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Abstract 
Background: Multicollinearity greatly affects the Maximum Likelihood 
Estimator (MLE) efficiency in both the linear regression model and the 
generalized linear model. Alternative estimators to the MLE include 
the ridge estimator, the Liu estimator and the Kibria-Lukman (KL) 
estimator, though literature shows that the KL estimator is preferred. 
Therefore, this study sought to modify the KL estimator to mitigate 
the Poisson Regression Model with multicollinearity. 
Methods: A simulation study and a real-life study was carried out and 
the performance of the new estimator was compared with some of 
the existing estimators. 
Results: The simulation result showed the new estimator performed 
more efficiently than the MLE, Poisson Ridge Regression Estimator 
(PRE), Poisson Liu Estimator (PLE) and the Poisson KL (PKL) estimators. 
The real-life application also agreed with the simulation result. 
Conclusions: In general, the new estimator performed more 
efficiently than the MLE, PRE, PLE and the PKL when multicollinearity 
was present.
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Introduction
A special case of the Generalized Linear Models (GLM) is the Poisson Regression Model (PRM) which is generally
applied for count or frequency data modelling. Other count data models include: Bell regression model, Negative
binomial regression model, zero inflated bell regression model, zero inflated regression model (Amin et al., 2020, 2021;
Sami et al., 2021; Rashad and Algamal, 2019; Majid et al., 2021). The PRM is employed to model the relationship
between a response variable and one or more explanatory variable where the response variable denotes a rare event or
count data. The response variable also takes the form of a non-negative variable, and it is applicable in the following
fields: economics, health, social and physical sciences. TheMaximumLikelihood Estimation (MLE)method is popularly
used to estimate the regression coefficient in a PRM. In both a Linear Regression Model (LRM) and Generalized Linear
Model (GLM), MLE suffers a setback when the explanatory variables are correlated, which implies multicollinearity.
Multicollinearity effects include large variance and regression coefficient covariances, negligible t-ratio and a high
coefficient of determination (R-square) values. Alternative estimators to the MLE in the linear regression model include
the ridge regression estimator by Hoerl and Kennard (1970), Liu estimator by Liu (1993), Liu-type estimator by Liu
(2003), two-parameter estimator by Özkale and Kaciranlar (2007), r-d class estimator Kaçiranlar and Sakallio�glu (2007),
k-d class estimator Sakallioglu and Kaciranlar (2008), a two-parameter estimator by Yang and Chang (2010), modified
two-parameter estimator by Dorugade (2014), modified ridge-type estimator by Lukman et al. (2019), modified Liu
estimator by Lukman et al. (2020), Kibria-Lukman (KL) estimator by Kibria and Lukman (2020), modified new two-
parameter estimator byAhmad andAslam (2020), themodified Liu ridge type estimator byAslam andAhmad (2020) and
the DK estimator by Dawoud and Kibria (2020) among others. Researchers have extended some of these existing
estimators in LRM to the PRM. Mansson et al. (2012) introduced the Liu estimator into the PRM. The modified
jackknifed ridge estimator for the PRMwas introduced by Türkan andÖzel (2016). The ridge estimator was introduced
into the PRM byMånsson and Shukur (2011). A new two-parameter for PRM was developed by Asar and Genç (2017).
Recently, Poisson KL estimator was developed by Lukman et al. (2021) for combating multicollinearity in the PRM.

In this study, we propose the Modified Kibria-Lukman estimator to handle multicollinearity in PRM. The estimator is a
single parameter estimatorwhichmakes it less computationally intensive as comparedwith the two-parameter estimators.
Also, since the Kibria-Lukman estimator is found to outperform the Ridge and the Liu estimators, it is expected that the
modification in this study will enhance the performance of the Kibria-Lukman estimator. Furthermore, we compared the
performance of the estimator with the Poisson Maximum Likelihood Estimator (PMLE), Poisson Ridge Regression
Estimator (PRE), Poisson Liu Estimator (PLE) and the Poisson KL estimator (PKLE).

Methods
Given that the response variable, yi is in the form of count data, then it is assumed to follow a Poisson distribution as Po (μi)
where μi = e(xiβ), and In µi = (xiβ), xi is the i

th row of matrix Xwhich is a n�(p+1) data matrix with p explanatory variables
and β is a (p+1)�1 vector of coefficients. The log likelihood of the model is given as:

l μ;yð Þ¼
Xn

i¼1
γilogðeðxiβÞÞ�

Xn

i¼1
eðxiβÞ

� �
i
�log

Yn

i¼1
yi!

