was induced by abiotic stress [69]. pGlcT proteins are transporters of glucose,
and PLT proteins are symporters of polyols and monosaccharides [70,71]. AtINT4, the first
identified member of the INT proteins, exhibits H+ symporter activities for myoinositol in
yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes [72]. MST members of the STP
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sub-family are H+/hexose cotransporters locating on plasma membranes, which transport
a series of hexoses, including glucose, fructose, galactose, xylose, mannose, pentose, and
ribose [64].

A slightly larger family of 64 MSTs has been found in rice; these proteins split into the
same seven clades upon phylogenetic analysis [64]. Several members of the STP subfamily
were reported to have monosaccharide transport functions (Table 1). OsMST3 is required
to accumulate monosaccharides, the substrate for cellulose synthesis, during cell wall
synthesis [46]. OsMST5, highly expressed in panicles, is associated with pollen growth [47].
Moreover, OsMST8 is directly regulated by CSA, suggesting a function for OsMST8 during
anther development [11].

4. Roles of Sugar Transporters in Phloem Loading and Unloading

Photosynthesis—“source activity”—and sink energy utilization—“sink strength”—
combine to raise plant productivity [20,73]. Understanding the processes of phloem loading
in source leaves and unloading in sink tissues can improve source activity and sink strength,
leading to higher grain yields (Figure 2). After long-distance phloem transport from source
tissues, sugar (mainly sucrose) is unloaded in sink organs; however, this process will lead to
sucrose accumulation in sink tissues (reduced sink strength), resulting in reduced efficiency
in sugar transport and source activity (Figure 2) [74].

Genes 2022, 13, x FOR PEER REVIEW 5 of 13 
 

 

suggests seven subfamilies—AZT, XTPH, ERD, pGlcT, PLT, INT, and STP (Table 1)—

many of whose expression patterns or function have not yet been characterized [65]. 

Among the seven subfamilies of MST proteins, AZT and XTPH proteins localize on the 

tonoplast and play essential roles in sugar transport to the tonoplast [66–68]. AtERD6, a 

member of ERD proteins, was proved to be involved in the transport of monosaccharides, 

whose expression was induced by abiotic stress [69]. pGlcT proteins are transporters of 

glucose, and PLT proteins are symporters of polyols and monosaccharides [70,71]. 

AtINT4, the first identified member of the INT proteins, exhibits H+ symporter activities 

for myoinositol in yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes [72]. MST 

members of the STP sub-family are H+/hexose cotransporters locating on plasma mem-

branes, which transport a series of hexoses, including glucose, fructose, galactose, xylose, 

mannose, pentose, and ribose [64]. 

A slightly larger family of 64 MSTs has been found in rice; these proteins split into 

the same seven clades upon phylogenetic analysis [64]. Several members of the STP sub-

family were reported to have monosaccharide transport functions (Table 1). OsMST3 is 

required to accumulate monosaccharides, the substrate for cellulose synthesis, during cell 

wall synthesis [46]. OsMST5, highly expressed in panicles, is associated with pollen 

growth [47]. Moreover, OsMST8 is directly regulated by CSA, suggesting a function for 

OsMST8 during anther development [11]. 

4. Roles of Sugar Transporters in Phloem Loading and Unloading 

Photosynthesis—“source activity”—and sink energy utilization—“sink strength”—

combine to raise plant productivity [20,73]. Understanding the processes of phloem load-

ing in source leaves and unloading in sink tissues can improve source activity and sink 

strength, leading to higher grain yields (Figure 2). After long-distance phloem transport 

from source tissues, sugar (mainly sucrose) is unloaded in sink organs; however, this pro-

cess will lead to sucrose accumulation in sink tissues (reduced sink strength), resulting in 

reduced efficiency in sugar transport and source activity (Figure 2) [74]. 

 

 

Figure 2. Schematic diagrams of sugar source-to-sink transport in rice. (A) High source activity
in source leaves promotes phloem transport. (B) High sink strength results in high sugar demand,
increasing the sugar transport.

