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ABSTRACT: Hydraulic fracturing technology is the main method to develop low-permeability reservoirs. Fracture conductivity is
not only the basis of fracture optimization design but also one of the key parameters to determine the effect of hydraulic fracturing.
However, current methods of calculating fracture conductivity require a lot of time and labor cost. This research proposes a fracture
conductivity prediction model based on machine learning. The main controlling factors of fracture conductivity are determined using
the Pearson coefficient method and gray correlation analysis. Example application shows that the R2 values of the BP neural network
model based on a genetic algorithm for predicting the fracture conductivity of block A and block B are 0.981 and 0.975, respectively,
indicating that the machine learning model can accurately predict fracture conductivity.

1. INTRODUCTION
Offshore low-permeability oilfields are an important block for
increasing oil and gas production. Hydraulic fracturing
technology is the main method to develop offshore low
permeability reservoirs.1−3 However, the cost of hydraulic
fracturing for an offshore well is much higher than that of a
terrestrial well. It is necessary to design better fracturing
schemes to improve the fracturing effect, reduce the cost, and
increase the benefit.4,5

Hydraulic fracture quality is the core of hydraulic fracturing
quality, and fracture conductivity is particularly important.6−8

The prediction of fracture conductivity is not only the basis of
fracture optimization design but also one of the key parameters
to determine the effect of hydraulic fracturing.9−11 At present,
the main research method for fracture conductivity is based on
indoor testing methods. Xiao et al.12 took carbonate rock as
the research object and experimentally studied the effects of
acid erosion, proppant embedding depth, and different
proppant sizes and acid injection on fracture conductivity
during hydraulic fracturing and acid fracturing; Guo et al.13

conducted tests on steel plates and shale to understand the
effects of flowback rate, fracturing fluid, and closure stress on
proppant flowback and fracture conductivity; Sun et al.14 used
ceramic and quartz sand proppant obtained from Changqing

Oilfield in China. For example, the fracture conductivity under
different proppant mixing ratios was evaluated through
experiments; Tariq et al.15 studied the effects of different
acid fracturing fluids, rock hardness, and surface roughness on
the fracture conductivity of carbonate rocks through experi-
ments. The conductivity data obtained through experiments
are the most direct and accurate, but this method requires on-
site coring and repeated experiments for different oil wells, and
its cost consumption is very huge.
In response to the limitations of experimental methods,

some scholars have proposed theoretical models for predicting
fracture conductivity. Zhou et al.16 based on the classic Biot
poroelasticity theory to model porous media and capture
fracture behavior through a phase field model and proposed a
poroelastic medium fracture phase field model to calculate
fracture conductivity. Rabczuk and Belytschko17 proposed a
new method for treating crack growth by particle methods to
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calculate fracture conductivity. Zhang et al.18 analyzed the
factors that may influence shale fracture conductivity, and a
theoretical model of propped-fracture conductivity was
established considering the effect of water damage on fracture
conductivity. Based on Hertz theory of elastic contacts, Jia et
al.19 proposed mathematical models to calculate fracture
conductivity, reduction in fracture aperture, proppant embed-
ment, and deformation of rod-shaped proppants and further
established models for calculating the porosity of the fracture
with proppants in loose and close packing modes. Xu et al.20

constructed the 3D tortuous fracture combining the normal
distribution random function and the quartet structure
generation set. This method included three main steps of
fracture seeding, fracture growing, and geometric loft. The
normal distribution random function was used in the seeding
process to control the orientation and tortuosity of fractures,
and the flowing pressure and velocity of fluid in fractures were
calculated by the coupling model of elasticity and the lattice
Boltzmann method. Zhang et al.21 first used DEM to model
the mechanical interaction between proppant pack and shale
formation during fracture closing. Fracture conductivity after
fracture closing was further calculated by DEM coupled with
CFD. Su et al.22 established a model for calculating fracture
conductivity considering proppant embedment and fracture
shape, and the influence of key parameters on fracture
conductivity was analyzed. In general, numerical methods
have some limitations: ① Numerical methods usually need to
be calculated based on some simplified assumptions,
considering only the fracture conductivity under specific
conditions. These assumptions may not fully reflect the actual
situation. ② Results of numerical models: the quality usually
depends on the accuracy of the model parameters. The
distortion of the parameters may lead to deviations in the
calculation results, and some parameters are often difficult to
obtain on site. ③ Numerical models usually need to consider
fluid−structure interaction calculations, and their mathematical
models are very complex, which requires a lot of computational
resources and time, especially for complex geological
structures, greatly limiting the feasibility of the model in
practical engineering applications.
Some scholars carry out regression fitting based on limited

experimental test data. Shi et al.23 deduced fracture
conductivity based on the Kozeny formula and the theory of
elasticity considering the influence of proppant strength,
particle size, sand concentration, closing pressure, proppant
embedding, crushing, and proppant and fracture wall
deformation. Kainer et al.24 employed multiple linear
regression to generate empirical correlations based on
experimental data for different shale types. However, the
fitting effect was poor. Zhu et al.25 put forward a new method
for testing shale branch fracture conductivity, and branching
fracture conductivity test was carried out. Chen et al.26

conducted conductivity tests on actual coal rock fractures to
assess the effect of various particle size ratios on the
conductivity of complex fractures in CBM reservoir and
identified an optimized proppant blending approach that was
suitable for hydraulic fracturing in coal seams.
With the development of artificial intelligence technology,

machine learning technology has shown increasingly powerful
performance in image processing, parameter prediction, etc. At
present, with the production and development of oil fields, a
large amount of conductivity test data have been accumulated,
which provides a strong data foundation for the application of

machine learning methods. At present, researchers have made
preliminary explorations using artificial neural networks
(ANN) to predict fracture conductivity. In 2021, Desouky et
al.27 collected approximately 350 data points from experiments
in several important shale formations (Marcellus, Barnett,
Fayetteville, and Eagle Ford) and used machine learning
methods (ANN) to predict fracture conductivity for the first
time. Preliminary exploratory studies have been conducted;
however, up to now, no complete study on the application of
machine learning methods for full-process prediction of
fracture conductivity has been seen. Research in this field is
still in its preliminary stages and requires in-depth excavation
and systematic research to establish a complete set of methods
to effectively predict the fracture conductivity.
There are many factors affecting fracture conductivity, and

there is a strong nonlinear relationship between them. In order
to take into account both calculation efficiency and prediction
accuracy, this paper chooses the classical BP neural network
model with a strong nonlinear fitting ability to predict fracture
conductivity. The BP neural network has the following
advantages:28

① BPNN has a good ability of self-learning and self-
adaptation. Through the continuous learning of the
sample data, the network can train the data, summarize
the characteristics of the sample data, extend the trained
BP neural network to the untrained data (that is, test
data), and use the generalization ability of the network
to realize the mapping from input to output so as to
achieve the effect of prediction.