� �
(2.1)

The most common method of maximizing the likelihood function is to use the iterated weighted least squares (IWLS)
algorithm which results to:

bβMLE ¼ X0bLX� ��1
X0bLẑ� �

(2.2)

where bL¼ diag bμi½ � and ẑ is a vector while the ith element equals ẑi ¼ logðbμiÞþ yi�bμibμi :

The MLE is normally distributed with a covariance matrix that is equivalent to the inverse of the second derivative as:
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Cov bβMLE

� �
¼ �E

∂
2l

∂β j∂β0k

 ! !�1

¼ X0bLX� ��1
(2.3)

and the mean squared error is given as:

E bβMLE

� �
¼E bβMLE�β

� �0 bβMLE�β
� �

¼ tr X0bLX� ��1
¼
XP

j¼1

1
λ j

(2.4)

where λ j is the j
th eigen value of the X0bVX� �

matrix.

The Ridge estimator was adopted by Månsson and Shukur (2011) to solve multicollinearity problem in count data. The
estimator is defined as follows:

bβPRE ¼ X0bLXþ kI
� ��1

X0bLXbβMLE (2.5)

where k¼ 1
maxðα2i Þ
� �

and ðk> 0Þ:

The mean squared error is:

MSE bβPRE� �
¼
Xp

j¼1

λ j

λ jþ k
� �2þ k2

Xp

j¼1

bα2j
λ jþ k
� �2 (2.6)

βPRE is effective in practice but it is a complicated function of the biasing parameter k (Liu, 1993).

Mansson et al. (2012) developed the Liu estimator to the Poisson regression model as:

bβPLE ¼ X0bLXþ I
� ��1

X0bLXþdbβ� �bβML (2.7)

where

d̂¼ max 0
bα2j�1bα2jþ 1

λ j

 !
,0≤ d ≤ 1: (2.8)

The MSE for the Liu estimator is defined as:

MSE bβPLE� �
¼
XP

j¼1

λ jþd
� �2
λ j λ jþ1
� �2þ d�1ð Þ2

Xp

j�1

α2j

λ jþ1
� �2 (2.9)

where λ j is the j
th eigenvalue of X0bLX and αj is the j

th element of α.

The KL estimator was proposed by Kibria and Lukman (2020) as a means of mitigating the effect of multicollinearity on
parameter estimation. The estimator is defined as

bβKL ¼ X0Xþ kð Þ�1 X0X� kð ÞbβMLE (2.10)

By means of extension, the Poisson K-L estimator was proposed by Lukman et al. (2021) as follows:

bβPKL ¼ X0bLXþ k
� ��1

X0bLX� k
� �bβMLE (2.11)

MSE bβPKL� �
¼
Xp

j¼1

λ j� k
� �2
λ j λ jþ k
� �2

 !
þ4k2

Xp

j¼1

α2j

λ jþ k
� �2

 !
(2.12)

where k¼min
α2j

2α2jþ 1
λ j

� �
and k> 0:
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The Poisson Modified KL estimator (PMKL)
The proposed estimator is obtained as follows: bβMLE in equation (2.11) is replaced with the ridge estimator. Thus, we
have:

bβMKL ¼ X0Xþ kð Þ�1 X0X� kð Þ X0Xþ kð Þ�1X0y (2.13)

The properties of the new estimator include:

E bβMKL

� �
¼ X0Xþ kIð Þ�1 X0X�kIð Þ X0Xþ kIð Þ�1X0Xβ (2.14)

Bias bβMKL

� �
¼ X0Xþ kIð Þ�1 X0X� kIð Þ X0Xþ kIð Þ�1X0Xβ�β

¼ X0Xþ kIð Þ�2k �3X0X� kI½ �β (2.15)

The bias can be written in scalar form as:

Bias bβMKL

� �
¼ k
Xp

j¼1

�3λ j� k
� �

β

λ jþ k
� �2 (2.16)

V bβMKL

� �
¼ σ2 X0Xþ kIð Þ�1 X0X� kIð Þ X0Xþ kIð Þ�1X0X X0Xþ kIð Þ�1 X0X� kIð Þ X0Xþ kIð Þ�1 (2.17)

V bβMKL

� �
can be represented in scalar form as follows:

V bβMKL

� �
¼
Xp

j¼1

λ j λ j� k
� �2
λ jþ k
� �4 (2.18)

Thus, the MSE is obtained as:

MSE bβMKL

� �
¼ σ2

Xp

j¼1

λ j λ j� k
� �2
λ jþ k
� �4 þ k2

Xp

j¼1

3λ jþ k
� �2

β2

λ jþ k
� �4 (2.19)

The proposed estimator in (2.14) is extended to the PRM. It is referred to as the Poisson modified KL (PMKL) estimator
and defined as:

bβPMKL ¼ X0bLXþ k
� ��1

X0bLX� k
� �

X0bLXþ k
� ��1

X0bLXbβMLE (2.20)

The mean squared error of the PMKL is defined as:

MSE bβPMKL

� �
¼
Xp

j¼1

λ j λ j� k
� �2
λ jþ k
� �4 þ k2

Xp

j¼1

3λ jþ k
� �2

α j
2

λ jþ k
� �4 (2.21)

where k¼min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3λiα2þσ2Þ24α2σ2λi�3λia2þσ2

p
2β2

�ð3λiα2þσ2Þ
	 


and k > 0.