In Arabidopsis, AtSUC2 is expressed in phloem CCs of minor leaf veins, which are
supposed to be involved in the source-to-sink transition [75,76]. An AtSUT2 T-DNA insertion
mutant line exhibits decreased sucrose exports from leaves, resulting in sucrose accumulation
in leaves, and delayed root growth and flowering [77]. OsSUT1, a type II SUT like AtSUC2,
is highly expressed in leaves, stems, and grains; however, knockdown lines of OsSUT1 do
not show sucrose accumulation in source leaves [38,39]. OsSUT3, another type II SUT, is
preferentially expressed in pollen, suggesting a function in pollen development and maturity
rather than phloem loading in source leaves [41]. OsSUT2, a type III SUT, is involved in
sucrose transfer across the tonoplast from the vacuole lumen to the cytosol in rice [40].
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SWEETs transport mono- or di-saccharides across membranes for phloem trans-
port [78]. In Arabidopsis, AtSWEET11/12 localizes in the plasma membrane of vascular
tissues and participates in phloem transport [55]. Maize ZmSWEET4c functions in hexose
transport during seed development, and its mutation demonstrates a lack of hexose trans-
port and defect in seed filling [79]. In rice, OsSWEET11 and OsSWEET14, two response
factors to bacterial infection, also show essential roles in grain filling, whose mutants
reveal defective in grain filling, resulting in increased starch accumulation in the peri-
carp [16,80,81]. OsSWEET15, another symporter highly expressed in rice caryopses, is
necessary for sucrose efflux from caryopses to grains during seed filling [45]. OsSWEET5
encodes a galactose transporter, whose overexpression causes growth retardation and pre-
cocious senescence in rice seedlings [42]. These SWEET proteins showed important roles
in grain filling, demonstrating their biological function of sucrose transfer from caryopses
(source) to grains (sink).

Cell wall invertases (CWINs) play important roles in apoplasmic unloading, decreas-
ing the concentration of sucrose in sink tissues to improve sink strength [61,82]. In rice, grain
yield significantly decreased when the expression of OsCWIN2 (GIF1) was suppressed [83],
and a similar phenotype is observed in ZmCWIN2 (Incw2) mutants in maize (Zea mays) [80].
VfCWIN1 in Vicia faba, a dicot species, is also reported to impact seed size [81]. Moreover,
OsCWIN3 (INV4) has high expression in rice anthers, and affects male fertility in response
to temperature variations [10].

During the apoplasmic unloading, sucrose is hydrolyzed into hexoses by CWINs,
which results in monosaccharides accumulation in unloading tissues. Plasma membrane-
localized MSTs are transporters of monosaccharides, which are responsible for hexoses
partitioning to sink tissues [84]. In rice, monosaccharides transport by OsMST1–8 has been
demonstrated [46,47,85–88]. Among them, OsMST5, OsMST7, and OsMST8 have been
shown to be involved in rice anther development [11,49,89].

5. Sugar Balance and Signaling Transduction

Plants photosynthesize carbohydrates by converting carbon dioxide into glucose
during daylight, with sugar accumulation restricted by CO2 and light density [89,90].
Carbohydrates accumulate in leaves linearly through the day, peaking at dusk, but plants
require energy throughout the nighttime hours as well. The plant circadian cycle regulates
photosynthate partitioning to maintain energy balances in all plant tissues throughout the
day and night [91]. In Arabidopsis, ~50% of the photosynthate accumulates as starch in the
leaves during the day for degrading, to supply the sugar demands of non-photosynthetic
tissues at night [92]. The rate of starch degradation at night is approximately linear, and
~95% of starch is utilized at the end of the night [93].

Further studies found that the circadian clock regulates the rates of starch degradation
to coordinate the sugar supply and growth in Arabidopsis [91]. For example, three circadian-
controlled transcription factors, PHYTOCHROME-INTERACTING FACTOR 3, 4, and 5
(PIF3, PIF4, and PIF5), precisely regulate the hypocotyl growth at the end of the night, which
is an apparent energy-consuming process [94].The clock sets the pace of degradation to
govern the starch exhausted at dawn, and this mechanism adjusts to photoperiod changes:
when dark periods are extended from 12 h to 16 h, starch degradation occurs more slowly to
reach the same minimum sugar levels at the end of the night [95,96]. A circadian-controlled
gene, SIGMA FACTOR5 (SIG5), encodes a transcription factor that controls the expression of
several chloroplast genes, revealing the influence of core clock on the photosynthesis [97].

In addition to their fundamental functions in carbon and energy metabolism and
polymer biosynthesis, sugars have feedback effects on the circadian clock [98]. In Ara-
bidopsis, sugars gradually accumulate after sunrise at dawn, then repress the expression of
PSEUDO-RESPONSE REGULATOR 7 (AtPRR7) and relieve repression on CIRCADIAN
CLOCK-ASSOCIATED 1 (CCA1), modulating the phase of the circadian clock [98].

Sugars also act as signal transducers in a range of biological processes that are also
modulated by hormones, such as seed germination, growth and development, and flow-
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ering [99,100]. Glucose has been shown to regulate genes involved in abscisic acid (ABA)
hormone biosynthesis and signaling, which is antagonistic with the phytohormone ethy-
lene [101]. An excess of sucrose can rescue a late-flowering phenotype as well as leaf
morphogenesis and flowering in the dark. Sucrose, rather than auxin, levels play a vital
role in apical dominance by suppressing the key regulator for bud dormancy, BRC1 [102].
Sugar accumulation also influences the juvenile–adult transition by suppressing the nega-
tive regulator miR156 and relieving repression on the SQUAMOSA PROMOTER BINDING
PROTEIN-LIKE (SPL) genes, the promoting factor of miR172 [103,104].

