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ABSTRACT

Dracaena, a remarkably long-lived and slowly maturing species of plant, is world famous for its ability to

produce dragon’s blood, a precious traditional medicine used by different cultures since ancient times.

However, there is no detailed and high-quality genome available for this species at present; thus, the mo-

lecular mechanisms that underlie its important traits are largely unknown. These factors seriously limit the

protection and regeneration of this rare and endangered plant resource. Here, we sequenced and assem-

bled the genome of Dracaena cochinchinensis at the chromosome level. The D. cochinchinensis genome

covers 1.21 Gb with a scaffold N50 of 50.06 Mb and encodes 31 619 predicted protein-coding genes. Anal-

ysis showed that D. cochinchinensis has undergone two whole-genome duplications and two bursts of

long terminal repeat insertions. The expansion of two gene classes, cis-zeatin O-glucosyltransferase

and small auxin upregulated RNA, were found to account for its longevity and slow growth. Two transcrip-

tion factors (bHLH and MYB) were found to be core regulators of the flavonoid biosynthesis pathway, and

reactive oxygen species were identified as the specific signaling molecules responsible for the injury-

induced formation of dragon’s blood. Our study provides high-quality genomic information relating to

D. cochinchinensis and significant insight into the molecular mechanisms responsible for its longevity

and formation of dragon’s blood. These findings will facilitate resource protection and sustainable utiliza-

tion of Dracaena.
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INTRODUCTION

Dragon’s blood, the red resin produced by tree species in the

genus Dracaena (Asparagaceae), is a precious traditional Chi-
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nese medicine and a folk medicine used by many nationalities

across the world. It has several therapeutic functions and can

activate blood circulation, dissipate blood stasis, relieve inflam-

mation and pain, and improve astringency and hemostasis

(Gupta et al., 2008; Fan et al., 2014; Sun et al., 2019). Apart

from being a famous medicine, dragon’s blood is also used as

a colorant for artwork in many cultures (Zheng et al., 2012). It is

called dragon’s blood because the resin or sap excreted by

some members of the genus Dracaena after external injury or

microbial invasion is deep red in color and looks like the blood

of a legendary dragon (Gupta et al., 2008). Therefore, Dracaena

has become famous all over the world for its red resin and

belongs to the cultural heritage of humanity.

Dracaena species are monocotyledonous evergreen plants that

are mainly distributed in tropical and subtropical regions of Asia

and Africa. These are remarkably long-lived and slow-growing

species and are renowned for their longevity (Zheng et al.,

2012; Tomlinson and Huggett, 2012; Mad�era et al., 2018, 2020).

The age of a famous dragon’s blood tree was previously

estimated to be several thousands of years (Humboldt, 1814;

Christ, 1886; Schenck, 1907). However, subsequent analysis of

several of the largest trees concluded that their age was more

likely to be several hundred years and that the flowering period

varies from 10 years to several decades (P€utter, 1925; Symon,

1974; M€agdefrau, 1975; Zheng et al., 2012; Mad�era et al.,

2018). According to previous research, the juvenile stages of

D. cinnabari from seedling to first flowering can take 200–250

years or even more (Mad�era et al., 2018), thus demonstrating

that this species takes an extremely long time to grow and

mature. Owing to difficulties related to investigating natural

population aging, several methodologies have been developed

for age estimation in such trees (Adolt and Pavli�s, 2004; Adolt

et al., 2012; Jura-Morawiec, 2019; Lengálová et al., 2020).

These methods have all demonstrated that the dragon tree is a

long-lived species.

There is much confusion surrounding the origin and identity of

dragon’s blood trees, and many plants can produce dragon’s

blood, including Croton, Dracaena, Daemonorops, and Pterocar-

pus (Gupta et al., 2008; Ding et al., 2020). In the wild, Dracaena

grows slowly, and only trees that are over 30 years of age have

been shown to produce dragon’s blood (Edwards et al., 1997;

Wang et al., 2013; Ding et al., 2020). Due to continuous over-

exploitation, Dracaena are now threatened with depletion. In

1998, many Dracaena species were listed on the International

Union for Conservation of Nature Red List (IUCN Red List,

2017.2). Of these, Dracaena cochinchinensis and D. cambodiana

were rated as vulnerable in China (Hubálková et al., 2015; Kamel

et al., 2018). Soon afterward, these two species were placed on

the List of National Key Protected Wild Plants of China; this

represents the second highest grade of national protection, and

the felling of such endangered species is prohibited. Because of

the endangered status of D. cochinchinensis and the fact that it is

now a limited genetic resource, it is critical to consider adequate

measures for its conservation management and to protect

against its exploitation.

In China, D. cochinchinensis is the official original species found

to produce dragon’s blood (Zheng et al., 2009; Luo et al., 2011)

and was first discovered by Xitao Cai in 1972 in Yunnan
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province. This species is commonly used as a substitute for the

traditionally imported dragon’s blood, called Long-Xue-Jie (Chi-

nese dragon’s blood). According to literature surveys, dragon’s

blood has been recorded and used medicinally in China for at

least 1500 years. The authentic source of ancient Chinese

Dracaena was thought to have been imported from Africa (Cai

and Xu, 1979). With increased levels of shipping, the genuine

form of Dracaena changed from the resin of Dracaena in the

agave family to the red resin of the rattan fruit in Southeast Asia

until the discovery of D. cochinchinensis, which is exclusively

found in China (Cai and Xu, 1979; Zheng et al., 2006; Wang

et al., 2011).

Flavonoids are themain components of dragon’s blood. Flavonoid

oligomers, composedof onedihydrochalconeunit condensedwith

one or more chalcone, flavane, or homoisoflavane units, consti-

tuted the major identified components of dragon’s blood from the

genus Dracaena (Pang et al., 2016). Oligomeric flavonoids

account for over 50% of the resin produced by Dracaena spp. by

weight (Hao et al., 2015). Thus far, hundreds of flavonoids have

been isolated from the resin wood of D. cochinchinensis (for

reviews, see Gupta et al., 2008; Fan et al., 2014, Sun et al., 2019).

In addition, terpenoids and steroidal saponins are also effective

components of dragon’s blood (Fan et al., 2014; Teng et al.,

2015; Mad�era et al., 2020; Vanickova et al., 2020); these

components have been reported to be cytotoxic and could be

used as anticarcinogens (Darias et al., 1989; Mimaki et al., 1999;

Gon�zalez et al., 2003; Her�nandez et al., 2004; Ding et al., 2020;

Mad�era et al., 2020).