Suppose α¼Q0β and Q0X0bLXQ¼Λ¼ diagðλ1,λ2, ::,λpÞ:Where λ1≥λ2, :::,≥λp, Λ is the matrix of eigen-values of X0bLX
and Q is the matrix whose columns are the eigenvectors of X0bLX.
The mean squared error (MSEM) and the following lemmas are adopted for theoretical comparisons among the
estimators.

Lemma 2.1LetA be a positive definite (pd)matrix, that is,A> 0, and a be some vector, thenA�aa0 ≥ 0 if and only if (iff)
a0A�1a≤ 1 (Farebrother, 1976).
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Lemma 2.2MSEMbβ1�MSEMbβ2 ¼ δ2Dþb1b01�b2b02 > 0, if and only if b02½σ2Dþb1b
0
1��1

b2 < 1 whereMSEðbβ jÞ¼
Vðbβ jÞþb0 jb j,b1 ¼ biasðbβ1Þ and b2 ¼ biasðbβ2Þ (Trenker and Toutenburg, 1990).

Theorem 2.1: bαPMKL is preferred to bαPMLE iff, MSEM bαPMLEð Þ�MSEM bαPMKLð Þ> 0 provided k > 0.

Proof

V bαPMLEð Þ�V bαPMKLð Þ¼Qdiag
1
λ j
� λ j λ j� k

� �2
λ jþ k
� �4

( )P

j¼1

Q0

It is observed that λ jþ k
� �4� λ2j λ j� k

� �2
> 0 such that the expression above is non-negative for k > 0

Theorem 2.2: bαPMKL is preferred to bαPRE iff, MSEM bαPREð Þ�MSEM bαPMKLð Þ> 0 provided k > 0.

Proof

V bαPREð Þ�V bαPMKLð Þ¼Qdiag
λ j

λ jþ k
� �2� λ j λ j� k

� �2
λ jþ k
� �4

( )p

j¼1

Q0

We can observe that the difference of the variance of the estimator is non-negative since λ jþ k
� �2� λ j

2� k2
� �

> 0 for
k > 0.

Theorem 2.3: bαPMKL is preferred to bαPLE iff, MSEM bαPLEð Þ�MSEM bαPMKLð Þ> 0 provided k > 0 and 0 < d < 1.

Proof

V bαPLEð Þ�Cov bαPMKLð Þ¼Qdiag
λ jþd
� �2
λ j λ jþ1
� �2� λ j λ j� k

� �2
λ jþ k
� �4

( )p

j¼1

Q0

The difference of the variance is non-negative since

λ jþ k
� �

λ jþd
� �� λ j λ jþ1

� �
λ j� k
� �

> 0 for 0 < d < 1 and k > 0.

Theorem 2.4: bαPMKL is preferred to bαPKL iff, MSEM bαPKLð Þ�MSEM bαPMKLð Þ> 0 provided k > 0.

Proof

V bαPKLð Þ�Cov bαPMKLð Þ¼Qdiag
λ j� k
� �2
λ j λ jþ k
� �2� λ j λ j� k

� �2
λ jþ k
� �4

( )p

j¼1

Q0

The difference of the variance is non-negative since λ jþ k
� �

λ j� k
� �� λ j λ j� k

� �
> 0 for k > 0.

Selection of biasing parameter
The biasing parameter k for the estimator is obtained by differentiating the MSE in equation (2.21) with respect to k as
follows:

∂MSEðbβMKLÞ¼� 2σ2
Pp

j¼1
λ jðλ j�kÞ
ðλ jþkÞ4 þ4σ2

Pp
j¼1

λ jðλ j�kÞ2
ðλ jþkÞ5

h i
þ 2kβ2

Pp
j¼1

ð3λ jþkÞ½ð3λ jþkÞþK�
ðλ jþkÞ4 �4k2

Pp
j¼1

ð3λ jþkÞ2β2
ðλ jþkÞ5

h i
(2.22)

By equating to 0 and dividing through by 2 we have the resulting equation as:

