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A B S T R A C T   

The novel coronavirus disease 2019 (COVID-19) is a rapidly emerging and highly transmissible disease caused by 
the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Understanding the microbiomes associated 
with the upper respiratory tract infection (URTI), chronic obstructive pulmonary disease (COPD) and COVID-19 
diseases has clinical interest. We hypothesize that microbiome diversity and composition, and their genomic 
features are associated with different pathological conditions of these human respiratory tract diseases. To test 
this hypothesis, we analyzed 21 RNASeq metagenomic data including eleven COVID-19 (BD = 6 and China = 5), 
six COPD (UK = 6) and four URTI (USA = 4) samples to unravel the microbiome diversity and related genomic 
metabolic functions. The metagenomic data mapped to 534 bacterial, 60 archaeal and 61 viral genomes with 
distinct variation in the microbiome composition across the samples (COVID-19 > COPD > URTI). Notably, 
94.57%, 80.0% and 24.59% bacterial, archaeal and viral genera shared between the COVID-19 and non-COVID 
samples, respectively. However, the COVID-19 related samples had sole association with 16 viral genera other 
than SARS-CoV-2. Strain-level virome profiling revealed 660 and 729 strains in COVID-19 and non-COVID 
samples, respectively, and of them 34.50% strains shared between the conditions. Functional annotation of 
the metagenomic data identified the association of several biochemical pathways related to basic metabolism 
(amino acid and energy), ABC transporters, membrane transport, virulence, disease and defense, regulation of 
virulence, programmed cell death, and primary immunodeficiency. We also detected 30 functional gene groups/ 
classes associated with resistance to antibiotics and toxic compounds (RATC) in both COVID-19 and non-COVID 
microbiomes. Furthermore, we detected comparatively higher abundance of cobalt-zinc-cadmium resistance 
(CZCR) and multidrug resistance to efflux pumps (MREP) genes in COVID-19 metagenome. The profiles of 
microbiome diversity and associated microbial genomic features found in both COVID-19 and non-COVID (COPD 
and URTI) samples might be helpful in developing microbiome-based diagnostics and therapeutics for COVID-19 
and non-COVID respiratory diseases. However, future studies might be carried out to explore the microbiome 
dynamics and the cross-talk between host and microbiomes employing larger volume of samples from different 
ethnic groups and geoclimatic conditions.   

1. Introduction 

The pneumonia like respiratory illness (COVID-19) caused by a novel 
coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS- 

CoV-2) was first reported in Wuhan city of China in December, 2019. 
The disease unprecedentedly spread across 216 countries and/or terri-
tories of the globe within months (He et al., 2020; Hoque et al., 2020a; 
Petersen et al., 2020; Rahman et al., 2020b). The World Health 
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Organization (WHO) declared the pandemic as a public health emer-
gency of international concern. Metagenomic RNA sequencing of 
COVID-19 suspected patient's sample suggested the etiology as a new 
RNA virus belonging to Coronaviridae and later designated as SARS-CoV- 
2 (Hoque et al., 2020a; Lam et al., 2020; Rahman et al., 2021). This virus 
can easily undergo mutation and recombination to adapt diverse envi-
ronment (Islam et al., 2020), and thus survive by altering (Hoque et al., 
2020b) a wide host range causing constant and long-term health threats 
(Paules et al., 2020). Furthermore, COVID-19 has not only devastated 
the public health, but also posed an immense impact on human activities 
at the societal, economical, and geopolitical levels. 

The human health services have also been adversely affected by the 
prevalence, recognition, and management of other non-COVID respira-
tory diseases including upper respiratory tract infection (URTI), asthma, 
and chronic obstructive pulmonary disease (COPD) (Stolz et al., 2019; 
Lippi and Henry, 2020). Although, SARS-CoV-2 affects different people 
in different ways, most common clinical features include fever, dry 
cough, tiredness, sore throat, diarrhea, difficulty in breathing or short-
ness of breath, chest pain or pressure, and loss of speech or movement 
(Hoque et al., 2020a; Islam et al., 2020), many of these symptoms are 
common in URTI and COPD. The inhaled SARS-CoV-2 virus particle 
likely binds to epithelial cells in the nasal cavity, starts replicating, 
migrates down the respiratory tract along the conducting airways, and a 
more robust innate immune response is triggered (Mason, 2020). 
Therefore, it can assume that during this propagation, migration and 
immune response, the microbiomes throughout the respiratory airways 
could be altered or changed, and some of them can further aggravate the 
disease process. Recent meta-analysis demonstrated that COPD is the 
most strongly predictive comorbidity of COVID-19 severity, and is 
associated with more than five-fold increased risk of COVID-19 infection 
(Lippi and Henry, 2020). Therefore, patients with a history of non- 
COVID respiratory diseases such as URTI, asthma and COPD, would be 
anticipated to have an increased risk of infection (Halpin et al., 2020). 