② BPNN has a good nonlinear mapping ability. A three-
layer BP neural network can realize a complex nonlinear
relationship within the system after training. In this
process, it does not require a regular requirement for the
input variable data itself, nor does it need a good
understanding of the network processing mechanism,
but only the processing of the input data can obtain the
corresponding mapping.

Although the BP neural network has good self-learning and
adaptive ability and can realize nonlinear mapping between
variables, it also has some shortcomings:

① The convergence rate is slow. The traditional BP neural
network needs a relatively constant learning rate and a
low range to achieve stable learning of the network, so
the training generalization process converges slowly.

② It is easy to fall into the local minimum in the process of
training. The weights and thresholds of the BP neural
network are randomly unstable, while the BP neural
network depends on the weights and thresholds, which
affect the prediction accuracy of the network to some
extent. At the same time, although the BP neural
network can realize the nonlinear mapping between
variables, the error surface of nonlinear network is much
more complex than that of the linear network, so there
will be many local optimal functions, which easily fall
into the local optimal solution.

Therefore, it is necessary to introduce an optimization
algorithm to improve the performance of the BPNN model. In
this research, the main controlling factors of fracture
conductivity are determined by Pearson coefficient method
and gray correlation analysis (PCM-GCA). A prediction model
of fracture conductivity is established by using a BP neural
network optimized by a genetic algorithm. Compared with the
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theoretical model and empirical formula, the machine learning
model does not need complex mathematical formulas and
realizes a fast, cheap, and accurate method to predict fracture
conductivity. This method is easy to apply on site, can
effectively guide on-site production, is of great significance for
improving oilfield development efficiency and economic
benefits, and has a strong engineering application value.

2. FRACTURE CONDUCTIVITY PREDICTION MODEL
2.1. BP Neural Network Algorithm. The BP neural

network is a self-learning nonlinear fitting modeling method,
which can automatically adapt and determine the connection
weight of each neuron according to the input training samples.
After many times of training through the neural network
system, the weights of each layer of the neural network will
store fitting information, which is extracted from the sample
data set. Finally, the desired predicted value can be obtained
through the operation of input data and weights.29 The
calculation process of the BP neural network model includes
information forward propagation and error back-propagation.

2.1.1. Forward Propagation. The training data are provided
to the neural network and transferred from the input and
hidden layer to the output layer, which is a forward
propagation process. There are n, q, and m nodes in the
input layer, hidden layer, and output layer, respectively. The
weight between the input layer and the hidden layer is vik, and
that between the output layer of the hidden layer is ωkj. The
output of hidden layer node and output layer node are
expressed as the following, respectively:
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where yk and oj are the hidden layer node and output layer
node output, respectively. f1 and f 2 are the activation functions.
vik is the weight between the input layer and hidden layer. ωkj is
the weight between the hidden layer and output layer. xi is the
ith input parameter. n and q are the numbers of input layer and
hidden layer nodes, respectively.

2.1.2. Back-Propagation. After completing a forward
propagation, if the output result of the output layer does not
match the expected value, that is, when the error range exceeds
the limit value, the BP neural network enters the process of
back-propagation. In the back-propagation process, the error is
passed layer by layer as an adjustment signal and the weight
and threshold of each layer are continuously adjusted to reduce
the error value. After repeated learning, the error is reduced to
an acceptable level.
P is input to learn samples (x1, x2, ..., and xp), and tjp is the

desired output. After the Pth sample is input to the network,
the output yjp is obtained. According to the square error
function, the error Ep of the Pth sample can be solved.
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The cumulative error BP algorithm is used to adjust ωjk and
make the global error E smaller, which can be expressed as
follows:
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where η is the learning rate.
Therefore, the weight adjustment formula of each neuron in

the output layer is expressed in eq 5. Similarly, the weight
adjustment formula of each neuron in the hidden layer is
expressed in eq 6.
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A typical three-layer BP neural network architecture consists
of an input layer, a hidden layer, and an output layer, as shown
in Figure 1.

2.2. Genetic Algorithm. The initialization of the network
weight and threshold determines which point on the error
plane the network training starts from. Therefore, optimizing
the initial weight and threshold of the BP neural network
through genetic algorithms is crucial to obtaining the training
results of the BP neural network.
The genetic algorithm is an adaptive heuristic global search

algorithm. By simulation of the evolutionary mechanism of
natural organisms, it uses selection, crossover, and mutation
operations to search for the optimal solution in the problem
space and perform global optimization. In the genetic
algorithm, the crossover operator is used as the main operator
because of its global search ability. The mutation operator is
used as the auxiliary operator because of its local search
ability.30 Compared with the traditional optimization algo-
rithm, the genetic algorithm has the following advantages:

① It has the characteristics of simplicity and maneuverability.
The processing object of the genetic algorithm is not the
parameters themselves but to encode the parameters to get
gene individuals, and then there are genes to form
chromosomes for genetic operation, which is operable.

② It has the characteristics of a group and global search. The
advantage of the genetic algorithm is that it can simultaneously
carry out a global search for multiple individuals in the
population and evaluate multiple search results in the global
space, so as to select a better high-quality solution and
effectively avoid falling into local optimization.

2.2.1. Genetic Algorithm Parameter Initialization. The
process of genetic algorithm parameter initialization is as
follows: First, determine the parameter set of actual problem,

Figure 1. BP neural network structure diagram.
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encode the parameter set, and determine the chromosome
length and the range of coding values. The chromosome length
(L) is the total number of weight and threshold of the BP
neural network, which is determined by eq 7. The coding range
is between −5 and 5.

= × + + × +L n q q m q m (7)

2.2.2. Calculate Population Fitness. After initializing the
population according to the chromosome coding value of each
individual, sample data are used to test the BP neural network
model under the condition of threshold and weight and
calculate the difference between expected value and predicted
value. The reciprocal of the sum of squares is used to evaluate
the fitness of each individual (eq 8).
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where F is the individual fitness. N is the total number of
samples. di is the predicted value of the ith sample. Di is the
actual value of the ith sample.