�Pp
j¼1 σ2 ðλ jðλ j�kÞ

ðλ jþkÞ4 þ2σ2 λ jðλ j�kÞ2
ðλ jþkÞ5

h i
þPp

j¼1 kβ2 ð3λ jþkÞð3λ jþ2kÞ
ðλ jþkÞ4 �2k2 ð3λ jþkÞ2β2

ðλ jþkÞ5
h i

¼ 0 (2.23)

�σ2λ jðλ j� kÞ½λ jþ kþ2λ j�2kÞ� ¼ kð3λ jþ kÞβ2½6kλ jþ2k2�3λ2j�5kλ j�2k2�
�σ2λ jðλ j� kÞ½3λ j� kÞ� ¼ kð3λ jþ kÞβ2½kλ j�3λ2j� (2.24)
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Solving the equation above for k yields the biasing parameter k given below as:

kMKL ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λiα2þσ2ð Þ2þ4α2σ2λi�3λiα2þσ2

q
2β2

� 3λiα
2þσ2

� �24 35 (2.25)

The shrinkage parameter estimated byMansson and Shukur, (2011) and Kibria and Lukman (2020) was also adopted for
this study as listed:

k1 ¼ 1

max α2j

� � (2.26)

k2 ¼ pP
2α2jþ 1

λ je

� � (2.27)

k3 ¼ kMKL ¼ k3 ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3λjα2þσ2Þ2þ4α2σ2λj�3λjα2þα2

q
2β2

�ð3λjα2þσ2Þ
24 35 (2.28)

k1 and k2 is the biasing parameter for PMKL1 and PMKL2, while k3 is the biasing parameters for PMKL3.

Simulation Design and Real-Life Application
Simulation study and result
In this section, a simulation study is carried out to compare the performance of the different estimators. The generation of
the dependent variables are done using pseudo-random numbers from Po (μi) where μi ¼ exiβi¼ 1,2,…,n and Xi is the i

th

row of the designmatrix with β¼ β0,β1,…,βp
� �

being the coefficient vector. The generation of the explanatory variables
with different levels of correlation is obtained using

xij ¼ 1�ρ2
� �1=2zijþρzipþ1; i¼ 1,2, :::,n and j¼ 1,2, :::,p: (3.1)

where ρ is the level of multicollinearity between the explanatory variables (Kibria et al. 2015; Kibria and Banik, 2016;
Lukman et al., 2019b, Lukman et al. 2020b). zij are pseudo-random numbers generated using the standard normal
distribution such that i ranges from 1 to n and j from 1 to p. As a common restriction used in simulation studies, it is
assumed that

Pp
j¼1β

2
j ¼ 1 and β1 ¼ β2 ¼…¼ βp: Also, the effect of the intercept value is also being investigated as

values are taken to be 1, 0 and -1 (Kibria et al. 2014). The different levels of correlation taken are 0.8, 0.9, 0.95, 0.99 and
0.999. The other factors varied in the simulation study are the sample size n and the number of explanatory variable p.We
assume n = 50, 100 and 200 observations and p = 4 and 8 explanatory variables.

The simulation results in Tables 1 to 6 that for each of the estimators, the simulated MSE values increase as the
multicollinearity level increases, keeping other factors constant. There is also an increase in the mean squared error as the
sample size increases for all estimators compared while other factors were kept constant. As the intercept values varied
from -1 to +1, the values of the mean squared error reduced for all estimators. Result shows that the PMKL1 performed
best with minimum MSE at varying sample sizes. It was closely followed by PMKL2. They are both considered more
suitable for estimation of parameters in the Poisson regression model than the MLE as it performed worst when
multicollinearity is a challenge. In general, the PMKL1 estimator consistently performed more efficiently than the
MLE, PRE, PLE and the PKL estimators.

Real Life Application
Having carried out a simulation study, the efficacy of the proposed estimator needs to be further investigated by
considering a real-life application. The Poisson regression model has been applied to the aircraft damage dataset initially
byMyers et al. (2012) and subsequently by other researchers such asAsar andGenc (2017) andAmin et al. (2020) among
others. By following the Pearson chi-square goodness of fit test, Amin et al. (2020) was able to ascertain that the data fits a
Poisson regressionmodel. The test confirms the suitability of the response variable to Poisson distributionwith P-value of
6.898122 (0.07521). The dataset provides some detail on two separate aircrafts: The McDonnell Douglas A-4 Skyhawk
and the A-6 Grumman Itruder. The dependent variable denotes the number of locations with damage on the aircraft and
this follows a Poisson distribution (Asar and Genc, 2017; Amin et al., 2020). The data set has three explanatory variables,
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Table 1. Simulation result for mean squared error (MSE) when P = 4 and intercept = 1.