Human health is the outcome of the complex interactions between 
the inhabiting microbiome and its human host (Kumpitsch et al., 2019). 
The compositional and functional perturbations of the microbiome can 
occur at different body sites, and thus, the microbiome dysbiosis can 
reduce the beneficial and/or commensal bacteria, and favors growth of 
the opportunistic pathogenic bacteria (Kumpitsch et al., 2019; Hoque 
et al., 2020b). During COVID-19, and non-COVID respiratory diseases 
(URTI and COPD), a paradigm shifts in microbiome compositions and 
their diversity might be observed due to the emergence of particular 
dominant bacteria in lungs and/or respiratory tract (Hahn et al., 2018; 
Mathieu et al., 2018; Wypych et al., 2019). The microbial community of 
the respiratory tract and lung is continually being renewed and replaced, 
and displays greater variations in both taxonomic composition and di-
versity (Mathieu et al., 2018; Wypych et al., 2019). Even though bac-
teria, archaea, viruses, and bacteriophages represent a significant part of 
the respiratory tract associated microbial communities, to get a deeper 
understanding of these microbes remains challenging due to the diffi-
culties in their isolation, identification, and characterization. Viruses are 
essential constituents of microbial communities contributing to their 
homeostasis and evolution. The viral community in the human gut 
microbiome is dominated by bacteriophages (Dutilh et al., 2014). 
Phages can modulate the structure and function of a bacterial commu-
nity through horizontal gene transfer (HGT), thereby altering the bac-
terial phenotypes including virulence, antibiotic resistance, and biofilm 
formation (Huddleston, 2014; Hoque et al., 2019; Zheng et al., 2019). 
Moreover, phage-induced alterations could pose potential health risks 
by influencing bacterial pathogenicity and antibiotic resistance (Zheng 
et al., 2019). 

A large body of literature is available on characterization of the 
clinical features of the COVID-19 patients, the genomic features 
including structure, composition, evolution, and genome-wide varia-
tions in different strains of SARS-CoV-2, and to develop effective vaccine 
candidates and therapeutics to halt this pandemic disease (Chen et al., 

2020; Hoque et al., 2020a; Huang et al., 2020; Rahman et al., 2020a; 
Rahman et al., 2020b; Rahman et al., 2020c; Rahman et al., 2021). 
Moreover, several preliminary studies suggested that the composition of 
a person's gut microbiome may be predictive of developing severe 
symptoms of SARS-CoV-2 infections (Chen et al., 2020; He et al., 2020). 
However, little is known about the potential role of nasopharyngeal and 
lung microbiomes, and their biological mechanisms for the variable 
susceptibility to the respiratory diseases. To address the above unre-
solved question, we investigated the composition, and diversity of 
microbiomes associated with COVID-19, and non COVID diseases (URTI 
and COPD). We identified core respiratory microbiota which predicted 
the proteomic biomarkers of COVID-19 and non-COVID respiratory 
diseases using high throughput metagenomics sequencing of 21 sam-
ples. We conducted further functional metabolic analysis to unravel 
potential biological mechanisms linking microbiome changes, SARS- 
CoV-2 genomic diversity, and host disease state. This reports for the 
first time describe the association of a diverse groups of microbiotas 
(bacteria, archaea and viruses) and their concomitant genomic features 
in COVID-19 and non-COVID (URTI and COPD) diseases, and discusses 
their roles the pathophysiology of these diseases. 

2. Methods 

2.1. Sample collection and confirmatory diagnosis of COVID 19 

The nasopharyngeal specimens were collected from patients (n = 10) 
presenting with potential COVID-19 infections following the guidance of 
the Director General of Health Services of Bangladesh. A single dry swab 
was inserted through one nostril straight back (NOT upwards), along the 
floor of the nasal passage up to the posterior wall of the nasopharynx, 
and rubbed against and above the nasal turbinate. The swab was rotated 
a few times against the nasal wall before removing. A second swab was 
used to abrade the tonsils and pharynx. The swabs were placed in sample 
collection vial containing normal saline, and preserved at − 20 ◦C until 
further use for RNA extraction. The confirmatory diagnosis of SARS- 
CoV-2 infections were made by RT-qPCR (Péré et al., 2020). 