Althoughmany previous studies have described the chemical con-

stituents and pharmacological effects of dragon’s blood (for re-

views, see Gupta et al., 2008; Fan et al., 2014; Sun et al., 2019;

Mad�era et al., 2020), little is known about the molecular

mechanisms responsible for its formation. In this study, we report

the draft genome sequence of D. cochinchinensis at the

chromosome level. We also conducted transcriptomic and

metabolomic analysis. Our findings represent an important

resource that can enhance our understanding of the fundamental

biology and molecular basis of D. cochinchinensis, thus

providing a foundation from which to generate new conservation

management strategies.
RESULTS

Genome sequencing, assembly, and annotation

Agenomesurveyusingk-meranalysis (k=17) revealed that thesize

of the D. cochinchinensis genome was approximately 1.257 Gb

with a heterozygosity of 0.52% and a repeat sequence ratio of

67.8% (Supplemental Figure 1; Supplemental Table 1). Based on

the estimated genome size, using a combination of SMART

sequencing technology from PacBio, along with 10x Genomics

and short-read sequencing from Illumina platforms, we obtained

a total of 407.06 Gb of clean data, thus representing 323.753

coverage (Supplemental Table 2). The initial assembly was 1.21

Gb in size, containing 1898 scaffolds and 3042 contigs, with a

scaffold N50 size of 2.07 Mb and a contig N50 size of 1.1 Mb

(Supplemental Table 3). Assessment of the completeness of the

genome assembly with CEGMA indicated 96.77% coverage of

theconservedcoreeukaryoticgenes,andBenchmarkingUniversal
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Figure 1. Morphological and genomic features of D. cochinchinensis.
(A) Morphology of D. cochinchinensis and dragon’s blood.

(B) Overview of the D. cochinchinensis draft genome assembly. (a) The 20 chromosomes of D. cochinchinensis, with a resolution of 5 Mb. (b) Gene

density, with a sliding window of 500 kb. (c) Percentage of repeats, with a sliding window of 500 kb. (d) GC content, with a sliding window of 100 kb. (e)

Each linking line in the center of the circle connects a pair of homologous genes.
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Single-CopyOrthologanalyses (Simaoetal., 2015) showed that the

genome was 93.6% complete (Supplemental Table 4). These

results suggested that the genome assembly was relatively

complete and of high quality. Next, approximately 137.26 Gb of

high-qualityHi-Cdatawereused to further improve thegenomeas-

sembly, and90.26%of thegenomewasanchoredonto20chromo-

somes (2n = 40) (Figure 1B; Supplemental Figures 2 and 3;

Supplemental Table 5). The final assembly consisted of 1835

scaffolds, spanning 1.21 Gb, with a scaffold N50 size of 50.05 Mb

(Supplemental Table 6).

Based on de novo and homology-based predictions and tran-

scriptome data, a total of 31 619 protein-coding genes were pre-

dicted, and 31 402 genes (99.3%) were assigned specific func-

tions (Supplemental Table 7). In addition, by comparing with the

known noncoding RNA libraries, we obtained noncoding RNA

information relating to the D. cochinchinensis genome

(Supplemental Table 8), including 1570 transfer RNAs, 1278

ribosomal RNAs, 1576 microRNAs, and 722 small nuclear RNAs.
Genomic evolution of D. cochinchinensis

D. cochinchinensis belongs to the Asparagales clade of monocot-

yledons and is close to Asparagus officinalis, Dendrobium offici-

nale, and Apostasia shenzhenica, which have completed genome

sequences. We clustered the annotated genes into gene families

among these species along with additional monocot and

dicot species, including A. officinalis, D. officinale,

A. shenzhenica, Elaeis guineensis, Oryza sativa, Ananas comosus,

Musa acuminata, Arabidopsis thaliana, Populus trichocarpa, Aqui-

laria sinensis, Hevea brasiliensis, Citrus grandis, Carica papaya,

Eucalyptus grandis,Vitis vinifera, andAmborella trichopoda.Family

clustering yielded 31 324 gene families (groups), including 252
single-copy families. Evolutionary trees were constructed based

on coding sequences using RAxML software. D. cochinchinensis

andA. officinaliswere gathered in one branch, aswereD. officinale

and A. shenzhenica, thus indicating that Asparaginaceae and Or-

chidaceae underwent independent divergence long ago (138.4

Mya); the time of divergence between D. cochinchinensis and

A. officinaliswas 87.7 Mya (Figure 2A).

To investigate the genome expansion in D. cochinchinensis, we

analyzed whole-genome duplication (WGD) events. Four-fold

degeneratesite (4DTv) valueswereestimatedbasedonparalogous

gene pairs in collinear regions detected in D. cochinchinensis and

three other representative plant species (A. officinalis,D. officinale,

and A. shenzhenica). The distribution of 4DTv distances in

D. cochinchinensis showed two peaks at approximately 0.12 and

0.45 (Figure 2B). The first peak shared by D. cochinchinensis and

A. officinalis may correspond to the Asparagales-b event

previously identified in the A. officinalis genome (Harkess et al.,

2017; Li et al., 2020). The second peak at approximately

0.12 indicated that D. cochinchinensis underwent another

WGD event independently after diverging from A. officinalis

(Figure 2B and Supplemental Figure 4). To further confirm that

D. cochinchinensis had undergone two WGD events, we

detected syntenic blocks across the D. cochinchinensis genome

and the A. trichopoda genome and performed synteny analysis.

We found that D. cochinchinensis had experienced the

Asparagales-b event and another WGD event, as suggested by

the 4:1 syntenic relationship between D. cochinchinensis and

A. trichopoda (Supplemental Figure 5). Our analysis thus provides

convincing evidence for two rounds of whole-genome

diploidization events in the D. cochinchinensis genome. In total,

29 280 duplicated genes were identified and classified into

five categories: 6864 WGDs (23.1%), 1506 tandem duplicates
Plant Communications 3, 100456, November 14 2022 ª 2022 3
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Figure 2. Comparative genomic analysis.
(A) Phylogenetic tree of 17 plant species. Divergence time (Mya) estimates are indicated by the blue numbers beside the branch nodes. The numbers of

gene-family contractions and expansions are indicated by green and red numbers, respectively.

(B) Distribution of 4DTv for paralogous genes among D. cochinchinensis, A. officinalis, D. officinale, and A. shenzhenica.

(C) Estimation of LTR activity showed two insertion burst events in the D. cochinchinensis genome (Mya).

(D) In the recent burst of activity, most of the elements responsible were autonomous (3359 copies of Ty1-copia and 16 897 copies of Ty3-gypsy) and

non-autonomous LTRs (5861 copies) with peaks of activity <6 Mya.
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(5.1%), 1196 proximal duplicates (4.1%), 7301 transposed

duplicates (24.9%), and 19 613 dispersed duplicates (66.7%).

Next, we investigated the duplications of genes involved in

flavonoid biosynthesis (i.e., PAL, 4CL, C4H, CHI, CHS, DFR, F3H,

FLS, FAR, PPO, and OMT) and found that some genes were

duplicated in a different manner. Some genes were retained after

WGD, thus suggesting that the recent WGD event played an

important role in the evolution of flavonoid biosynthesis in

D. cochinchinensis (Supplemental Table 9).
LTR insertion and genome size expansion

Further analysis showed that 60.15% (729.11 Mb) of the

D. cochinchinensis genome consists of repetitive sequences

(Supplemental Table 10); this is similar to D. officinale (63.33%)

(Yan et al., 2015) and E. guineensis (57%) (Singh et al.,

2013) but higher than A. shenzhenica (42.05%) (Zhang et al.,

2017a) and A. comosus (43.7%) (D’hont et al., 2012). As in

many other sequenced plant genomes (Kim et al., 2014; Teh

et al., 2017; Zhang et al., 2017b), long terminal

repeat retrotransposons (LTR-RTs) dominated, accounting for

51.06% of the assembly; 41% of the genome sequence

comprised Gypsy elements (501 175 881 bp), and 5.9%

comprised Copia elements (72 176 608 bp). By analyzing the

insertion times of intact LTRs, we found that two insertion bursts

had occurred in the D. cochinchinensis genome at approximately

0.3–0.4 and 2million years, respectively (Figure 2C); these events
4 Plant Communications 3, 100456, November 14 2022 ª 2022
were dominated by both autonomous and nonautonomous LTRs.