2.2.3. Compute Population Evolution Iterations. Opti-
mized individuals are directly inherited to the next generation
through selection, or new individuals are generated through
pairwise crossover and then passed on to the next generation.
The group size is 400, and the fitness of individual k is F. Then,
the probability of individual i being selected is calculated based
on the following:
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=
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After calculation of the selection probability of each
individual in the group, multiple rounds of selection are
required. Each round generates a uniform random number
between 0 and 1, and this random number is used as a pointer
to determine the selected individual.
Crossover and mutation: the traditional genetic algorithm

generally takes the probability of crossover and mutation as a
fixed value, which restricts the diversity of the population in
the iterative process and cannot effectively balance the stability
of the population in the early and late stages of evolution. If the
probability of crossover is too large, it is easy to make the
population tend to be unitary, while if the probability of
crossover Pc is too small, the speed of new individuals will be
too slow; the effect of mutation probability Pm on the
population is just opposite to that of crossover operation.
Therefore, in order to ensure the diversity of the population in
the genetic process and take into account the proportion of
good individuals and new individuals in the whole population,
this paper chooses a probability of adaptive change of
crossover and mutation. The value of chromosome crossover
variation in the genetic process is constantly changed
according to the fitness, and the numerical adjustment formula
is as follows:

=

>

l

m
ooooooo

n
ooooooo

c
P

P P f f

f f
f f

P f f

( )( )
,

,

cmax
cmax cmin avg

avg min
avg

cmax avg (10)

=

>

l

m
ooooooo

n
ooooooo

P
P

P P f f

f f
f f

P f f

( )( )
,

,
m

mmax
mmax mmin avg

avg min
avg

mmax avg

(11)

where Pcmax and Pmmax are the maximum values of the crossover
and mutation, respectively. Pcmin and Pmmin are the minimum
values of crossover and mutation, respectively. f ′ is the current
individual fitness. favg is the average fitness of the population.
2.3. Fracture Conductivity Prediction Process. The

process for fracture conductivity prediction based on a BP
neural network optimized by genetic algorithm is shown in
Figure 2.

3. SAMPLE LIBRARY CONSTRUCTION AND DATA SET
DIVISION
3.1. Data Cleaning. Due to equipment abnormalities and

personnel errors, data quality problems, such as abnormal data
or invalid data, are inevitable in fracture conductivity
experimental data. In order to improve data quality, the
boxplot method is used to clean the collected sample data. The
advantage of this method is that it is not affected by outliers
and can accurately and stably depict the discrete distribution of
data, which is conducive to data cleaning. The inner limit of
the box plot is used to detect and eliminate outliers and null
values.31 The difference between the upper quartile (Q3) and
the lower quartile (Q1) of the data is called the interquartile
range (IQR). The inner limit is calculated as follows:

= + ×Qupper limit 1.5 IQR3 (12)

= ×Qlower limit 1.5 IQR1 (13)

The identification standard of abnormal points is to mark
points outside the interval as abnormal points.
3.2. Sample Library Construction. The experimental

data of fracture conductivity in this research come from two
blocks. Block A is the shale outcrop of the Longmaxi
Formation in Sichuan, which has a high clay mineral content
of 31.0%, a high quartz content of 43.3%, and a low carbonate
rock content of 15.3%. Block B is the outcrop of the Xujiahe

Figure 2. Algorithm-optimized BP neural network prediction process
for fracture conductivity.
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Formation in the Sichuan Basin, which has a high clay mineral
content of 39.9%, a quartz content of 41.3%, and a low
carbonate rock content of 13.1%. After data cleaning, the data
box diagram of the conductivity of the two blocks is shown in
Figure 3. A total of 502 sets of shale fracture conductivity

experimental data in block A and 250 sets of shale fracture
conductivity experimental data in block B are obtained. A data
set is established based on the totaling 752 sets of experimental
data.

3.3. Exploratory Data Analysis. Exploratory data analysis
(EDA) is the process of investigating the relationships,
patterns, and collinearity among the input parameters. The
experimental data include investigations of Young’s modulus,
sand concentration, temperature, Poisson’s ratio, proppant
particle size, closure pressure, and measured propped-fracture
conductivity.

3.3.1. Statistical Analysis. The data were obtained from
experiments on different shale formations. A complete
statistical description of the data used for training is given in
Table 1.
According to Table 1, it can be obtained that the Young’s

modulus of shale from block A is 31.46−42.25 GPa, and the
Poisson’s ratio is 0.208−0.271; the Young’s modulus of shale
from block B is 12.65−22.88 GPa, and the Poisson’s ratio is
0.208−0.271. The average ratio is 0.147−0.219; overall, the
Young’s modulus of the shale used in the experiment is 12.65−
42.25, and the Poisson’s ratio is 0.147−0.271; the data
distribution range is wide and can represent the rock
mechanical properties of the shale reservoir in this oil field.
The parameter range used in the experimental data is sand

concentration 2.5−10 (kg/m2), average proppant particle size
30−105 (mesh), closure pressure 20−70 (MPa), and temper-
ature 25−90 (°C); the data features are diverse enough to
cover most fracking scenarios.

Figure 3. Conductivity data box diagram.

Table 1. Statistical Analysis of the Data Utilized for Modeling

parameters
conductivity/(μm2

·cm)
sand concentration/

(kg·m2)
proppant particle size/

mesh
closure pressure/

MPa
temperature/

°C
Young’s modulus/

GPa
Poisson’s
ratio

Overall data
count 752.000 752.000 752.000 752.000 752.000 752.000 752.000
maximum 88.960 10.000 105.000 70.000 90.000 42.250 0.271
minimum 1.430 2.500 30.000 20.000 25.000 12.650 0.147
mean 17.597 4.574 68.238 48.112 48.138 30.669 0.221
standard
deviation

17.122 2.992 31.025 17.383 23.222 9.474 0.033

median 12.240 3.000 55.000 50.000 32.000 34.497 0.224
variance 293.149 8.952 962.570 302.155 539.272 89.748 0.001
kurtosis 3.336 −0.474 −1.704 −1.374 −0.860 −1.223 −0.707
skewness 1.909 1.158 0.202 −0.143 0.763 −0.599 −0.472