2.2. RNA extraction, metagenomics library preparation and sequencing 

We further intended to characterize the microbial community pre-
sent along with the SARS-CoV-2 virus in the nasopharyngeal specimens 
of clinical COVID-19 patients through RNASeq metagenomic approach. 
We extracted total RNA content from five (n = 5) COVID-19 positive 
patients using TRIzol (Invitrogen) reagent following manufacturer's 
protocol. RNA-Seq libraries were prepared from isolated total RNA using 
TruSeq Stranded Total RNA Library Prep kit (Illumina) according to the 
manufacturer's instructions where first strand cDNA was synthesized 
using SuperScript II Reverse Transcriptase (Thermo Fisher), and random 
primers (Visnovska et al., 2019; Zhou et al., 2020). Paired-end (2 × 150 
bp reads) sequencing of the RNA library was performed on the Illumina 
NextSeq 500 platform. RNA extraction, library preparation, and 
sequencing were carried out at the Basic and Applied Research on Jute 
Project, Dhaka, Bangladesh. 

2.3. Sequence retrieval 

In addition to our five COVID-19 RNASeq, we retrieved six (n = 6) 
Chinese RNASeq data (Accession numbers: SRX7705831- SRX7705836), 
four (n = 4) metagenome sequences of human URTI belonged to CDC, 
USA (Accession numbers: SRR10252885, SRR10252888, SRR10252889 
and SRR10252892 under bio-project: PRJNA573045) from the NCBI 
(National Center for Biotechnology Information) database 
(https://www.ncbi.nlm.nih.gov/), and six (n = 6) metagenome se-
quences of human COPD from the European Nucleotide Archive, UK 
(Accession numbers: ERR2732537, ERR2732541, ERR2732559, 
ERR2732558, ERR2732551 and ERR2732550 under bio-project: 
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PRJEB14074). Therefore, the current microbiome study included 21 
sequences including 11 COVID-19 (BD = 5, China = 6) and 10 non- 
COVID (USA = 4, UK = 6) sequences to decipher the microbiome di-
versity and composition, and metabolic functional potentials associated 
with COVID 19 (BD and China), and non-COVID respiratory diseases 
(COPD; UK and URTI; USA). 

2.4. Taxonomic mapping, classification, diversity and community 
analysis 

The metagenomic data of the current study were analyzed using the 
assembly-based hybrid method MG-RAST (release version 4.1) (Glass 
et al., 2010). The paired-end FASTQ files were concatenated and filtered 
through BBDuk (Stewart et al., 2018) (with options k = 21, mink = 6, 
ktrim = r, ftm = 5, qtrim = rl, trimq = 20, minlen = 30, overwrite =
true) to remove Illumina adapters, known Illumina artifacts, and phiX. 
Any sequence below these thresholds or reads containing more than one 
‘N' were discarded. In the current study, 46.04 million reads in two 
metagenomes with an average of 2.19 million reads per sample passed 
the quality control steps (Supplementary Data 1). The trimmed se-
quences were uploaded to the MG-RAST server with properly embedded 
metadata and were subjected to optional quality filtering with der-
eplication and host DNA removal, and finally screening for taxonomic 
and functional assignment. Alpha diversity (diversity within samples) 
was estimated using the observed species, and Shannon diversity indices 
(Koh, 2018) MG-RAST read assignments and counts. To visualize dif-
ferences in bacterial diversity, principal coordinate analysis (PCoA; at 
genus level) based on the Bray-Curtis distance method (Beck et al., 
2013). Taxonomic abundance was determined by applying the “Best Hit 
Classification” option using the NCBI database as a reference with the 
following settings: maximum e-value of 1 × 10− 30; minimum identity of 
80% for bacteria, 60% for archaea and viruses, and a minimum align-
ment length of 20 as the set parameters. A ‘target’ genome library was 
constructed containing all viral sequences from the NCBI RefSeq Release 
201 database (https://en.wikipedia.org/wiki/National_Center_for_ 
Biotechnology_Information) using the Kraken 2 (Wood et al., 2019), 
and the metagenomics reads were then aligned against the target library 
using the BWA algorithm (Jaillard et al., 2016). Finally, the PathoScope 
2 was used for strain level taxonomic assignment of the viruses (Hong 
et al., 2014). 