6. Sugar Regulatory Network

Phloem loading is a complex process, achieved by a variety of pathways in different
plants under different conditions; while the precise mechanisms in rice are not yet clear, a
better understanding of this process may lead to improvements in grain production. Elec-
tron microscopy on rice leaf has revealed that xylem parenchyma cells are well-connected
by plasmodesmata, suggesting the use of the symplastic pathway in rice phloem transport
(Figure 1A) [105]. However, a later study suggests use of the apoplastic pathway (Figure 1B),
as the expression of AtSUC2 under control of the Arabidopsis Phloem Protein 2 promoter
(AtpPP2) in rice enhances phloem loading and boosts grain yield by 16% compared with
the wild-type [106]. OsSUT1 is highly expressed in the phloem companion cells of source
leaves, and the ossut1 mutant shows defects in growth and grain filling [43]. Blocking
sugar transmembrane loading in rice by overexpressing a yeast invertase limits normal
growth and grain filling, proving that the apoplastic pathway plays an essential role in rice
phloem loading [43]. In summary, the symplastic and apoplastic pathways both appear to
play a role in rice phloem loading, and the relative importance of the two pathways and
their specific mechanisms of action, specifically under different environmental conditions,
would benefit from further study.

Several regulators of sugar transporters involved in the apoplastic pathway in rice
have been identified, and suggest a complex network of regulation that responds to envi-
ronmental conditions. Rice DNA BINDING WITH ONE FINGER 11 (OsDOF11) modulates
sugar transport by regulating the expression of several sugar transporter genes, including
OsSUT1, OsSUT3, OsSUT4, OsSUT5, OsSWEET11 and OsSWEET14, and its mutant has
defects in plant height and panicle development (Figure 3) [107]. Carbon Starved Anther
(CSA) is reported to be a R2R3 MYB transcription factor regulating sugar transport during
anther development, and also regulates OsSWEET14 expression (Figure 3) [11,44]. The csa
mutant reveals a photoperiod-sensitive genic male sterile phenotype due to the disruption
of sugar supply to the anther under different photoperiods: male-sterile under short-day
conditions but only semi-sterile under long-day conditions [11,12]. Interestingly, CSA2,
another MYB transcription factor, reveals the reverse phenotypes, being fertile under short-
day and semi-sterile under long-day conditions [13]. A further study suggests that CSA2
shares common downstream genes involved in sugar metabolism with CSA including
OsSWEET6a, OsINV4, OsAZT3, OsSPT17, and OsSPT27 (Figure 3) [13,44].
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In plants, fluctuations in daylength are received in the leaves, and then a downstream
signal, for instance, florigen, can be activated and move to other organs through vascu-
lar bundles [108]. Rice is a facultative short-day flowering plant, which can also flower
under long-day conditions with a delayed flowering time [109,110]. CSA has a higher
expression level in rice anthers under short-day conditions than long-day conditions, while
the expression of CSA2 reveals the opposite variations under different day-length condi-
tions [12,13]. Transcriptome data reveal that core components of the circadian clock, CCA1
and PRR95, play vital roles in sensing the photoperiod signals, and are then transduced
to anthers [13,44]. CSA and CSA2 are likely to be regulated by these photoperiod signals,
then control the source-to-sink transport via downstream sugar transporters to influence
anther development (Figure 3) [13,44]. These results suggest the importance of these tran-
scription factors in sensing environmental signals and regulating normal growth, especially
anther development.

7. Conclusions

Hybrid rice has made great contributions to the increase in rice yield, meeting the
food demands of expanding populations [111]. Understanding the molecular mechanisms
of rice male reproductive development is crucial for hybrid rice breeding [4,5]. In this
paper, we reviewed the source-to-sink transport processes of photosynthetic accumulation
and the roles that sugar transporters play in the energy supply of the anthers during the
male reproductive stages. While the overview of the regulatory network is limited, it
provides new sights into how environmental signals influence sugar translocation via a
series of transcription factors and proteins. In the future, new tools, including single-cell
sequencing and hormone reporters, will provide new opportunities to elucidate the linkage
of environmental clues, sugar transport and signaling, and male reproductive develop-
ment [112,113]. The development of gene editing technology and crop breeding technology,
such as CRISPR/Cas9 and Haploid-Inducer Mediated Genome Editing, will improve the
understanding of the mechanisms and accelerate improvements in crop traits [114,115].
Research on the regulatory processes of sugar transport and their functions in male fertility
have important implications for developmental biology and agricultural production.
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