Block A data
count 502.000 502.000 502.000 502.000 502.000 502.000 502.000
maximum 26.660 5.000 105.000 70.000 90.000 42.250 0.271
minimum 1.430 2.500 40.000 40.000 32.000 31.460 0.208
mean 9.476 2.790 84.124 57.251 56.566 36.996 0.240
standard
deviation

5.498 0.530 25.535 11.838 23.302 3.077 0.018

median 8.290 2.500 105.000 60.000 60.000 37.038 0.240
variance 30.231 0.281 652.025 140.132 542.977 9.467 0.000
kurtosis −0.634 10.514 −1.733 −1.421 −1.381 −1.131 −1.196
skewness 0.577 3.127 −0.438 −0.310 0.306 −0.067 0.003

Block B data
count 250.000 250.000 250.000 250.000 250.000 250.000 250.000
maximum 88.960 10.000 55.000 60.000 60.000 22.880 0.219
minimum 7.120 3.000 30.000 20.000 25.000 12.650 0.147
mean 33.904 8.156 36.340 29.760 31.216 17.965 0.183
standard
deviation

20.576 2.671 7.807 11.083 10.163 2.981 0.020

median 30.935 10.000 30.000 30.000 25.000 18.192 0.183
variance 423.363 7.136 60.948 122.834 103.286 8.885 0.000
kurtosis −0.435 −1.086 0.570 2.864 3.655 −1.175 −1.158
skewness 0.709 −0.848 1.142 1.832 2.181 −0.127 −0.004
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3.3.2. Frequency Analysis. Frequency analysis is the
statistics of the frequency of different values of a group of
data or the frequency of data falling into a specified area, which
can reflect the distribution status and distribution character-
istics of all units in the population among groups. The
conductivity data are grouped according to the quartile, and
the number of individuals in each group is calculated,
respectively. The conductivity data frequency analysis results
of overall, block A and block B are shown in Table 2.

According to the results of frequency analysis, there is an
order of magnitude difference between the conductivity data of
block A and block B, and the conductivity data of block A
located in the interval [1.43, 14.045] account for 78.892%. The
conductivity data located in the interval [14.045, 26.66]
accounted for 23.108%. The conductivity data of block B
located in the interval [7.12, 48.04] accounts for 76.4%, and
the conductivity data located in the interval [48.04, 88.96]
account for 23.6%. It can be seen that there is a certain
imbalance in the sample data. From the overall data point of
view, the proportions of diversion capacity data located in
[1.43, 45.195] and [45.195, 88.96] are 91.489 and 8.511%,
respectively. The data distribution is extremely uneven. Using
all data sets to train the model may lead to weight imbalance of
the model, deviation in the prediction results, and reduction of
generalization ability. In order to reduce the influence of order
of magnitude and unbalanced data distribution on model
training, it is necessary to normalize the data.
3.4. Data Normalization. Due to the different orders of

magnitude and dimensions of different parameters, the value
ranges greatly, which affects the accuracy and solution speed of
machine learning modeling. Parameter is processed using
min−max normalization. This method can map the value range
of each parameter to 0 and 1 and retains the relationship
between the original data. The calculation method is shown in
eq 14.

=x
x x

x x
min

max min (14)

where x is the sample data. xmin and xmax are the minimum and
maximum values of the sample data, respectively. x′ is the
result of the data normalization.

3.5. Controlling Factors of Fracture Conductivity. In
the process of machine learning, more input parameters can
contain more information, but the calculation speed and
accuracy decrease as the number of features increases.
Therefore, the Pearson coefficient method is used to analyze
the correlation between influencing factors and fracture
conductivity. This method is not affected by the scale change
of variables and can intuitively determine the linear correlation
between data. The gray correlation method is used to extract
the main controlling factors of fracture conductivity, select the
most useful features, improve the quality of features, and
improve the calculation speed and accuracy of the model.

3.5.1. Pearson Coefficient Method. The Pearson correla-
tion coefficient is a dimensionless statistical index that can
express the degree and direction of linear correlation between
two variables.32 The correlation coefficient is represented by
the symbol r, and its value range is −1 ≤ r ≤ 1. If the
correlation coefficient is less than 0, it is a negative correlation.
If it is greater than 0, it is a positive correlation. If it is equal to
0, it means that there is no correlation. The calculation formula
of r is shown in eq 15.
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3.5.2. Gray Correlation Analysis. Gray correlation analysis
quantitatively describes and compares the development and
change situation of a system.33 The specific calculation method
is as follows:
(a) Analysis sequence determination. Determine the com-

parison sequence xi′(k)(i = 1,2,3, ···, n), and reference
sequence x0′(k)(k = 1,2,3, ..., m). n is the number of
independent variables, and m is the number of elements
in each sequence.

(b) Dimensionless sequence. The data in the original
sequence will affect the accuracy of calculation results
due to differences in magnitude and dimension. The
mean method is used for sequence processing:
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(c) Correlation coefficient calculation.
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where r0i(x0(k), xi(k)) is the correlation coefficient of

the kth point, dimensionless. | |
= =
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i

1 1
0 are the minimum and maximum

differences between the two levels, respectively. ρ is the
resolution coefficient, dimensionless; |xi(k) − x0(k)| is
the absolute difference sequence between the ith
comparison sequence and the reference sequence.

(d) Correlation degree calculation. The correlation degree of
two sequences can be calculated by eq 18.

Table 2. Results of Frequency Analysis

data set interval frequency
percentage

(%)
cumulative

percentage (%)

overall [1.43, 23.312) 595 79.122 79.122
[23.312, 45.195) 93 12.367 91.489
[45.195, 67.078) 37 4.92 96.41
[67.078, 88.96] 27 3.59 100

total 752 100.000 100.000
block A [1.43, 7.737) 235 46.813 46.813

[7.737, 14.045) 151 30.08 76.892
[14.045, 20.352) 97 19.323 96.215
[20.352, 26.66] 19 3.785 100

total 502 100.000 100.000
block B [7.12, 27.58) 114 45.6 45.6

[27.58, 48.04) 77 30.8 76.4
[48.04, 68.5) 32 12.8 89.2
[68.5, 88.96] 27 10.8 100

total 250 100.000 100.000
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=
=

r x x r x k x k( , ) ( ( ), ( ))i i
k

n

k i0 0
1

0
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where r0i(x0, xi) is the degree of correlation between
compared sequence and reference sequence, dimension-
less. ωk is the weight of k points, usually =k n

1 ,
dimensionless.