2.5. Functional profiling of the microbiomes 

We performed the taxonomic functional classification through 
mapping the reads onto the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (Kanehisa et al., 2019), and SEED subsystem identi-
fiers (Glass et al., 2010) on the MG-RAST server using the partially 
modified set parameters (e-value cutoff: 1 × 10− 30, min. % identity 
cutoff: 60%, and min. alignment length cutoff: 20). 

2.6. Statistical analysis 

The non-parametric test Kruskal-Wallis rank sum test was used to 
evaluate differences in the relative percent abundance of taxa in COVID- 
19 and non-COVID (URTI and COPD) sequence data. Comparative 
taxonomic and functional profiling was performed with the reference 
prokaryotic metagenomes available in MG-RAST database for statistical 
analyses. The gene counts were normalized by dividing the number of 
gene hits to individual taxa/function by total number of gene hits in 
each metagenome to remove bias due to differences in sequencing ef-
forts. To identify differentially abundant SEED or KEGG functions, and 
resistance to antibiotics and toxic compounds (RATCs) across the four 
sampling locations (BD, China, UK and USA), statistical tests were 
applied with non-parametric test Kruskal-Wallis rank sum test at 
different KEGG and SEED subsystems levels IBM SPSS (SPSS, Version 
23.0, IBM Corp., NY, USA). 

3. Results 

3.1. Microbiome diversity and composition in COVID-19 and non-COVID 
samples 

The COVID-19 disease significantly affected the diversity (Shannon 
estimated alpha diversity, P = 0.036, Kruskal-Wallis test) and compo-
sition (Bray-Curtis distance estimated beta diversity, P = 0.021, Kruskal- 
Wallis test) of respiratory tract microbiome (Fig. 1). The rarefaction 
curves showed that sequencing depth was sufficient to capture the entire 
microbial diversity among the samples of the study (Fig. S1). Both the 
number of identified microbial taxa and Shannon estimated alpha di-
versity were significantly higher in COVID-19 samples (BD and China) 
than the non-COVID (UK and USA) samples (Fig. 1A). The principal 
coordinate analysis (PCoA) based on Bray-Curtis distances showed 
distinct separations among the four sampling locations (Bangladesh, 
China, USA, and UK) (Fig. 1B). Notably, the COVID-19 related samples 
(BD and China) remained more similar than the URTI and COPD- 
associated samples from the USA and UK (Fig. 1B). Moreover, the 
non-COVID respiratory tract disease (URTI and COPD)-associated sam-
ples of UK and USA clustered more closely than those of COVID-19 
samples (BD and China) indicating that SARS-CoV-2 infections are 
associated with secondary microbial infections (Fig. 1B). 

The composition of COVID-19 (BD and China) and non-COVID res-
piratory tract disease (URTI; USA and COPD; UK)-related microbiomes 
at the domain level was dominated by bacteria, with a relative abun-
dance of >99.50, followed by archaea (~0.3%), and viruses (~0.2%) 
(Data S1). Twenty-eight bacterial phyla were identified in COVID-19 
(BD and China), and non-COVID (UK and USA) metagenomes 
including 28, 10, 28 and 27 phyla in BD, China, UK and USA samples, 
respectively (Data S1). A total of 534 bacterial genera were detected 
across the four sample groups including 527, 306, 512 and 443 in BD, 
China, UK and USA samples, respectively (Fig. 2A, Data S1). About 95% 
(505/534) of the detected bacterial genera shared in both COVID-19 and 
non-COVID diseases, and only 22 genera had unique association with 
COVID-19 disease (Fig. 2A, Data S1). In addition to bacteria, 60 archaeal 
and 61 viral genera were detected, and of them 48, 10, 60 and 31 
archaeal genera (Fig. S2B), and 31, 5, 36 and 18 viral genera (Fig. S2C) 
were identified in BD, China, UK and USA, respectively. Of the detected 
archaeal genera, 80.0% were found to be shared in both sample groups, 
and only 20.0% archaeal genera had unique association with non- 
COVID diseases (Fig. 2B, Data S1). Similarly, 26.23% and 49.18% of 
the detected viral genera had unique association with COVID-19 and 
non-COVID diseases, respectively, and 24.59% genera were found to be 
shared between the conditions (Fig. 2C, Data S1). The strain level 
profiling of the viral communities revealed 1032 strains including 660 
and 729 in the COVID-19 and non-COVID samples, respectively (Fig. 2D, 
Data S1). Of the identified strains, 303 in COVID-19 and 373 in non- 
COVID respiratory disease samples, respectively had unique associa-
tions, and 34.50% strains were found to be shared between the condi-
tions (Fig. 2D, Data S1). 