Among these, the Gypsy family had the largest number of

insertions, and there were two obvious insertion peaks

(Figure 2D), thus demonstrating that there is a significant

relationship between Gypsy expansion and genome expansion.

Phylogenetic trees of domains in reverse transcriptase genes

from complete RTs were constructed for the Copia and Gypsy

superfamilies in D. cochinchinensis, A. officinalis, and

A. shenzhenica. We found that the majority of Gypsy elements

were species specific in D. cochinchinensis, whereas the Copia

superfamily exhibited a different pattern that consisted of

elements from all three species (Supplemental Figure 6).
Comparative genomics demonstrated the adaptation of
D. cochinchinensis

Copy numbers of homologous gene families vary greatly among

different species, caused by differences in rates of gene gain and

loss. Analysis using Computational Analysis of Gene Family Evolu-

tion (CAFÉ) (Bie et al., 2006) identified 81expandedgene families in

D. cochinchinensis compared with the common ancestor of

D. cochinchinensis and A. officinalis (Figure 2A). A total of 730

and 1088 genes in the expanded families were annotated with

Gene Ontology terms and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways, respectively. Gene Ontology

analysis revealed that these expanded orthogroups were related

to several metabolic processes (Supplemental Table 11;
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Figure 3. Expansion of the SAUR and ZOGT gene families.
(A) Venn diagram showing shared and unique orthologs among the four Asparagales species D. cochinchinensis, A. officinalis, D. officinale, and

A. shenzhenica.

(B)Schematic representation of theD. cochinchinensis chromosomeswith the positions of theSAUR and ZOGT genes. The genesmarked in blue and red

were generated by WGD and tandem duplication events, respectively.

(C) Collinearity of SAUR and ZOGT genes in D. cochinchinensis.

(D) Syntenic analysis of SAUR and ZOGT genes in D. cochinchinensis and two other representative plant species (A. officinalis and E. guineensis).

Paralogous gene pairs from A. officinalis and E. guineensis were identified in syntenic blocks using JCVI software (v.0.8.4) with a parameter setting of

‘‘–cscore = 0.99’’. Protein sequences were extracted and viewed in TBtools (v.0.98745).
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Supplemental Figures 7 and 8) such as ‘‘ATP metabolic process,’’

and ‘‘defense response’’ in the biological process category and

‘‘binding,’’ ‘‘catalytic activity,’’ ‘‘oxidoreductase activity,’’ and

‘‘peroxidase activity’’ in the molecular function category. The

enriched KEGG categories were ‘‘plant-pathogen interaction,’’

‘‘phenylpropanoid biosynthesis,’’ ‘‘zeatin biosynthesis,’’

‘‘sesquiterpene and triterpenoid biosynthesis,’’ ‘‘flavone and

flavonol biosynthesis,’’ and ‘‘photosynthesis’’ (Supplemental

Table 12; Supplemental Figure 9). We hypothesize that these

expanded genes are closely related in some way to the functional

requirements of environmental adaptability in D. cochinchinensis

and the formation of dragon’s blood.

We found that 28 genes were under positive selection and

showed significant enrichment in KEGG terms related to base

excision repair, nucleotide excision repair, mismatch repair,

and DNA replication (Supplemental Table 13). These include

DNA ligase 1 and DNA excision repair protein, which are

involved in DNA-repair pathways that play crucial roles in main-

taining genomic integrity, particularly in response to exposure

to environmental genotoxicants, including ultraviolet light and

reactive oxygen species that form in response to the harsh rays

of the sun (Schuch et al., 2017; Nisa et al., 2019). The response

of cells to DNA damage restores the DNA structure to enable
its original function or simply enables the cell to survive the

damage.

Next,we identified uniqueand sharedgene families among the four

Asparagales species.D. cochinchinensis shared 8056 families with

A. officinalis,D. officinale, and A. shenzhenica, whereas 1367 gene

families, containing 2954 genes, appeared to be unique to D. co-

chinchinensis (Figure 3A; Supplemental Tables 14 and 15).

Functional annotation revealed that the expansion of two classes

of genes, small auxin upregulated RNA (SAUR) genes and cis-

zeatin O-glucosyltransferase (cZOGT) genes, which play a role in

zeatin biosynthesis, may be closely related to the slow growth

and longevity of D. cochinchinensis (Figure 3B and 3C;

Supplemental Tables 16 and 17). Interestingly, analysis of the

D. cochinchinensis genome identified evolutionary gene family

expansions of the SAUR genes (77 in D. cochinchinensis, 27 in

A. officinalis, 20 in A. shenzhenica, 33 in D. officinale, 56 in

O. sativa, and 42 in E. guineensis). SAUR is an auxin-responsive

protein that acts as the plant’s toolbox for the adaptation of growth

and development (Ren and Gray, 2015; Stortenbeker and Beme,

2019). Previous studies in rice confirmed that SAUR inhibits

growth by negatively regulating auxin synthesis and transport. In

addition, SAUR has been shown to significantly increase

anthocyanin content and ABA levels (Kant et al., 2009).
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Figure 4. Histological and metabolic profiling during the formation of dragon’s blood.
(A) Histological images during the formation of dragon’s blood in D. cochinchinensis (the yellow and red substances in the image are dragon’s blood

resin). VB, vascular bundle; PC, parenchymal cell. Scale bar: 5 mm.

(B) Typical total ion chromatograms of D. cochinchinensis (a: positive total ion chromatogram [TIC] before dragon’s blood formation; b: positive TIC after

dragon’s blood formation; c: negative TIC before dragon’s blood formation; d: negative TIC after dragon’s blood formation).

(C) Heatmap of identified metabolites from D. cochinchinensis before and after the formation of dragon’s blood (BFD, 1–6 represent six replicates of the

analytical materials before the formation of dragon’s blood; AFD, 1–6 represent six replicates of the analytical materials after the formation of dragon’s

blood).
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Phylogenetic analysis of SAUR proteins from D. cochinchinensis

and other species identified 11 subgroups (Supplemental

Figure 10). To investigate the potential mechanisms by which

SAURs may have expanded, we compared SAUR-containing

genomic regions in D. cochinchinensis with those of A. officinalis

and E. guineensis. The two species showed strong synteny to

D. cochinchinensis (Figure 3D). In addition to the SAURs, cZOGT

had also undergone unique expansion in D. cochinchinensis (34

in D. cochinchinensis, 0 in A. officinalis, 0 A. in shenzhenica, 0 in

D. officinale, 5 in O. sativa, 2 in E. guineensis, and 0 in A. thaliana)

and is known toplay roles in growth retardation anddelay of senes-

cence (Rodo et al., 2008; Kudo et al., 2012). Therefore, the

expansion of SAURs and cZOGTs is predicted to account for the

slow growth and longevity of D. cochinchinensis, at least in part,

and even its adaptation to the arid environment of karst

landforms. To investigate the functions of SAUR and cZOGT
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genes in D. cochinchinensis, we examined their expression levels

at different time points after injury (Supplemental Figures 11 and

12). We found that the expression levels of the two genes

differed, implying that these genes may have other novel

functions in D. cochinchinensis.
Metabolic profiling and differential metabolite pathways
in the formation of dragon’s blood

Dragon’s blood does not appear directly after wounding but

instead forms over time. By observing tissue sections, we noted

that the color of the resin gradually deepened during the formation

of dragon’s blood; the resin had filled the vascular bundle and the

surrounding parenchymal cells after 90 days (Figure 4A).