(e) Relevance sorting. Relevance is sorted by size after the
results.

3.5.3. Pearson Coefficient Calculation Results. The
calculation results of the Pearson coefficient between
influencing factors and fracture conductivity are shown in
Figure 4.
According to the results, it can be seen that the fracture

conductivity is negatively correlated with closure pressure,

temperature, and Poisson’s ratio and is positively correlated
with proppant particle size, sand concentration, and Young’s
modulus.

3.5.4. Controlling Factor Analysis. Taking fracture
conductivity taken as a reference sequence and each
influencing factor as a comparison sequence, the correlation
ranking between each influencing factor and fracture
conductivity is calculated through gray correlation analysis.
The result is shown in Figure 5. It can be found that the gray
correlation between closure pressure and fracture conductivity
is the highest, reaching 0.968, which is consistent with the
calculation results of the Pearson coefficient. Taking a
correlation degree of 0.85 as the judgment standard,
influencing factors with correlation degree greater than 0.85
are regarded as the main controlling factors. Therefore, closing
pressure, proppant particle size, sand dressing concentration,

Figure 4. Pearson coefficient heat map.

Figure 5. Gray correlation degree calculation results.
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temperature, Young’s modulus, and Poisson’s ratio are all
related to fracture conductivity, which should be selected
during model application.
3.6. Data Set Partitioning. Taking closure pressure,

proppant particle size, sand dressing concentration, temper-
ature, Young’s modulus, and Poisson’s ratio as input features,
and fracture conductivity as the output target, the collected
data are processed into a training set and a testing set. 80% of
the total data is randomly selected as training set, and the
remaining 20% is selected as testing set.
The key to the prediction effect of the model is to train and

test the model on different data segments. Given the small size
of the data set, a single data segmentation method (80%
training and 20% testing) may not be able to evaluate the
effectiveness of the model. Therefore, the fivefold cross
validation technique is used to train the model on 80% of
the training set.

4. MODEL APPLICATION
4.1. Model Structure Optimization. Hornik et al.34 used

functional analysis theory to prove that under a wide range of
conditions, a three-layer neural network can approximate any
function and its derivatives of all orders with arbitrary accuracy.
Therefore, this paper uses the neural network structure of a
single hidden layer to build the calculation model. The number
of neurons in the hidden layer is an important superparameter
in the neural network structure, which directly affects the
capacity and learning ability of the network. In order to
improve the prediction effect of the model, this parameter is
optimized.
Multiple BP neural networks with input layer 5, hidden

layers 5−30, and output layer 1 are built. 80% of the total data
is randomly selected as training set, and the remaining 20% is
selected as validation set, and the Early Stopping callback
function is used to stop training when the model performance
is no longer improved. At the same time, the initial weight and
bias super parameters of the above neural network are
optimized by the GA algorithm. Using the mean square error
as the loss function, after three times of repeated sampling to
calculate the average value, the loss function of the number of
neurons in different hidden layers is shown in Figure 6.
It can be seen that when the number of neurons in the

hidden layer is too small, it is difficult for the neural network to
capture complex data relations, resulting in underfitting of the
model, and the loss of both the training set and validation set is
higher. However, when there are too many neurons, the loss of

the validation set is higher than that of the training set, the
model is overfitted, and the generalization decreases. When the
number of neurons in the hidden layer is 20, the GA-BP
network shows better results in the training and validation sets.
Therefore, the GA-BP neural network model of 5−20−1 is
selected to calculate the conductivity and the loss curve of the
training set and the validation set is shown in Figure 7.

4.2. Model Training. The hyperparameters of the
proposed GA-BP neural network model after tuning are
shown in Table 3.

Two schemes are used to train the machine learning model.
In the first scenario, 80% of all experimental data are randomly
selected and the fivefold cross validation method is applied to
train the model (fourfold is used for training, and onefold is
used for validation). The model can test all of the training data.
The results are shown in Figure 8.
The average results of cross validation show that the R2 value

of the validation set is 0.927, the root mean square error
(RMSE) is 0.047, and the average absolute percentage error
(MAPE) is 21.084%. However, it can be found from Figure 8
that due to the nonuniformity of data distribution in the whole
data set, the prediction effect of high conductivity data is poor
and deviates greatly from the 45° line. It shows that data
normalization cannot completely eliminate the impact of
uneven data distribution on the model. Therefore, considering
the second training scheme, using 80% of the experimentalFigure 6. Loss curves in different hidden layer sizes.

Figure 7. Fitness curve of GA.

Table 3. Optimum Values for the Model

GA

parameters values

number of population 400
Pcmax 0.5
Pmmin 0.1
Pcmax 0.05
Pmmin 0.01

BPNN

parameters values

inputs 6
hidden layer 1
neurons in the hidden layer 20
outputs 1
learning rate 0.1
activation function of the middle layer Relu
activation function of the outer layer linear

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00448
ACS Omega 2024, 9, 13469−13480

13476

https://pubs.acs.org/doi/10.1021/acsomega.4c00448?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00448?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00448?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00448?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00448?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00448?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00448?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00448?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00448?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


data of shale in block A and block B, respectively, the model is
trained by a fivefold cross validation method. The results are
shown in Figures 9 and 10.

For block A, the average results of cross validation show that
the R2 of the validation set is 0.975, the RMSE is 0.032, and
the MAPE is 9.482%. For block B, the average results of cross
validation show that the R2 of the validation set is 0.962, the
RMSE is 0.044, and the MAPE is 11.968%. Compared with the
overall data set, the data distribution of blocks An and B is
more uniform, so distinguishing block data to train the model
can improve the performance of the model. It can be seen from
the chart that although some of the predicted results of high
conductivity are still quite different from the real values, the
predicted values of conductivity of block A and block B are
relatively close to the 45° line as a whole and the average
relative error of the validation set is controlled within 15%,
which shows that the generalization ability of the model is
good.

4.3. Example Application. The remaining 20% of the data
are predicted by using the trained model, and the prediction
result of diversion capacity is shown in Figure 11. According to
the results, the RMSE of the whole data set, block A, and block
B are 0.048, 0.027, and 0.039, MAPE is 18.709, 9.289, and
10.839. The prediction effect is good, indicating that the model
has a certain generalization ability.
In order to verify the prediction performance of the model,

the repeated sampling technique is used to randomly divide
the data set according to the Section 3.6 method and the
model is trained according to the Section 4.2 Combined with
the results of the first sampling, the prediction effect of the
model is shown in Table 4.
According to Table 4, the average MAPE of the model for

the overall data, block A, and block B is 17.392, 9.722, and
10.38%, respectively, indicating that the training model for
distinguishing block data can get better prediction results and
the GA-BP model has higher accuracy.