3.2. Differences in bacteriome composition in COVID-19 and non-COVID 
samples 

The composition of bacterial phyla across the sample groups varied 
significantly (P = 0.037, Kruskal-Wallis test). This diversity was repre-
sented by the predominant bacterial phyla of Proteobacteria (35.59%), 
Tenericutes (18.09%), Actinobacteria (17.42%), Cyanobacteria (11.23%), 
Firmicutes (7.60%), and Bacteroidetes (6.20%) in the COVID-19 meta-
genome, and Firmicutes (56.47%), Bacteroidetes (14.59%), Actinobacteria 
(14.12%), and Fusobacteria (2.38%) in non-COVID samples (Fig. 3; Data 
S1). The rest of the phyla in four in four metagenomes had relatively 
lower abundances (<1.0%) (Data S1). 

The composition and relative abundance of the bacteria significantly 
differed (P = 0.029, Kruskal-Wallis test) at the genus level between 
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COVID-19 (BD and China) and non-COVID (UK and URTI) conditions 
conditions. Remarkably, most of the genera had higher relative abun-
dances in the COVID-19 samples compared to the non-COVID samples 
(Data S1). Importantly, Staphylococcus (10.39%), Nostoc (6.70%), Ana-
baena (4.86%), Mycobacterium (3.02%), Cyanothece (2.51%), Bradyrhi-
zobium (2.32%), Actinomyces (1.81%), Pseudomonas (1.80%), 
Propionibacterium (1.56%), Corynebacterium (1.52%), Rhodop-
seudomonas (1.30%), Nodularia (1.27%), Burkholderia (1.25%), Micro-
coccus (1.23%), Acinetobacter (1.18%), Methylobacterium (1.15%), 
Streptomyces (1.14%), Rhodococcus (1.09%), and Rhodobacter (1.00%) 
were the most abundant genera in COVID-19 samples (Fig. 4, Data S1). 
Conversely, Prevotella (18.20%), Streptococcus (17.35%), Veillonella 
(12.64%), Rothia (9.70%), Actinomyces (7.97%), Neisseria (2.55%), 
Fusobacterium (2.13%), Lactobacillus (1.97%), Atopobium (1.53%), Meg-
asphaera (1.45%), Porphyromonas (1.41%), Bacteroides (1.34%), Peptos-
treptococcus (1.28%), Clostridium (1.24%), and Bifidobacterium (1.05%) 
were the predominantly abundant genera in non-COVID (COPD and 
URTI) samples of the UK and USA (Fig. 4, Data S1). The rest of the 
genera detected in both COVID-19 and non-COVID respiratory disease 
group had less than 1.00% relative abundances (Data S1). 

3.3. Differences in archaea and viruses in COVID-19 and non-COVID 
metagenomes 

The archaeal and viral fractions of microbiomes in COVID-19 (BD 
and China), and non-COVID respiratory disease (COPD; UK and URTI; 
USA)-metagenomes were concomitantly detected with bacteria. The 
composition and relative abundance of these two domains varied 
significantly (P = 0.017, Kruskal-Wallis test) between the COVID-19 and 
non-COVID samples (Data S1). Among the identified archaeal compo-
nents of the microbiome, Methanosarcina (19.3%), Methanocaldococcus 
(17.76%), Thermococcus (10.30%), Methanothermobacter (8.28%), Hal-
oarcula (7.77%), Staphylothermus (6.01%), Natronomonas (5.38%), Fer-
roglobus (3.52%), Caldivirga (3.38%), Halobacterium (2.83%), Natrialba 
(2.18%), Methanosphaerula (2.08%) and Picrophilus (2.02%) were the 
predominantly abundant genera in COVID-19 samples (Fig. 5, Data S1). 
Conversely, Methanobrevibacter (10.84%), Methanococcus (10.17%), 
Methanocorpusculum (6.97%), Pyrococcus (4.76%), Methanosphaera 
(4.24%), Methanococcoides (3.52%), Methanosaeta (2.55%), Archae-
oglobus (2.48%), Methanospirillum (2.40%) and Methanoculleus (2.26%) 
were the most abundant archaeal genera in the non-COVID respiratory 
disease associated samples (Fig. 5, Data S1). Though the rest of the 
archaeal genera had lower relative abundances (<2.0%) in both sample 
categories, however, their abundances always remained higher in 
COVID-19 related BD and non-COVID associated UK (COPD) samples 
(Fig. 5, Data S1). 