Eventually, the resin appeared in the formof tear-likedropsor chips

that coated the site of injury (Figure 1A), protecting the plant from
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Figure 5. Differentially expressed metabolic pathways during the formation of dragon’s blood.
Transcriptome analysis identified differentially expressed pathways during the formation of dragon’s blood. The upregulated pathways are shown above

the oblique line, and the downregulated pathways are below the line. The size of the circles represents the number of genes, and the coordinate value

represents the mean times of upregulation or downregulation.
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the spreadof pathogens. Thus, the formation of dragon’s blood is a

mechanismbywhich the treedefends itself (Wang,2007; Juraetal.,

2016; Mad�era et al., 2020).

To elucidate the changes inmetabolite composition during the for-

mation of dragon’s blood, we focused on identifying significant

changes inmetabolites by filtering selectedpeaks. Ultimately, a to-

tal of 147 differentialmetaboliteswere identified or tentatively iden-

tified (Supplemental Tables18and19;Figure4Band4C).Asshown

in Figure 4C, the levels of most compounds changed significantly

after injury. The levels of 85 compounds increased, including

flavonoids, phenols, polyphenols, phenylpropanoids, and

phenolic acids, whereas the levels of 62 compounds decreased,

including organic acids, amines, and steroids; normalized peak

areas showed the same results (Supplemental Figure 13).

Next, we used transcriptomic data to identify the biological pro-

cesses associated with the formation of dragon’s blood. The up-

regulated differentially expressed genes were mainly enriched in

the biological processes ‘‘metabolic pathway’’ and ‘‘biosynthesis

of secondary metabolites,’’ thus showing that different time

points correspond to different metabolic processes (Figure 5).

For example, the first metabolic pathways to change (in 2 h)

were those related to plant-pathogen interaction and plant hor-

mone signal transduction, as well as starch and sucrose meta-

bolism. Then, the biosynthesis of amino acids and citrate cycle
became significantly enriched; this was followed by flavonoid

biosynthesis at 3 days; this lasted for 17 months and represented

the most active metabolic pathway. Terpenoid backbone biosyn-

thesis became evident at 15 days, sesquiterpenoid and triterpe-

noid biosynthesis at 30 days, and phenylpropanoid biosynthesis

at 6 months. The differentially expressed metabolic pathways

combined with the metabolic profiles are shown in Figure 3C.

Our results indicate that the synthesis of dragon’s blood

involves a series of very complex signal transduction, gene

expression regulation, and metabolic processes.

Genes associated with the biosynthesis of flavonoids in
D. cochinchinensis

Numerousstudieshaveshown thatflavonoidsare themaincompo-

nents of dragon’sblood (Gupta et al., 2008; Fanet al., 2014) andare

associated with the phenylpropanoid biosynthesis pathway

(Figure 6). From our genome assembly, we identified 11 gene

families related to the formation of dragon’s blood (Supplemental

Table 20), including some common enzymes in the flavonoid

synthesis pathway: PAL, C4H, 4CL, CHS, CHI, F3H, FLS, and

DFR. We also identified several downstream biosynthetic genes

that produce specific components of dragon’s blood. For

example, O-methyltransferase forms loureirin A, and polyphenol

oxidase forms loureirin B, the index component of standard

dragon’s blood in China. Gene expression analysis showed that

four of the five CHS genes and two CHI genes were significantly
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Figure 6. Flavonoidsbiosynthesis in D. cochinchinensis.
The flavonoids biosynthesis pathway and the expression profiles (reads per kilobase per million reads mapped) of the genes involved in dragon’s blood

biosynthesis. PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate CoA ligase; CHS, chalcone synthase; CHI, chal-

cone isomerase; FNS, flavone synthase; F3H, flavanone 3-hydroxylase; DFR, dihydroflavonol 4-reductase; FLS, flavonol synthase; LAR, leucoantho-

cyanidin reductase; PPO, polyphenol oxidase; OMT: O-methyltransferase.
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upregulated after injury; this effect lasted for 17months. Two of the

three F3H geneswere not expressed in healthy tissues; the highest

expression levels occurred 3 and 5 days after injury. Some of the

FLS and PPO members were also expressed at very low levels in

healthy stems but were upregulated after injury (Figure 6). We

hypothesized that these genes may be specifically involved in the

formation of dragon’s blood and that their expression is

significantly induced by injury.
Furthermore,basedon the co-expressionmodel, two typesof tran-

scription factors (bHLH and MYB) expressed in wounded

stems were predicted to be core regulators of flavonoid synthesis;

these transcription factors are likely to target PAL, CHS, and FLS

and participate in the regulation of the flavonoid biosynthesis

pathway (Supplemental Figure 14; Supplemental Table 21).
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Analyzing the 2000 bp upstream of the gene coding region, we

found many cis-acting elements that were specifically recognized

by bHLHs and MYBs (Supplemental Table 22), further

demonstrating that these enzyme-encoding genes are likely to be

regulated by the two transcription factor types. Moreover, an

expression heatmap of bHLH and MYB genes (Supplemental

Figures 15 and 16) showed that they were significantly induced

just 2 h after injury. We hypothesize that bHLHs and MYBs not

only regulate the key enzyme-encoding genes PAL, CHS, and

FLS but also regulate the entire flavonoid synthesis pathway.
Specific regulation of ROS signaling during the
formation of dragon’s blood

Analysis of genes involved in different signaling pathways

showed that genes related to reactive oxygen species (ROS)



Figure 7. A proposed model for ROS as a specific regulatory signal in the adaptation of D. cochinchinensis.
An external wound leads to a burst of ROS. Excessive levels of ROS cause DNA damage. Most of the positively selected genes in the genome were

enriched in DNA-repair pathways such as base excision repair, nucleotide excision repair, and mismatch repair; these processes play crucial roles in

maintaining genomic integrity. ROS, as signaling molecules, also activate transcription factors, thus activating the flavonoid synthesis pathway to

synthesize a large amount of flavonoids. Flavonoids are the main components of dragon’s blood and act as a defensive substance to resist further

damage. In turn, flavonoids, together with enzymes in the ROS scavenging system, scavenge the excess ROS that have accumulated in vivo to maintain

homeostasis.
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production and scavenging were substantially upregulated

(Supplemental Figure 17). The oxidative burst is a common

early event in plant defense responses, during which ROS

rapidly accumulate following injury. The generation of ROS

depends on NADPH oxidase and apoplastic peroxidases

(Bolwell and Wojtaszek, 1997). Peroxisomes are the major sites

of intracellular H2O2 accumulation as a consequence of their

oxidative metabolism (del Rı́o et al., 2006). From the

transcriptome data, we found that several enzymes, such as

respiratory burst oxidase homolog, amine oxidases, NAD(P)H

oxidases, and peroxidase, contributed to ROS generation and

were significantly upregulated 2 h after injury (Supplemental

Figure 17). Thereafter, ROS scavenging enzymes, such as

superoxide dismutase, ascorbate peroxidase, glutathione

peroxidase, and catalase, were also upregulated (Supplemental

Figure 17). Obviously, the degree of oxidative stress is

determined by the level of ROS, and the balance between ROS

and antioxidants is essential if a plant is to maintain a balanced

redox state.