β0 N ρ MLE PRE PLE PKL PMKL1 PMKL2 PMKL3

1 50 0.8 0.0389 0.0376 0.0384 0.0383 0.0366 0.0366 0.0383

0.9 0.0534 0.0494 0.0520 0.0515 0.0440 0.0446 0.0515

0.95 0.0852 0.0729 0.0808 0.0791 0.0553 0.0574 0.0806

0.99 0.3548 0.2013 0.2800 0.2435 0.0696 0.0750 0.2835

0.999 3.4244 0.8757 1.8191 0.2302 0.1187 0.1041 1.4952

100 0.8 0.0107 0.0108 0.0107 0.0107 0.0113 0.0111 0.0107

0.9 0.0125 0.0124 0.0125 0.0125 0.0125 0.0125 0.0125

0.95 0.0182 0.0177 0.0181 0.0181 0.0171 0.0172 0.0181

0.99 0.0691 0.0595 0.0670 0.0665 0.0451 0.0480 0.0682

0.999 0.6465 0.2995 0.5061 0.4404 0.0852 0.0979 0.6098

200 0.8 0.0057 0.0056 0.0056 0.0056 0.0060 0.0059 0.0056

0.9 0.0068 0.0068 0.0068 0.0068 0.0067 0.0068 0.0067

0.95 0.0105 0.0104 0.0105 0.0105 0.0103 0.0104 0.0105

0.99 0.0422 0.0394 0.0416 0.0415 0.0347 0.0357 0.0419

0.999 0.5234 0.1897 0.4355 0.2322 0.0419 0.0324 0.5211

MLE =MaximumLikelihood Estimator; PRE=Poisson Ridge Estimator; PLE = Poisson Liu Estimator; PKL = Poisson Kibria-Lukman Estimator;
PMKL1 = Poisson Modified Kibria Lukman Estimator 1; PMKL2 = Poisson Modified Kibria Lukman Estimator 2; PMKL3 = Poisson Modified
Kibria Lukman Estimator 3.

Table 2. Simulation result for mean squared error (MSE) when P = 4 and intercept = 0.

β0 n ρ MLE PRE PLE PKL PMKL1 PMKL2 PMKL3

0 50 0.8 0.1091 0.0821 0.1003 0.1000 0.0474 0.0532 0.1036

0.9 0.1479 0.0978 0.1303 0.1295 0.0505 0.0556 0.1386

0.95 0.2356 0.1287 0.1910 0.1866 0.0536 0.0588 0.2158

0.99 0.9393 0.2847 0.5410 0.3425 0.0565 0.0593 0.6883

0.999 9.4757 1.9349 4.8030 2.2184 0.2562 0.1817 2.9303

100 0.8 0.0295 0.0266 0.0291 0.0291 0.0230 0.0238 0.0294

0.9 0.0340 0.0301 0.0335 0.0335 0.0243 0.0258 0.0339

0.95 0.0500 0.0416 0.0488 0.0488 0.0297 0.0325 0.0497

0.99 0.1896 0.1088 0.1712 0.1706 0.0420 0.0503 0.1867

0.999 3.5624 1.1897 1.5432 0.7168 0.0945 0.0991 1.5706

200 0.8 0.0154 0.0153 0.0153 0.0153 0.0138 0.0139 0.0154

0.9 0.0178 0.0187 0.0187 0.0187 0.0161 0.0166 0.0188

0.95 0.0262 0.0284 0.0284 0.0284 0.0223 0.0234 0.0286

0.99 0.8292 0.1083 0.1083 0.1082 0.0454 0.0529 0.1126

0.999 1.5185 0.3222 0.8548 0.1183 0.0543 0.0743 0.9527

MLE=MaximumLikelihood Estimator; PRE =PoissonRidge Estimator; PLE =Poisson Liu Estimator; PKL =PoissonKibria-LukmanEstimator;
PMKL1 = Poisson Modified Kibria Lukman Estimator 1; PMKL2 = Poisson Modified Kibria Lukman Estimator 2; PMKL3 = Poisson Modified
Kibria Lukman Estimator 3.
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Table 3. Simulation result for mean squared error (MSE) when P = 4 and intercept = -1.