The viral fraction of the microbiome was largely dominated by 
Betacoronavirus (99.67% of the total abundance) genus in the COVID-19 
related samples (BD; 99.55% and China; 99.98%) while the relative 
abundance of this genus was 39.78% in the non-COVID samples. In 
addition, Siphovirus (33.17%), Alphapapillomavirus (12.01%) and Myo-
virus (7.16%) were the most predominant viral genera in non-COVID 
samples (Fig. 6, Data S1). Rest of the viral genera detected across the 
both sample groups had lower relative abundances (<1.0%) (Data S1). 
The COVID-19 samples from BD and China had sole association of 16 
viral genera (other than betacoronavirus), and of them, Tombusvirus, 
Victorivirus, Partitivirus, Chrysovirus and Totivirus were the most abun-
dant genera (Data S2). 

Complex microbial communities can harbor multiple strains of the 
same species which was evident in the present study since the strains of 
associated viral genera varied significantly (P = 0.033, Kruskal-Wallis 
test) between the COVID-19 and non-COVID samples. The relative 
abundances of the identified viral strains also varied between the sample 
categories since the COVID-19 related samples had the single most 
predominantly abundant (63.78%) strain of SARS-CoV-2, and remark-
ably, this strain was not detected in the non-COVID samples. The 

COVID-19 related samples of BD and China also possessed Choristoneura 
fumiferana granulovirus (13.17%), Shamonda orthobunyavirus (3.64%) 
and Tupaiid betaherpesvirus 1 (1.46%) (Fig. 7A, Data S1). On the other 
hand, Simbu orthobunyavirus (13.26%), Proteus phage VB_PmiS-Isfahan 
(11.37%), Mycobacterium phage Enkosi (9.22), BeAn 58058 virus 
(8.27%), Kaisodi virus (5.00%), Mycobacterium phage Phrux (3.33%), 
Beilong virus (2.88%), Mollivirus sibericum (2.77%), Oxbow virus (2.21%) 
and Micromonas sp. RCC1109 virus MpV1 (2.1%) were the top abundant 
viral strains in non-COVID samples of UK and USA (Fig. 7B, Data S1). 
Phylogenetic analysis revealed that the SARS-CoV-2 strain found in 
COVID-19 patients showed neighboring relationship to SARS Coronavi-
rus Tor2, Beihai hermit crab virus 4 and Penicillium aurantiogriseum par-
titivirus 1 (Fig. 7A). 

3.4. Differences in metabolic functions in COVID-19 and non-COVID 
samples 

By comparing the number of genes assigned to each KEGG pathway 
among the groups, we found a series of significant differences (P =
0.006, Kruskal-Wallis test) that lead to the functional divergence in the 
COVID-19 (BD and China), and non-COVID respiratory disease (COPD; 
UK and URTI; USA)-associated microbiomes. In the comparative anal-
ysis of predicted KEGG orthology (KO), we found that the COVID-19 
associated microbiomes harbored relatively higher abundance of 
genes coding for amino acid metabolism (55.23%; BD = 63.79% and 
China = 76.67%), energy metabolism (11.01%; BD = 9.81% and China 
= 12.22%), membrane transport (68.00%; BD = 62.09% and China =
73.90%), ABC transporters (67.89%; BD = 89.91% and China =
65.87%), replication and repair (28.74%; BD = 23.25% and China =
34.23%), flagellar assembly (42.22%; BD = 35.31% and China =
49.13%), and primary immunodeficiency diseases (56.18%; BD =
71.11% and China = 63.24%) compared to the non-COVID related 
microbiomes of COPD (UK) and URTI (USA)-associated metagenomes 
(Fig. 8A, Data S2). On the other hand, the non-COVID respiratory dis-
ease (COPD and URTI)-associated microbiomes had over expression of 
genes coding for oxidative phosphorylation (61.30%; UK = 67.22% and 
USA = 55.38%), signal transduction (50.91%; UK = 46.08% and USA =
75.74%), infectious diseases (59.95%; UK = 67.11% and USA =
52.79%), bacterial chemotaxis (53.79%; UK = 85.00% and USA =
22.58%), and bacterial secretion systems (29.38%; UK = 23.76% and 
USA = 35.00%) than the COVID-19 related microbiomes (Fig. 8A, Data 
S2). 