H2O2 is themost stable type of ROSwithin plants. To preliminarily

validate the H2O2 response during the formation of dragon’s

blood, we detected the changes in H2O2 content within stems

of D. cochinchinensis over time after mechanical damage. The
concentration of H2O2 increased just 1 h after mechanical dam-

age and continued to increase to maximal levels at 6 h. After 8

h, the concentration of H2O2 began to decrease slightly until

the minimum value was reached at 5 days (Supplemental

Figure 18). By contrast, other signals, such as ethylene, nitric

oxide, and brassinosteroids, showed no specific changes in

response to injury (Supplemental Figures 19–21). We infer that

ROS act as the first sensor and represent the core signal

regulator during the formation of dragon’s blood (Figure 7). This

is consistent with the conclusion that ROS generation

represents a point at which various signaling pathways

converge (Camejo et al., 2016; Sewelam et al., 2016).

DISCUSSION

Dragon’s blood is a precious traditional medicine with multiple

therapeutic applications (Masaoud et al., 1995; Gupta et al.,

2008; Yang and Yao, 2011; Xin et al., 2013; Fan et al., 2014;

Ding et al., 2020; Mad�era et al., 2020). D. cochinchinensis is

one of the most important genuine resources of Chinese

dragon’s blood. Here, we constructed a high-quality reference

genome for this valuable species at the chromosome level by

combining PacBio sequencing and Hi-C data. The genome

sequence of Dracaena reported herein will facilitate our
Plant Communications 3, 100456, November 14 2022 ª 2022 9
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understanding of the fundamental biology of this species and

provide a foundation from which to generate strategies for pro-

tection and regeneration.

Dracaena is world famous for its longevity (Gupta et al., 2008;

Tomlinson and Huggett, 2012; Zheng et al., 2012; Mad�era

et al., 2018). However, the molecular mechanisms that underlie

its unique biological traits remain unclear. Our analysis revealed

that D. cochinchinensis has experienced two genome

duplication events, one shared with A. officinalis and another

that occurred independently after their divergence (Figure 2B).

In addition, two LTR insertion bursts occurred recently

(Figure 2C). Comparative genomic analysis revealed that

expansions of SAUR and cZOGT genes are likely to be the

main factors responsible for the longevity and slow growth of

D. cochinchinensis (Figure 3). In addition, genes in the DNA

repair pathway were found to be positively selected, thus

contributing to genome maintenance and environmental

adaptability (Supplemental Table 13).

Dragon’s blood, the red resin of Dracaena, is a defensive sub-

stance produced by Dracaena when it is damaged or infected

by pathogenic microorganisms (Wang, 2007; Jura et al., 2016;

Ding et al., 2020; Mad�era et al., 2020). Flavonoids are known to

exhibit pharmacological effects and represent the main

component of dragon’s blood; furthermore, flavonoids are

highly beneficial to Dracaena during growth and development.

For example, flavonoids are associated with plant defense

against pathogens and microbes and the absorption of free

radicals and ultraviolet light (Neill and Gould, 2003; Crozier

et al., 2006; Agati et al., 2009, 2011; Agati and Tattini, 2010;

Landi et al., 2015). In the present study, we aimed to identify

differentially expressed pathways and differential metabolites

during the formation of dragon’s blood. We also attempted

to identify genes responsible for regulating the biosynthesis

of flavonoids in D. cochinchinensis. We found that several

secondary metabolite-related pathways, including those related

to flavonoids, the terpenoid backbone, and phenylpropanoid

biosynthesis, were upregulated 0–6 months after injury

(Figure 5). Correspondingly, metabolomic analysis showed that

the levels of flavonoid compounds increased significantly,

along with those of phenylpropanoids, phenols, and phenolic

acids. By contrast, the levels of coumarins, organic acids, and

amine compounds were significantly reduced (Figure 4C;

Supplemental Figure 13; Supplemental Table 18). Upregulated

genes related to the biosynthesis of secondary metabolites

included PAL, CHS, and methyltransferase; these genes are all

involved in the flavonoid biosynthesis pathway. The dynamic

expression profiles of genes in the flavonoid biosynthesis

pathway during dragon’s blood formation revealed that most of

them were induced, including CHS, CHI, F3H, FLS, and PPO;

these were only expressed at very low levels in healthy

stems but were rapidly and significantly induced after injury.

These changes are considered to be specifically involved in the

formation of dragon’s blood (Figure 6). This pattern of gene

expression is essentially consistent with our results relating to

differential metabolites and metabolic pathways (Figures 4C

and 5). Furthermore, bHLH and MYB transcription

factors were predicted to be core regulators of the flavonoid

biosynthesis pathway (Supplemental Figures 14–16); these

results are consistent with previous studies showing that MYB,
10 Plant Communications 3, 100456, November 14 2022 ª 2022
bHLH, and WD40 transcription factors participate in flavonoid

metabolism by regulating many structural genes (Hichri et al.,

2011; Schaart et al., 2013). The corresponding relationship

between these transcription factors and their targets

was also predicted, thus providing important clues for

studying the function of these genes and their regulatory

mechanisms. Further studies are now required to

comprehensively elucidate the process by which the red resin

is formed in D. cochinchinensis and thereby enable controlled

and reasonable extraction of dragon’s blood for commercial

purposes.

To reveal the regulatory network of dragon’s blood formation

induced by injury, we systematically analyzed a range of

signaling pathways and considered ROS to be the most crucial

signal stimuli. Genes associated with ROS generation and scav-

enging were all upregulated after injury (Supplemental

Figure 17). Moreover, the concentration of H2O2 showed

regular dynamic changes at different time points after injury

(Supplemental Figure 18), and genes related to the main site

of ROS production were also expanded (Supplemental

Tables 12 and 23). D. cochinchinensis grows in limestone

areas that are exposed to strong sunlight and high UV-B;

these stimuli can cause the degradation of CP43 and CP47

and reduce photosynthetic capacity, thus leading to ROS

production, DNA damage, and protein denaturation (Takshak

and Agrawal, 2019). KEGG pathway analysis indicated that

many of the positively selected genes were related to these

deleterious processes; they participated in pathways such as

base excision repair, nucleotide excision repair, mismatch

repair, and DNA replication (Supplemental Table 13), implying

that D. cochinchinensis has adapted to the environment

during evolution to maintain genomic integrity. In addition,

gene families involved in phenylpropanoid biosynthesis and

the photosynthesis pathway were all expanded (Supplemental

Tables 12 and 23). An increasing body of evidence supports

the fact that flavonoids have multiple photoprotective effects

(Winkel-Shirley, 2002; Agati and Tattini, 2010) and can

function as ROS scavengers (Yamasaki et al., 1997; Agati

et al., 2009) as well as moderators of auxin transport (Peer

and Murphy, 2007). We believe there are some potential

associations in D. cochinchinensis relating to ROS signaling,

flavonoid biosynthesis, and environmental adaptability

(Figure 7). This system is the result of adaptation to the

environment during the process of evolution. We hypothesize

that the longevity of D. cochinchinensis depends on its strong

self-healing ability and environmental adaptability.