5. DISCUSSION
In this paper, the BP neural network model optimized by the
genetic algorithm is used to predict fracture conductivity for
the first time, which can better adapt to the complex fracture
conductivity process and realize a fast, cheap, and accurate
method to predict fracture conductivity. This method is
convenient for field application, can effectively guide field
production, is of great significance for improving oilfield
development efficiency and economic benefits, and has strong
engineering application value.
Compared with Desouky et al.'s27 research contents, this

paper contains a total of 752 sets of data; the advantage of the
amount of data is significant. This makes the model in this
paper able to more comprehensively learn the patterns and
relationships in the process of fracture diversion, which
provides a more sufficient and reliable data basis for the
whole process prediction of fracture conductivity and
strengthens the science and practicability of the research. In
this paper, a genetic algorithm is used to optimize the BP
neural network to avoid the dilemma of the model falling into
the local optimal solution. Therefore, the meticulous work in
model design and optimization in this paper makes the model
more reliable and generalized than previous studies. This
systematic model advantage not only improves the accuracy of
fracture conductivity but also provides reliable tools and
methods for in-depth research in this field.
According to the results, the uneven distribution of data will

reduce the training effect of the model and distinguishing
blocks to train the model can improve the performance of the
model. Therefore, in the process of practical application, it is
suggested that one establish a separate model for each block.
This study is based on a large number of experimental data,

and the research results will provide guidance for the field.
Considering the general equipment conditions in the oil field
and the limited computing resources, the proposed method is
purely data-driven. Because the pure data-driven model is
usually lightweight while ensuring the accuracy of the results,
the computational cost of training and reasoning is relatively
low. It is worth noting that some scholars have proposed a
neural network model that includes physical processes. Guo et
al.35 present a stochastic deep collocation method (DCM)
based on neural architecture search (NAS) and transfer
learning for heterogeneous porous media; Samaniego et al.36

used DNNs to solve boundary value problems, proving that it

Figure 8. Training cross validation results of the overall data set.

Figure 9. Training cross validation results of the block A data set.

Figure 10. Training cross validation results of the block B data set.
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is possible to tackle the solution of very relevant BVPs using
concepts and tools coming from deep learning. By adding
physical information to the neural network model, we can
provide additional prior knowledge to the model and help the
model understand the basic laws of the system. The model
may need less data for training and to ensure computational
accuracy. This is especially beneficial in areas where data are
scarce or expensive. Models that contain physical processes are
usually more explanatory, which helps to explain the decision-
making process and the results of the model. Moreover, the
integration of physical processes can increase the robustness of
the model to disturbance; even if there are noise or outliers in
the input data, the model can better adapt and produce reliable
output. Compared with these models, the data-driven
prediction model established in this paper has limitations.
Therefore, using a neural network with physical information to
model and predict fracture conductivity will be the direction
and focus of future research.

6. CONCLUSIONS

(1) The main controlling factors of fracture conductivity are
determined by the Pearson coefficient method and gray
correlation analysis, which are in the following order of

importance: closure pressure, particle size of proppant,
sand concentration, temperature, Young’s modulus, and
Poisson’s ratio.

(2) The results of data analysis show that the Young’s
modulus of the shale used in the experiment is 12.65−
42.25, and the Poisson’s ratio is 0.147−0.271; the data
distribution range is wide and can represent the rock
mechanical properties of the shale reservoir in this oil
field. However, compared with the data of each block,
the data distribution of the conductivity of the whole
data set is uneven. Using all data to train the model may
lead to the deviation in the prediction results, and the
use of data normalization method cannot eliminate the
impact of uneven data distribution on the model.

(3) The GA algorithm is used to optimize the BP neural
network, and the prediction model of GA-BP con-
ductivity is established. The fivefold cross validation
technique is used to train the model, and the model
predicts the conductivity capacity on all data, block A,
and block B. The average MAPE results of the two
samples are 17.392, 9.722, and 10.38%. It shows that the
uneven distribution of data will reduce the training effect
of the model, and distinguishing blocks to train the
model can improve the performance of the model.

Figure 11. Case test results.

Table 4. Comparison of Model Accuracy for the Two Scenarios

overall data block A block B

parameters sample 1 sample 2 mean sample 1 sample 2 mean sample 1 sample 2 mean

R2 0.931 0.942 0.937 0.984 0.977 0.981 0.971 0.979 0.975
RMSE 0.048 0.039 0.044 0.027 0.034 0.031 0.039 0.035 0.037
MAPE/% 18.709 16.074 17.392 9.289 10.155 9.722 10.839 9.921 10.38
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Therefore, in the process of practical application, it is
suggested to establish a separate model for each block.

(4) The GA-BP model can accurately predict the fracture
conductivity. This method avoids complex mathematical
calculation, has good adaptability and practicability, and
can provide technical support on the spot.

■ AUTHOR INFORMATION
Corresponding Author

Xiaoqiang Liu − School of Energy Resources, China University
of Geosciences Beijing, Beijing 100083, China; School of
Earth and Spacing Sciences, Peking University, Beijing
100871, China; orcid.org/0000-0001-5694-5976;
Email: liuxiaoqiang0535@126.com

Authors
Xiaopeng Wang − State Key Laboratory of Offshore Oil
Exploitation, Beijing 100028, China; Tianjin Branch of
CNOOC Ltd., Tianjin 300450, China

Binqi Zhang − State Key Laboratory of Offshore Oil
Exploitation, Beijing 100028, China; Tianjin Branch of
CNOOC Ltd., Tianjin 300450, China

Jianbo Du − State Key Laboratory of Offshore Oil
Exploitation, Beijing 100028, China; Tianjin Branch of
CNOOC Ltd., Tianjin 300450, China

Dongdong Liu − State Key Laboratory of Offshore Oil
Exploitation, Beijing 100028, China; Tianjin Branch of
CNOOC Ltd., Tianjin 300450, China

Qilong Zhang − State Key Laboratory of Offshore Oil
Exploitation, Beijing 100028, China; Tianjin Branch of
CNOOC Ltd., Tianjin 300450, China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.4c00448

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This study was sponsored by the National Natural Science
Foundation of China (Grant No. 52204024), CNPC
Innovation Found (Grant No. 2021DQ02-1006), and State
and Key Laboratory of Offshore Oil Exploitation.