The SEED subsystems in the COVID-19 (BD and China) and non- 
COVID (COPD; UK and URTI; USA)-related microbial communities 
significantly (P = 0.024, Kruskal-Wallis test) varied. The COVID-19 
related microbiomes had relatively higher abundance of genes encod-
ing for pathogenicity islands (21.55%; BD = 18.69% and China =
24.42%), clustering-based subsystems (21.15%; BD = 22.23% and 
China = 20.07%), regulation of virulence (20.34%; BD = 24.41% and 
China = 16.28%), biofilm adhesion biosynthesis (18.49%; BD = 11.58% 
and China = 25.40), adhesion (17.96%; BD = 16.77% and China =
19.13%), programmed cell death (13.53%; BD = 14.85% and China =
12.21%), membrane transport (6.66%; BD = 7.83% and China =
8.50%), gene transfer agent (5.00%; BD = 5.88% and China = 4.12%) 
and virulence, disease and defense (3.39%; BD = 3.78% and China =
3.00%) (Fig. 8B, Data S2). In contrast, genes coding for oxidative stress 
(48.75%; UK = 41.89%, USA = 65.60%), periplasmic stress (6.49%; UK 
= 10.40%, USA = 2.56), cell division (4.65%; UK = 3.29%, USA =
6.01%), invasion and intracellular resistance (2.88%; UK = 1.70%, USA 
= 4.06%), and phages, prophages and transposable elements (1.26%; 
UK = 1.40%, USA = 1.11%) were upregulated in the non-COVID related 
COPD and URTI causing microbiomes (Fig. 8B, Data S2). 
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3.5. Differences in resistomes composition in microbiomes of COVID-19 
and non-COVID samples 

The resistome analysis of the COVID-19 (BD and China) and non- 
COVID (UK and USA)-associated microbiomes, the SEED module of 
the MG-RAST pipeline provided a comprehensive scenario. Using SEED, 
150,146 reads mapped to 30 resistance to antibiotics and toxic com-
pounds (RATC) functional groups across the sample across the four 
geographic regions, with different relative abundances (Data S2). The 
RATC genes were classified into two unique groups such as antibiotic 
resistance (n = 17) and toxic metal resistance (n = 13) group. Among the 
RATC functional groups, cobalt-zinc-cadmium resistance (CZCR) had 
higher relative abundances in COVID-19 microbiomes (23.69%; BD =
25.85%, China = 21.53%) compared to non-COVID (10.34%; UK =
11.75%, USA = 8.92%) microbiomes (Fig. 9, Data S2). Moreover, the 
RATC functional genes associated with beta lactamase (BLAC) (13.55%; 
BD = 9.23% and China = 17.87%), copper homeostasis (CH) (11.18%; 
BD = 12.33% and China = 10.02%), multidrug resistance to efflux 
pumps (MREP) (10.97%; BD = 14.75% and China = 7.19%), multidrug 
resistance cluster (mdtABCD) (5.34%; BD = 4.57% and China = 6.11%), 
arsenic resistance (AR) (4.76%; BD = 6.27% and China = 3.26%) and 
multidrug-efflux-pump in Campylobacter jejuni (CmeABC) operon 
(1.86%; BD = 2.74% and China = 0.98%) had higher relative abun-
dances in the COVID-19 associated microbiomes than the non-COVID 
respiratory disease (COPD and URTI) causing microbiomes (Fig. 9; 
Data S2). Conversely, gens coding for resistance to fluoroquinolones 
(RFL) (22.31%; UK = 26.16%, USA = 18.46%), BlaR1-Family-Regula-
tory-Sensor-Transducer-Disambiguation (BlaR1) family (15.47%; UK =
9.71% and USA = 21.23%), methicillin resistance in Staphylococci (MRS) 
(8.20%; UK = 10.55% and USA = 5.85%), resistance to chromium 
compounds (RCHC) (5.11%; UK = 1.05%, USA = 9.23%), Streptococcus 
pneumonia-vancomycin-tolerance-locus (SPVANT) (3.39%; UK = 3.71%, 
USA = 3.07%), mercury resistance to operon (MRO) (2.34%; UK =
2.53% and USA = 2.15%) and copper homeostasis: copper tolerance 
(CHCT) (2.07%; UK = 2.91%, USA = 1.23%) were found to be over 
expressed in the COPD and URTI-associated non-COVID microbiomes 
(Fig. 9, Data S2). Rest of the RATC genes detected in both metagenomes 
also varied in their relative abundances.  