In summary, this study reports a genome assembly for

D. cochinchinensis at the chromosome level, the first genome

for Dracaena Vand. ex L. It provides a valuable genetic resource

and creates significant scope for studying Dracaena. We re-

vealed the genetic basis of the longevity and slow growth of

Dracaena at the genomic level. We also provided a preliminary

analysis of the molecular mechanisms associated with injury-

induced flavonoid biosynthesis to form dragon’s blood by per-

forming transcriptomic and metabolomic analysis. These find-

ings are important, as they improve our understanding of

Dracaena adaptation, resource protection, and utilization.

Further research is likely to have significant benefits for human

medicine and health.
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METHODS

Plant materials, library construction, and genome sequencing

All plant materials used in this study were 10-year-old adult

D. cochinchinensis trees growing in the germplasm bank of Dracaena at

the Yunnan Branch of the Institute of Medicinal Plant Development, Chi-

nese Academy of Medical Sciences (Jing-hong City; N:22.0058�,
E:100.7885�); the plants were formally identified by Professor Hai-tao Li.

Total genomic DNA was extracted from fresh young leaves using the

DNeasy Plant Mini Kit (QIAGEN Bio-Tec, Hilden, Germany). The DNA

was sheared by a Covaris M220 focused ultrasonicator (Covaris, Woburn,

MA, USA) to create fragment sizes of 350 bp. Four types of libraries were

constructed: (1) a short-read sequencing library with 350-bp insertions

sequenced with the Illumina HiSeq X Ten instrument platform; (2) linked-

read sequencing libraries constructed on the 10x Genomics GemCode

platform and sequenced with the Illumina platform; (3) a SMRT cell library

with an insert size of 20 kb for PacBio sequencing; and (4) a chromatin

interaction mapping (Hi-C) library with 350-bp insertions for Illumina

sequencing.

Genome assembly and assessment of assembly quality

De novo assembly of PacBio single-molecule long reads from

SMRT sequencing was performed using FALCON (https://github.com/

PacificBiosciences/FALCON/) (Chin et al., 2013). BWA-MEM (Li, 2013)

was used to align the 10x Genomics data to the assembly using default

settings. Scaffolding was performed by fragScaff (v.1.1) with barcoded

sequencing reads. These contigs were used to form super scaffolds.

BWA (v.0.7.8) (Li and Durbin, 2009) software was then used to align the

clean Hi-C data to the preceding assembly. According to the linkage

information and restriction enzyme sites, the string graph formulation

was used to construct a scaffold graph with LACHESIS (Burton et al.,

2013).

Genome annotation

Genome repeat sequences were annotated de novo by RepeatMasker

(http://www.repeatmasker.org). Protein-coding genes were predicted

based on the repeat-masked genome, homologous conserved proteins,

and assembled transcripts. microRNA and small nuclear RNA genes were

predicted by INFERNAL software using the Rfam database (detailed

methods related togenomeannotationaregiven inSupplementalMethod5).

Gene family construction and phylogenetic analysis

Gene families were generated by OrthoMCL (v.12.0.9) (Li et al., 2003). First,

nucleotide and protein data from 17 species, including D. cochinchinensis,

A. officinalis (Harkess et al., 2017), D. officinale (Yan et al., 2015), A.

shenzhenica, E. guineensis, O. sativa (phytozomev10), A. comosus (Ming

et al., 2015), M. acuminata (D’hont et al., 2012), A. thaliana

(phytozomev10), P. trichocarpa (release-32), A. sinensis, H. brasiliensis, C.

grandis, C. papaya (Phytozome.ASGPBv0.4), E. grandis, V. vinifera

(phytozomev10), and A. trichopoda (release-32) were downloaded from

Ensembl (Release 70), NCBI, and http://marinegenomics.oist.jp/gallery/.

Before running an ‘‘all against all’’ blastp (E value % 1E�07) program, the

longest transcript was selected from among the alternative splicing

transcripts of each gene, and genes predicted to encode %50 amino

acids were removed. To identify homologous gene pairs, more than 30%

coverage of the aligned regions in both homologous genes was required.

Finally, the alignments were clustered into gene families using OrthoMCL

(v.2.0.9) (Li et al., 2003) with a 1.5 inflation index.

Protein sequences from 252 single-copy gene families were used for phylo-

genetic tree construction. MUSCLE (v.3.7) (Edgar, 2004) was used to

generate multiple sequence alignment for protein sequences in each

single-copy family with default parameters. RAxML (v.8.0.19) (Stamatakis,

2006) was used to construct the phylogenetic tree. Divergence times were

estimated using MCMCTree in PAML (v.4.9) (Yang, 2007). Five calibration
points were selected and applied: V. vinifera and O. sativa (130–200 Mya)

(Iorizzo et al., 2016); O. sativa and A. shenzhenica (137–156 Mya) (Zhang

et al., 2017a); V. vinifera and C. papaya (114–134 Mya) (Ming et al., 2008);

P. trichocarpa and A. thaliana (107–109 Mya) (Tuskan et al., 2006); and

H. brasiliensis and P. trichocarpa (65–86 Mya) (Tuskan et al., 2006; Tang

et al., 2016).

Expansion and contraction of gene families

Gene gain and loss in different gene families were determined using CAFÉ

(v.2.2). The enriched KEGG pathways in the expanded gene families of

D. cochinchinensis were summarized and visualized using KOBAS

software.

WGD

To investigate the genomic evolution of D. cochinchinensis, we identified

collinearity within the D. cochinchinensis genome and between the

D. cochinchinensis genome and the genomes ofA. officinalis,D. officinale,

and A. shenzhenica. We searched for putative paralogs and orthologs

within and between genomeswithMCScanX based on BLASTP alignment

(with an E value %1E�5) for each genome pair. 4DTv values were calcu-

lated based on each gene pair in a syntenic block, and values of all gene

pairs were plotted to identify putative WGD events in D. cochinchinensis.

We also identified different modes of gene duplication as WGDs, tandem

duplicates, proximal duplicates, transposed duplicates, or dispersed

duplicates using DupGen_finder (Qiao et al., 2019) with default

parameters.

Dynamics of LTR-RTs

We investigated the dynamics of LTR-RTs in the genomes of

D. cochinchinensis, A. officinalis, and A. shenzhenica. De novo detection

of LTR-RTs was performed using LTRharvest (v.1.5.8) (-motif tgca -motif-

mis 1) and LTRfinder (-minlenltr 100 -maxlenltr 5000 -mindistltr 1000

-maxdistltr 20000) (Ellinghaus et al., 2008). Primer-binding site motifs

were annotated using LTRdigest (v.1.5.8) (Steinbiss et al., 2009), and

only elements containing primer-binding site motifs were retained for

further domain annotation. The domains of RTs were identified by

searching against HMM profiles collated by the Gypsy Database (http://

gydb.org/), and the internal features of LTR-RTs were annotated with

LTRdigest (v.1.5.8) (Steinbiss et al., 2009). Intact LTR-RTs that contained

domains (e.g., the gag domain, protease domain, reverse transcriptase

domain, and integrase domain) were clustered, and those belonging to

families with fewer than five members were discarded. The nucleotide

divergence rate (l) was calculated from the MUSCLE alignment of the 50

and 30 LTR sequences of LTR-RTs with the EMBOSS program distmat.