β0 n ρ MLE PRE PLE PKL PMKL1 PMKL2 PMKL3

-1 50 0.8 0.3089 0.2230 0.2569 0.2211 0.2093 0.2146 0.2478

0.9 0.4295 0.2604 0.3327 0.2702 0.2299 0.2366 0.3205

0.95 0.6924 0.3372 0.4890 0.3364 0.2562 0.2755 0.4573

0.99 2.7802 0.7723 1.5114 0.3302 0.3020 0.3734 1.0038

0.999 26.9726 5.4928 14.1059 9.2016 0.7486 1.9380 4.1156

100 0.8 0.0809 0.0772 0.0775 0.0764 0.0533 0.0739 0.0778

0.9 0.0935 0.0834 0.0891 0.0886 0.1043 0.1004 0.0812

0.95 0.1389 0.1116 0.1290 0.1287 0.1175 0.1099 0.1296

0.99 0.5161 0.2666 0.4024 0.3878 0.1281 0.1231 0.4790

0.999 4.6805 1.1257 2.6775 0.7517 0.1994 0.2043 3.5989

200 0.8 0.0421 0.0426 0.0417 0.0409 0.0404 0.0423 0.0409

0.9 0.0511 0.0498 0.0501 0.0498 0.0446 0.0535 0.0499

0.95 0.0767 0.0704 0.0741 0.0741 0.0672 0.0633 0.0741

0.99 0.3107 0.2115 0.2766 0.2731 0.1226 0.1309 0.3016

0.999 4.1247 0.8450 2.0275 0.7102 0.1369 0.1528 2.6541

MLE=MaximumLikelihood Estimator; PRE =PoissonRidge Estimator; PLE=Poisson Liu Estimator; PKL =PoissonKibria-LukmanEstimator;
PMKL1 = Poisson Modified Kibria Lukman Estimator 1; PMKL2 = Poisson Modified Kibria Lukman Estimator 2; PMKL3 = Poisson Modified
Kibria Lukman Estimator 3.

Table 4. Simulation result for mean squared error (MSE) when P = 8 and intercept = 1.

β0 n ρ MLE PRE PLE PKL PMKL1 PMKL2 PMKL3

1 50 0.8 0.0980 0.0883 0.0960 0.0951 0.0796 0.0804 0.0969

0.9 0.1404 0.1163 0.1355 0.1329 0.0906 0.0938 0.1369

0.95 0.2256 0.1631 0.2113 0.2036 0.1004 0.1072 0.2201

0.99 0.9255 0.3956 0.7190 0.5837 0.1133 0.1256 0.8598

0.999 8.4713 1.9414 4.8816 1.0453 0.3070 0.2788 5.8787

100 0.8 0.0232 0.0229 0.0231 0.0231 0.0227 0.0227 0.0231

0.9 0.0340 0.0329 0.0337 0.0335 0.0314 0.0316 0.0336

0.95 0.0534 0.0499 0.0525 0.0518 0.0440 0.0449 0.0526

0.99 0.2226 0.1634 0.2026 0.1891 0.0853 0.0792 0.2081

0.999 2.1185 0.7284 1.2950 0.4499 0.0882 0.0951 1.2901

200 0.8 0.0057 0.0057 0.0057 0.0057 0.0056 0.0057 0.0057

0.9 0.0076 0.0076 0.0076 0.0076 0.0075 0.0074 0.0076

0.95 0.0117 0.0115 0.0116 0.0116 0.01130 0.01134 0.0116

0.99 0.0443 0.0412 0.0434 0.0430 0.0356 0.0365 0.0436

0.999 1.8722 0.2071 0.5491 0.2671 0.0566 0.0562 0.8730

MLE =MaximumLikelihood Estimator; PRE = Poisson Ridge Estimator; PLE=Poisson Liu Estimator; PKL = Poisson Kibria-Lukman Estimator;
PMKL1 = Poisson Modified Kibria Lukman Estimator 1; PMKL2 = Poisson Modified Kibria Lukman Estimator 2; PMKL3 = Poisson Modified
Kibria Lukman Estimator 3.
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Table 5. Simulation result for mean squared error (MSE) when P = 8 and intercept = 0.