■ REFERENCES
(1) Abdelaziz, A.; Ha, J.; Li, M.; Magsipoc, E.; Sun, L.; Grasselli, G.
Understanding hydraulic fracture mechanisms: From the laboratory to
numerical modelling. Advances in Geo-energy Research 2023, 7 (1),
66−68.
(2) Liu, X.; Qu, Z.; Guo, T.; Tian, Q.; Lv, W.; Xie, Z.; Chu, C. An
innovative technology of directional propagation of hydraulic fracture
guided by radial holes in fossil hydrogen energy development. Int. J.
Hydrogen Energy 2019, 44 (11), 5286−5302.
(3) Duenckel, R. J.; Barree, R. D.; Drylie, S; et al. proppants what 30
years of study has taught us. SPE Annual Technical Conference and
Exhibition, SPE: San Antonio, 2017 DOI: 10.2118/187451-MS.
(4) Hui, G.; Chen, Z. X.; Chen, S. N.; Gu, F. Hydraulic fracturing-
induced seismicity characterization through coupled modeling of
stress and fracture-fault systems. Advances in Geo-energy Research
2022, 6 (3), 269−270.
(5) Hou, B.; Chen, M.; Wang, Z.; Yuan, J. B.; Liu, M. Hydraulic
fracture initiation theory for a horizontal well in a coal seam.
Petroleum Science 2013, 10 (2), 219−225.
(6) Qi, J.; Zhang, L. M.; Zhang, K.; Li, L. X.; Sun, J. J. The
application of improved differential evolution algorithm in electro-

magnetic fracture monitoring. Advances in Geo-energy Research 2020, 4
(3), 233−246.
(7) Lu, Y. H.; Chen, K. P.; Jin, Y.; Li, H. D.; Xie, Q. An approximate
analytical solution for transient gas flows in a vertically fractured well
of finite fracture conductivity. Petroleum Science 2022, 19 (6), 3059−
3067.
(8) Qu, H. Y.; Zhang, J. L.; Zhou, F. J.; Peng, Y.; Pan, Z. J.; Wu, X. Y.
Evaluation of hydraulic fracturing of horizontal wells in tight
reservoirs based on the deep neural network with physical constraints.
Petroleum Science 2023, 20 (2), 1129−1141.
(9) Wang, Y.; Ren, Y.; Zhang, B.; et al. Study on the influencing
factors of proppant embedment in hydraulic fracturing of shale
reservoir. Drill. Prod. Technol. 2020, 43 (4), 129−132.
(10) Wu, S.; Liu, H.; Li, X.; et al. Test and application of subdivision
fracture control fracturing for tight oil horizontal wells in Ordos Basin.
Drill. Prod. Technol. 2020, 43 (3), 53−55.
(11) He, Y.; Zhao, S.; Lun, Z.; et al. Analysis of rheological and
filtration properties of supercritical CO2. Drill. Prod. Technol. 2020,
43 (3), 38−41.
(12) Xiao, H.; Xia, X.; Zhang, L.; et al. Comparative Experimental
Study of Fracture Conductivity of Carbonate Rocks under Different
Stimulation Types. ACS Omega 2023, 49175.
(13) Guo, S.; Wang, B.; Li, Y.; et al. Impacts of Proppant flowback
on Fracture Conductivity in Different Fracturing Fluids and flowback
Conditions[J]. ACS omega 2022, 7 (8), 6682−6690.
(14) Sun, H.; He, B.; Xu, H.; et al. Experimental investigation on the
fracture conductivity behavior of quartz sand and ceramic mixed
proppants[J]. ACS omega 2022, 7 (12), 10243−10254.
(15) Tariq, Z.; Hassan, A.; Al-Abdrabalnabi, R.; et al. Comparative
study of fracture conductivity in various carbonate rocks treated with
GLDA chelating agent and HCl acid[J]. Energy Fuels 2021, 35 (23),
19641−19654.
(16) Zhou, S.; Zhuang, X.; Rabczuk, T. A phase-field modeling
approach of fracture propagation in poroelastic media[J]. Engineering
Geology 2018, 240, 189−203.
(17) Rabczuk, T.; Belytschko, T. Cracking particles: a simplified
meshfree method for arbitrary evolving cracks[J]. International journal
for numerical methods in engineering 2004, 61 (13), 2316−2343.
(18) Zhang, J.; Zhu, D.; Hill, A. D. Water-induced damage to
propped-fracture conductivity in shale formations. SPE Production &
Operations 2016, 31 (02), 147−156.
(19) Jia, L.; Li, K.; Zhou, J.; et al. A mathematical model for
calculating rod-shaped proppant conductivity under the combined
effect of compaction and embedment. J. Pet. Sci. Eng. 2019, 180, 11.
(20) Xu, J.; Ding, Y.; Yang, L.; et al. Conductivity analysis of
tortuous fractures filled with non-spherical proppants. J. Pet. Sci. Eng.
2021, 198, No. 108235.
(21) Zhang, F.; Zhu, H.; Zhou, H.; et al. Discrete-element-method/
computational-fluid-dynamics coupling simulation of proppant
embedment and fracture conductivity after hydraulic fracturing. SPE
Journal 2017, 22 (02), 632−644.
(22) Su, Y.; Wu, Z.; Cui, C.; et al. Calculation and analysis of the
propped fracture conductivity created by hydraulic fracturing. Pet.
Geol. Oilfield Dev. Daqing 2021, 40 (6), 62−71.
(23) Shi, J. F.; Yu, S. S.; Zhang, L.; et al. Prediction model of fracture
conductivity in tight oil reservoirs. Drill. Prod. Technol. 2021, 44 (1),
82−86.
(24) Kainer, C.; Guerra, D.; Zhu, D.; et al. A comparative analysis of
rock properties and fracture conductivity in shale plays. SPE Hydraulic
Fracturing Technology Conference and Exhibition. SPE 2017,
D011S002R008 DOI:
(25) Zhu, H. Y.; Liu, Y. J.; Wang, X. Y.; et al. Modeling on
conductivity of branched fractures of shale gas reservoir considering
proppant fragmentation. J. China Univ. Pet., Ed. Nat. Sci. 2022, 46 (1),
72−79.
(26) Chen, Q. D.; Zhou, J. Y.; Chen, W. Y.; et al. Experimental study
on the change law of conductivity of proppant combinations with
different particle sizes. Liaoning Chem. Ind. 2022, 51 (5), 593−595.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00448
ACS Omega 2024, 9, 13469−13480