The insertion date (T) was computed for each LTR-RT (T = K/2r, K: genetic

distance, K =�0.75ln(1 � 4l/3)), which was set to a substitution rate (r) of

1.3E�088 substitutions per site per year. The translated amino acid se-

quences were then searched for Ty1/Copia (PF07727) and Ty3/Gypsy

(PF000078) domains using HMMER (v.3.1b2) (Johnson et al., 2010) (E

value %1E�5). The amino acid sequences of the two superfamilies

were then aligned using MAFFT (v.7.310) (Katoh and Standley, 2013),

and phylogenetic trees for Copia and Gypsy LTR-RTs were constructed

using FastTree (http://www.microbesonline.org/fasttree/).

Detection of key candidate functional genes

We used hmmsearch (HMMER v.3.1b2) (Johnson et al., 2010) and

BLASTP (E value % 1E�05) (BLAST+ 2.71) (Altschul et al., 1997;

Johnson et al., 2008) to identify genes involved in the biosynthesis of

flavonoids based on amino acid sequences from O. sativa and genes

involved in ROS signaling pathways based on amino acid sequences

from A. thaliana. The candidates were further curated using the NCBI

nonredundant protein database, and incorrect proteins were removed

manually.

RNA sequencing and analysis

Five tissues (root, stem, leaves, flower, and fruit) were harvested from

D. cochinchinensis, as well as 33 cut and injury-treated stems at different
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time points (0, 2, 6, 12, and 24 h, 2, 3, 4, 5, 10, 15, and 30 days, and 6 and

17 months). Three biological replicates of each tissue were collected.

Raw reads from different samples were filtered to obtain high-quality

clean reads following standard protocols. For gene expression analysis,

clean reads were mapped to the D. cochinchinensis genome using To-

pHat (v.2.0.8) (Kim et al., 2013). Then, the read counts for each gene

were normalized for downstream analysis. A gene was defined as

expressed if its value of reads per kilobase per million reads mapped

was R1 in at least one of the transcriptomes.

Differential expression analysis between a treatment sample and the con-

trol sample was performed using the DESeq R package (v.1.18.0). The re-

sulting p values were adjusted using Benjamini and Hochberg’s approach

to control the false discovery rate. Genes with an adjusted p <0.05 iden-

tified by DESeq were classified as being differentially expressed. KEGG

pathway enrichment analysis of the differentially expressed genes was

performed using KOBAS software (Mao et al., 2005).

Metabolite profiling based on ultra-high-performance liquid

chromatography (LC) Q-Exactive Orbitrap mass spectrometry (MS)

UHPLC-Q-Orbitrap-MS

Six healthy �10-year-old adult trees of D. cochinchinensis were selected,

and a 6-cm3 (length: 3 cm; width: 2 cm; depth: 1 cm) wound was artificially

cut using a small knife in the smooth xylem stem area of each tree. Then,

5% (v/v) benzoic acid was sprayed on the wound to prevent microbial ef-

fects (5 ml each day), and 3 months later, the xylem stem with red resin

was collected from each tree.We also collected a sample of healthy xylem

stem surrounding each wound. The freeze-dried samples were dissolved

in 50%methanol-water (v/v) solutions at a concentration of 5 g$ml�1. The

solutions were filtered and centrifuged at 13 2003 g for 10 min, and 10 ml

of the resulting supernatant was directly injected into the LC-MS system.

Untargeted metabolomics was performed using a U3000 UHPLC equip-

ped with a Q-Exactive Q-Orbitrap MS through an HESI source (Thermo

Fisher Scientific, Waltham,MA, USA). AWaters Acquity UPLCHSS T3 col-

umn (2.1 3 100 mm, 1.8 mm) was used for chromatographic separation

with a column temperature of 35�C. The flow rate was set to 0.4 ml$min�1,

and the autosampler temperature was maintained at 4�C.

The mobile A and B phases were 0.1% formic acid-water (v/v) and aceto-

nitrile, respectively. The following elution gradient was used: 10% B in

0–3 min; 10%–22% B in 3–5 min; 22%–27% B in 5–7 min; 27%–45%

B in 7–25 min; 45%–57% B in 25–35 min; 57%–100% B in 35–36 min;

100% B in 36–37 min; 100%–10% B in 37–37.5 min; and 10% B in

37.5–40 min.

The HESI source parameters were as follows: the scan mode was full-ms/

dd-msmode, and the scanning range wasm/z 150–1500 at a resolution of

70 000; the spray voltage was 3.0 kV in the positive mode and 2.8 kV in the

negative mode; the capillary temperature and probe heater

temperature were 320�C and 350�C, respectively; the sheath gas (N2)

was 35 arbitrary units, and the auxiliary gas was 10 arbitrary units

(99.9% pure N2). The S-lens level value was 50 V. The normalized collision

energywas 20/40/60 V. Data acquisitionwas performed using Xcalibur 4.1

software (Thermo Fisher Scientific).

Themetabolites were identified or tentatively identified as follows: first, we

used a full MS/dd-MS2 (TopN) scanmethod that included a precursor ions

list involving all of the secondary metabolites ever isolated fromDracaena,

and the ‘‘If idle-pick others’’ function was used to sensitively characterize

themetabolites within one injection analysis. Literature on the phytochem-

istry of Dracaena retrieved from CNKI (www.cnki.net), PubChem (http://

pubchem.ncbi.nlm.nih.gov), Web of Science (www.webofknowledge.

com), ChemSpider (www.chemspider.com), and Chemicalbook (www.

chemicalbook.com) was summarized (up to January 2022), and all the iso-

lated compounds were included in the precursor ions list. Second, for

compounds not annotated by the above method, we used Compound
12 Plant Communications 3, 100456, November 14 2022 ª 2022
Discoverer 3.1 (Thermo Fisher Scientific), a software tool for untargeted

metabolomics, to achieve unknown identification using the following pa-

rameters: polarity, negative/positive; maximum shift, 0.2 min; mass toler-

ance, 5 ppm; minimum peak intensity, 100 000. The compounds were

annotated with different types of databases, including m/z Cloud, Chem-

Spider, and the CD internal database. After data preprocessing, a peak ta-

ble was generated containingm/z, retention time, and peak areas of each

compound in all samples. The identification levels for all compounds were

in accordance with the Metabolomics Standards Initiative (Bla�zenovi�c

et al., 2018).