β0 n ρ MLE PRE PLE PKL PMKL1 PMKL2 PMKL3

0 50 0.8 0.2738 0.1473 0.2377 0.2352 0.0808 0.0879 0.2682

0.9 0.3927 0.1834 0.3258 0.3201 0.0829 0.0899 0.3825

0.95 0.6114 0.2382 0.4677 0.4448 0.0942 0.0952 0.5888

0.99 2.4858 0.6218 1.4882 0.7865 0.1205 0.1428 2.1778

0.999 23.3548 4.6860 13.2573 6.5291 0.7055 0.4636 12.7807

100 0.8 0.0646 0.0554 0.0617 0.0617 0.0491 0.0491 0.0635

0.9 0.0934 0.0750 0.0879 0.0878 0.0526 0.0578 0.0907

0.95 0.1462 0.1041 0.1327 0.1324 0.0553 0.0593 0.1395

0.99 0.6068 0.2589 0.4234 0.2577 0.0587 0.0643 0.5154

0.999 5.6854 1.4178 2.9951 0.3878 0.1433 0.1070 2.2332

200 0.8 0.0159 0.0151 0.0157 0.0157 0.0141 0.0143 0.0158

0.9 0.0207 0.0196 0.0205 0.0205 0.0176 0.0181 0.0206

0.95 0.0319 0.0290 0.0312 0.0312 0.0242 0.0254 0.0315

0.99 0.1185 0.0857 0.1089 0.1087 0.0441 0.0506 0.1141

0.999 1.7596 0.4612 1.0889 0.1810 0.0794 0.0921 1.0001

MLE =MaximumLikelihood Estimator; PRE = Poisson Ridge Estimator; PLE = Poisson Liu Estimator; PKL=Poisson Kibria-Lukman Estimator;
PMKL1 = Poisson Modified Kibria Lukman Estimator 1; PMKL2 = Poisson Modified Kibria Lukman Estimator 2; PMKL3 = Poisson Modified
Kibria Lukman Estimator 3.

Table 6. Simulation result for mean squared error (MSE) when P = 8 and intercept = -1.

β0 n ρ MLE PRE PLE PKL PMKL1 PMKL2 PMKL3

-1 50 0.8 0.8248 0.259 0.6469 0.4512 0.2159 0.6700 0.7314

0.9 1.1355 0.4945 0.8253 0.5699 0.4693 0.5526 0.9927

0.95 1.7701 0.6264 1.1745 0.6921 0.5848 0.5614 1.4256

0.99 7.1964 1.6865 4.2093 1.0061 0.4735 0.4493 4.8258

0.999 65.8760 12.8251 38.0726 37.7305 2.0409 0.9017 24.8129

100 0.8 0.1800 0.1542 0.1653 0.1493 0.1422 0.1616 0.1547

0.9 0.2575 0.2001 0.2269 0.2073 0.2020 0.1858 0.2131

0.95 0.4105 0.2729 0.3392 0.3019 0.2354 0.2115 0.3419

0.99 1.6914 0.6536 1.0983 0.5039 0.2420 0.2180 1.1012

0.999 15.5667 3.7188 8.3620 4.0565 0.3710 0.2221 3.8870

200 0.8 0.0436 0.0422 0.0425 0.0419 0.0303 0.0475 0.0419

0.9 0.0568 0.0535 0.0546 0.0544 0.0512 0.0545 0.0542

0.95 0.0860 0.0766 0.0810 0.0808 0.0693 0.0691 0.0813

0.99 0.3260 0.2168 0.2753 0.2562 0.1022 0.1087 0.2890

0.999 8.7594 1.5639 3.3266 2.0065 0.2433 0.1621 1.7855

MLE=MaximumLikelihood Estimator; PRE =PoissonRidge Estimator; PLE =Poisson Liu Estimator; PKL =PoissonKibria-LukmanEstimator;
PMKL1 = Poisson Modified Kibria Lukman Estimator for k1; PMKL2 = Poisson Modified Kibria Lukman Estimator for k2; PMKL3 = Poisson
Modified Kibria Lukman Estimator for k3.
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X1 shows the type of aircraft which makes the outcome binary (A-4 is coded as 0 and A-6 is coded as 1). X2 is the bomb
load in tons and X3 is the number of months of aircrew experience.Meyers et al. (2012) was able to ascertain that the data
set is greatly affected by multicollinearity. The eigenvalues of the matrix X were obtained as 4.3333, 374.8961 and
2085.2251. The condition number of 219.3654 was also obtained which is an indication of the problem of multi-
collinearity since it is greater than 30 (Asar and Genc, 2017). The performance of the estimators is judged based on the
mean squared error of each of the estimators.

From Table 7, it is evident that all of the regression coefficients had identical signs. The estimator with the highest mean
squared error is the MLE due to the presence of multicollinearity. The suggested estimator (PMKL1, PMKL2, PMKL3)
has the lowest MSE that has established its dominance. We also observed that the performance of the estimator is highly
dependent on the biasing parameter k. The expressions for the biasing parameters are defined in equation (2.26)-(2.28).