13479

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaoqiang+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5694-5976
mailto:liuxiaoqiang0535@126.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaopeng+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Binqi+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jianbo+Du"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dongdong+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qilong+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c00448?ref=pdf
https://doi.org/10.46690/ager.2023.01.07
https://doi.org/10.46690/ager.2023.01.07
https://doi.org/10.1016/j.ijhydene.2018.07.189
https://doi.org/10.1016/j.ijhydene.2018.07.189
https://doi.org/10.1016/j.ijhydene.2018.07.189
https://doi.org/10.2118/187451-MS
https://doi.org/10.2118/187451-MS
https://doi.org/10.2118/187451-MS?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.46690/ager.2022.03.11
https://doi.org/10.46690/ager.2022.03.11
https://doi.org/10.46690/ager.2022.03.11
https://doi.org/10.1007/s12182-013-0270-9
https://doi.org/10.1007/s12182-013-0270-9
https://doi.org/10.46690/ager.2020.03.02
https://doi.org/10.46690/ager.2020.03.02
https://doi.org/10.46690/ager.2020.03.02
https://doi.org/10.1016/j.petsci.2022.05.001
https://doi.org/10.1016/j.petsci.2022.05.001
https://doi.org/10.1016/j.petsci.2022.05.001
https://doi.org/10.1016/j.petsci.2023.03.015
https://doi.org/10.1016/j.petsci.2023.03.015
https://doi.org/10.1021/acsomega.3c07319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c07319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c07319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c06151?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c06151?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c06151?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c06828?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c06828?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c06828?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.energyfuels.1c03471?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.energyfuels.1c03471?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.energyfuels.1c03471?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.enggeo.2018.04.008
https://doi.org/10.1016/j.enggeo.2018.04.008
https://doi.org/10.1002/nme.1151
https://doi.org/10.1002/nme.1151
https://doi.org/10.2118/173346-PA
https://doi.org/10.2118/173346-PA
https://doi.org/10.1016/j.petrol.2019.05.034
https://doi.org/10.1016/j.petrol.2019.05.034
https://doi.org/10.1016/j.petrol.2019.05.034
https://doi.org/10.1016/j.petrol.2020.108235
https://doi.org/10.1016/j.petrol.2020.108235
https://doi.org/10.2118/185172-PA
https://doi.org/10.2118/185172-PA
https://doi.org/10.2118/185172-PA
https://doi.org/10.2118/184877-MS
https://doi.org/10.2118/184877-MS
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00448?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(27) Desouky, M.; Tariq, Z.; Aljawad, M. S.; et al. Machine learning-
based propped fracture conductivity correlations of several shale
formations[J]. ACS omega 2021, 6 (29), 18782−18792.
(28) Hua, X.; Zhang, G.; Yang, J.; Li, Z. Theory Study and
Application of the BP-ANN Method for Power Grid Short-Term
Load Forecasting. ZTE Commun. 2015, 13 (3), 2−5.
(29) Liu, Y. Y.; Liu, Y. S.; Zheng, J. W. Intelligent rapid prediction
method of urban flooding based on BP neural network and numerical
simulation model. J. Hydraul. Eng. 2022, 53, 284−295.
(30) Zhang, Y. L.; Jin, H.; Gao, W. W.; et al. Research on soil water
content inversion of digital images based on BP neural network
optimized by genetic algorithm.Water Saving Irrigation 2022, 12, 74−
80.
(31) Hongyi, S.; Fangfang, X.; Xinmin, W. Research on cleaning and
repairing methods of civil building data on resources saving and
environment protection. Beijing Da Xue Xue Bao 2020, 56 (5), 785−
795.
(32) Wang, J.; Wu, X. M.; Wang, A. F. Apply Pearson correlation
coefficient algorithm to find abnormal energy meter users. Power
Demand Side Manage. 2014, 16 (02), 52−54.
(33) Sun, J.; Dang, Y.; Zhu, X.; et al. A grey spatiotemporal
incidence model with application to factors causing air pollution. Sci.
Total Environ. 2021, 759, No. 143576.
(34) Hornik, K.; Stinchcombe, M.; White, H. Universal approx-
imation of an unknown mapping and its derivatives using multilayer
feedforward networks. Neural networks 1990, 3 (5), 551−560.
(35) Guo, H.; Zhuang, X.; Chen, P.; Alajlan, N.; Rabczuk, T.
Stochastic deep collocation method based on neural architecture
search and transfer learning for heterogeneous porous media.
Engineering with Computers 2022, 38 (6), 5173−5198.
(36) Samaniego, E.; Anitescu, C.; Goswami, S.; Nguyem-Thanh, V.
M.; Guo, H.; Hamdia, K.; Zhuang, X.; Rabczuk, T. An energy
approach to the solution of partial differential equations in
computational mechanics via machine learning: Concepts, imple-
mentation and applications. Comput. Methods Appl. Mech. Eng. 2020,
362, No. 112790.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c00448
ACS Omega 2024, 9, 13469−13480

13480

https://doi.org/10.1021/acsomega.1c01919?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c01919?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c01919?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3969/j.issn.1673-5188.2015.03.001
https://doi.org/10.3969/j.issn.1673-5188.2015.03.001
https://doi.org/10.3969/j.issn.1673-5188.2015.03.001
https://doi.org/10.12396/jsgg.2022164
https://doi.org/10.12396/jsgg.2022164
https://doi.org/10.12396/jsgg.2022164
https://doi.org/10.13209/j.0479-8023.2020.019
https://doi.org/10.13209/j.0479-8023.2020.019
https://doi.org/10.13209/j.0479-8023.2020.019
https://doi.org/10.1016/j.scitotenv.2020.143576
https://doi.org/10.1016/j.scitotenv.2020.143576
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1007/s00366-021-01586-2
https://doi.org/10.1007/s00366-021-01586-2
https://doi.org/10.1016/j.cma.2019.112790
https://doi.org/10.1016/j.cma.2019.112790
https://doi.org/10.1016/j.cma.2019.112790
https://doi.org/10.1016/j.cma.2019.112790
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c00448?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