Data processing of metabolomic assays

Data processing of the metabolomic assays was performed using SIEVE

2.2 (Thermo Fisher Scientific) for background subtraction and component

extractions. The obtained peak list was further processed by principal

component analysis and Student’s t-tests to compare changes in com-

pound composition before and after wounding stress. Principal compo-

nent analysis was performed with the SIMCA-P program v.14.1 (Umetrics,

Umea, Sweden). The paired-sample Student’s t-tests were performed us-

ing Office Excel 2010 (Microsoft, Redmond, WA, USA), and the obtained p

values were corrected using a false discovery rate (FDR) calculated in the

R programming language. The null hypothesis was that the content of a

compound showed no significant difference before and after the forma-

tion of dragon’s blood (FDR < 0.01). SIMCA-P 14.1 was also used to trans-

form data for orthogonal partial least squares discriminant analysis. To

ensure the reliability of the data analysis, variable importance in

projection values, which are the weighted values of variation obtained

from orthogonal partial least squares discriminant analysis, were used

as another measure to screen for differential compounds. Metabolites

with a variable importance in projection >1.0 and FDR <0.01 were chosen

for further analysis of differential compounds before and after wounding

stress. Multiple Experiment Viewer software (http://mev.tm4.org/) was

used for the generation of heatmaps. Prism 6 (GraphPad, San Diego,

CA, USA) was used to produce box plots and line graphs.
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Vanı́�cková, L., Pompeiano, A., Mad�era, P., Massad, T.J., and Vahalı́k,

P. (2020). Terpenoid profiles of resin in the genusDracaena are species

specific. Phytochemistry 170:112197.

Wang, X.H. (2007). Flavones formed from xylem stem of Dracaena

cochinchinensis by co-culture of fungus strain and bacteria strain.

Nat. Pro. Res. Dev. 19:11–15.

Wang, X.H., Gong, M., Tang, L., Zheng, S., Lou, J.D., Ou, L., Gomes-

Laranjo, J., and Zhang, C. (2013). Gomes-Laranjo J; Zhang C.

Cloning, bioinformatics and the enzyme activity analyses of a

phenylalanine ammonia-lyase gene involved in dragon’s blood

biosynthesis in Dracaena cambodiana. Mol. Biol. Rep. 40:97–107.
Wang, X.H., Zhang, C., Yang, L.-L., and Gomes-Laranjo, J. (2011).

Production of dragon’s blood in Dracaena cochinchinensis plants by

inoculation of Fusarium proliferatum. Plant Sci. 180:292–299.

Wang, Y., Song, F., Zhu, J., Zhang, S., Yang, Y., Chen, T., Tang, B.,

Dong, L., Ding, N., Zhang, Q., et al. (2017). GSA: genome sequence

archive. Genom. Dev. Reprod. Biol. 15:14–18.

Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of

stress. Curr. Opin. Plant Biol. 5:218–223.

Xin, N., Yang, F.J., Li, Y., Li, Y.J., Dai, R.J., Meng, W.W., Chen, Y., and

Deng, Y.L. (2013). Dragon’s blood dropping pills have protective

effects on focal cerebral ischemia rats model. Phytomedicine

21:68–74.

Yamasaki, H., Sakihama, Y., and Ikehara, N. (1997). Flavonoid-

peroxidase reaction as detoxification mechanism of plant cells

against H2O2. Plant Physiology 115:1405–1412.

Yan, L., Wang, X., Liu, H., Tian, Y., Lian, J., Yang, R., Hao, S., Wang, X.,

Yang, S., Li, Q., et al. (2015). The genome of Dendrobium officinale

illuminates the biology of the important taditional Chinese orchid

herb. Mol. Plant 8:922–934.

Yang, X., and Yao, L. (2011). Pharmacological action and clinical

experience of dragon’s blood. Heilongjiang Medicine Journal

24:265–266.

Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood.

Mol. Biol. Evol. 24:1586–1591.

Zhang, G.Q., Liu, K.W., Li, Z., Lohaus, R., Hsiao, Y.Y., Niu, S.C., Wang,

J.Y., Lin, Y.C., Xu, Q., Chen, L.J., et al. (2017a). The Apostasia

genome and the evolution of orchids. Nature 549:379–383.

Zhang, L., Li, X., Ma, B., Gao, Q., Du, H., Han, Y., Li, Y., Cao, Y., Qi, M.,

Zhu, Y., et al. (2017b). The artary buckwheat genome provides insights

into rutin biosynthesis and abiotic stress tolerance.Mol. Plant 10:1224–

1237.

Zheng, D.J., Xie, L.S., Wang, Y., Zhang, Z.L., and Zhang, W. (2009).

Research advances in dragon’s blood plants in China. Chin. Wild

Plant Res. 28:15–20.

Zheng, D.J., Xie, L.S., Zhu, J.H., and Zhang, Z.L. (2012). Low genetic

diversity and local adaptive divergence of Dracaena cambodiana

(Liliaceae) populations associated with historical population

bottlenecks and natural selection: an endangered long-lived tree

endemic to Hainan Island, China. Plant Biol. 14:828–838.

Zheng, Q.A., Zhang, Y.J., and Yang, C.R. (2006). A new meta-

homoisoflavane from the fresh stems of dracaena cochinchinensis. J.

Asian Nat. Prod. Res. 8:571–577.
Plant Communications 3, 100456, November 14 2022 ª 2022 15

http://refhub.elsevier.com/S2590-3462(22)00293-0/sref67
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref67
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref67
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref68
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref68
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref68
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref68
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref69
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref69
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref70
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref70
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref70
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref71
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref71
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref71
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref71
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref72
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref72
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref72
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref72
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref73
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref73
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref73
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref73
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref74
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref74
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref75
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref75
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref75
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref75
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref76
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref76
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref76
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref76
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref76
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref77
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref77
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref77
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref78
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref78
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref78
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref78
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref78
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref79
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref79
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref79
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref80
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref80
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref80
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref81
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref81
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref82
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref82
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref82
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref82
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref95
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref95
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref95
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref95
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref95
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref84
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref84
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref84
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref84
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref85
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref85
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref85
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref86
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref86
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref89
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref89
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref89
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref90
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref90
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref90
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref90
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref91
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref91
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref91
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref92
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref92
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref92
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref92
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref92
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref93
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref93
http://refhub.elsevier.com/S2590-3462(22)00293-0/sref93

	A chromosome-level genome assembly for Dracaena cochinchinensis reveals the molecular basis of its longevity and formation  ...
	Introduction
	Results
	Genome sequencing, assembly, and annotation
	Genomic evolution of D. cochinchinensis
	LTR insertion and genome size expansion
	Comparative genomics demonstrated the adaptation of D. cochinchinensis
	Metabolic profiling and differential metabolite pathways in the formation of dragon’s blood
	Genes associated with the biosynthesis of flavonoids in D. cochinchinensis
	Specific regulation of ROS signaling during the formation of dragon’s blood

	Discussion
	Methods
	Plant materials, library construction, and genome sequencing
	Genome assembly and assessment of assembly quality
	Genome annotation
	Gene family construction and phylogenetic analysis
	Expansion and contraction of gene families
	WGD
	Dynamics of LTR-RTs
	Detection of key candidate functional genes
	RNA sequencing and analysis
	Metabolite profiling based on ultra-high-performance liquid chromatography (LC) Q-Exactive Orbitrap mass spectrometry (MS)U ...
	Data processing of metabolomic assays


	Data availability
	Supplemental information
	Acknowledgments
	References