Conclusion
The parameters in the PRM are commonly estimated using the Maximum Likelihood Estimator. However, literature had
shown that the estimator suffers a setback when the explanatory variables are correlated. This problem led to the
implementation of alternative estimators with single shrinkage parameters such as the Poisson Ridge Regression
Estimator (PRE), Poisson Liu Estimator (PLE) and the Poisson KL Estimator (PKLE). The KL estimator was generally
preferred to the ridge regression and Liu estimator in the linear regression model. According to Lukman et al. (2021), the
PoissonKL estimator outperforms PRE and PLE. This studymodified theKL estimator to propose a new estimator called
the Poisson Modified KL estimator (PMKL). The new estimator falls in the same class with the ridge, Liu and KL
estimators since they possessed a single shrinkage parameter. We investigated the performance of the estimators with a
simulation study and a real-life application. From the results, we observed that the new estimator consistently performed
well in the presence of multicollinearity with the lowest MSE. Finally, the new estimator is more suitable to combat
multicollinearity in the PRM.

Data availability
All data underlying the results are available as part of the article and no additional source data are required.
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7. 

There is no explanation for equation (2.11). 
 

8. 

I think, “equation (2.10)” should be “equation (2.9)” before equation (2.12) on page 4. 
 

9. 

On page 5, the authors should explain what lambdas are. Do the authors use “V” to Show 
variance? If so, some explanations should be added about it. 
 

10. 

On page 5, there is the incorrect use of “MSEM”. This abbreviation does not exist, although it 
is used while representing the lemmas and theorems. 
 

11. 

I think the authors employ the canonical form in the proof of the theorems. Unfortunately, I 
did not find some information about the canonical model. 
 

12. 

The selection of the biasing parameter section is insufficient. A detailed derivation and more 
information should be given. 
 

13. 

In the simulation section, on page 7, why does the mean square error increase as the 
sample size increases? 
 

14. 

It would be better if no abbreviations were used in the title.15. 
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points. 
 

Write one paragraph on count data models and their importance at the start of the 
Introduction and include some citations that demonstrate the importance of count data 
models, for example: Amin et al., 20201; Amin et al., 20212; Sami et al., 20213; Amin et al., 
20214; Majid et al., 20215; Rashad et al., 20196; Algamal et al., 20157; Algamal et al., 20218

; Alanaz et al., 20189. 
 

○

Write the reason for your proposed estimator over other estimators in the last paragraph of 
the Introduction section. 
 

○

Change independent variables to explanatory variables in the whole study. 
 

○

Write the first paragraph clearly and correct equation 2.1 of the Methods section by 
following Amin et al., 2020 1. 
 

○

Change “mean square error” to “mean squared error” in the whole manuscript. 
 

○

On page 3, write the reason for adapting the Poisson ridge estimator. 
 

○

On page 4, line 1, write the range of ridge parameter k. 
 

○

Write the limitations of the ridge estimator after equation (2.5). 
 

○

Write the range of Liu parameter d after equation (2.6). 
 

○

Write different notations of the ridge parameter k, for ridge, KL, and MKL estimators and 
also mention the ranges of these biasing parameters. 
 

○

Write the expressions for MSEs of ridge, Liu, and KL estimators. 
 

○

In Lemma 2.2, define b1, b2, 
 

○

The statement of Theorem 2.2 is wrong, I suggest the authors correct this. 
 

○

Define e in equation (2.23).○

In equation (2.24), change λi   to λj  
 

○

Correct expressions above equation (3.1). 
 

○

The interpretations of simulation results need more detailed discussion. 
 

○

In real application, report the estimated values of each biasing parameter with proper 
citation of equations. Moreover, cite equation to compute MSE of the consider estimators. 
 

○

There are some grammatical issues that should be corrected.○
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The paper extends the Liu estimator in generalized linear modeling. Specifically, the authors 
propose a new biased estimator for the estimation of regression coefficients in the discrete 
Poisson regression. 
 
The results are interesting and the topic is eye-catching. The theoretical results are well supported 
by extensive numerical analysis. 
 
I suggest the authors make minor revisions to improve the presentation before indexing.

Check the notation entirely to be consistent. For instance, in equation (2.10), "hat" must be 
added for the estimator. It happens also for (2.12). 
 

1. 

Use another notation for diagonal matrices in equations. For example, you may use "L" and 
then define the elements.  
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Explain equation (2.21) more. Is the minimization over i? 
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In the simulation study, for the design generation, I suggest using another notation for "zip" 
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Provide a reference for the accessibility of the real data use in the real-life application.5. 
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?

 
Page 19 of 20

F1000Research 2021, 10:548 Last updated: 16 FEB 2022

https://doi.org/10.5256/f1000research.57427.r89260
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-5881-9241


Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: High-dimensional modeling; shrinkage estimation

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 27 Jul 2021
BENEDICTA Aladeitan, Landmark University, Omu-Aran, Nigeria 

Thanks for your observations and corrections. All will be duely implemented.  

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

 
Page 20 of 20

F1000Research 2021, 10:548 Last updated: 16 FEB 2022

mailto:research@f1000.com