4. Discussion 

The present study represents a proof-of-concept to decipher changes 
in microbiome compositions and diversity in COVID-19 (BD and China), 
and non-COVID related chronic obstructive pulmonary disease; COPD 
(UK), and upper respiratory tract infection; URTI (USA). Several recent 
studies showed that COVID-19 is associated with dysbiosis of the gut 
microbiomes (Dhar and Mohanty, 2020; Zuo et al., 2020). Respiratory 
tract especially lung microbiome is more dynamic and transient than 
that of the gastrointestinal tract because of bidirectional movement of 
air and mucus (Huffnagle et al., 2017). This makes it plausible that 
SARS-CoV-2 infections could lead to abnormal inflammatory reactions 
to worsen the symptoms of COVID-19. The microbiome diversity (alpha 
and beta diversity) measures revealed higher microbial diversity in 
COVID-19 samples which remained more similar than the URTI and 
COPD-associated samples from the USA and UK. Regardless of higher 
taxonomic abundances, the COVID-19-associated microbiomes 
remained inconsistent and fluctuate more within BD and China meta-
genomes than those of UK and USA samples. In a recent study, Zuo et al. 
(2020) reported that loss of salutary species in COVID-19 persisted in 
most patients despite clearance of SARS-CoV-2 virus, and is associated 
with a more long-lasting detrimental effect to the gut microbiome. 

In this study, the dominant microbial phyla showed no significant 
difference between two groups, however, COVID-19 still affected the 
prevalence of some microbes belonged to Proteobacteria and Cyanobac-
teria corroborating the recent findings of Khatiwada and Subedi (2020). 

To be specifically, in COVID-19 samples of BD and China, the abundance 
of Proteobacteria, Tenericutes, and Cyanobacteria were significantly 
higher. Conversely, Firmicutes, Actinobacteria, Bacteroidetes, and Fuso-
bacteria were the predominant phyla in COPD and URTI samples of UK 
and USA, respectively. These findings are accorded with previous 
studies of respiratory tract disease associated microbiome dysbiosis 
(Singh et al., 2017; Hahn et al., 2018; Li et al., 2019). The healthy res-
piratory tract and lungs microbiomes are mostly represented by Firmi-
cutes, Bacteroidetes and Proteobacteria phyla (Khatiwada and Subedi, 
2020) suggesting inclusion of other predominant opportunistic phyla 
such as Tenericutes, Cyanobacteria, Actinobacteria, and Fusobacteria in the 
COVID-19 samples of BD and China. The COVID-19 and non-COVID 
(COPD and URTI)-patients had an enrichment of pathogenic and 
commensal bacteria, indicating a degree of microbial changes in 
diseased states. We demonstrated that in the SARS-CoV-2 infected pa-
tients, some genera including Staphylococcus, Nostoc, Anabaena, Myco-
bacterium, Cyanothece, Bradyrhizobium, Actinomyces, Pseudomonas, 
Propionibacterium, Corynebacterium, Rhodopseudomonas, Nodularia, Bur-
kholderia, Micrococcus, Acinetobacter, Methylobacterium, Streptomyces, 
Rhodococcus, and Rhodobacter had higher relative abundances compared 
to the non-COVID samples. The changes in the composition and relative 
abundances of the microbiomes in the respiratory tract is associated 
with many vital body functions such as immune regulation and patho-
genesis (Kumpitsch et al., 2019), and might be associated with the 
COVID-19 exacerbations. 

The pathophysiology of an inflammation plays an important role in 

Fig. 1. Differences in microbiome diversity and community structure in 
COVID-19 (BD and China), and non-COVID (UK and USA) disease meta-
genomes. (A) Box plots showing significant differences (P = 0.036, Kruskal- 
Wallis test) in Shannon estimated alpha diversity in four metagenomes. (B) 
Principal coordinates analysis (PCoA) measured on the Bray-Curtis distance 
method separated samples by microbial population structure. Each dot repre-
sents an individual, and colors indicate the populations in four metagenomes. 
Statistical analysis using Kruskal–Wallis tests showed significant microbial di-
versity variations across the four metagenomes (P = 0.021, Kruskal-Wallis test). 
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Fig. 2. Taxonomic composition of COVID-19 (BD and China) and non-COVID (URTI; USA and COPD; UK) disease metagenomes. Venn diagrams representing the core 
unique and shared microbiomes in COVID-19 and non-COVID diseases. (A) Venn diagram showing unique and shared bacterial genera. Out of 534 detected bacterial 
genera, only 13 genera had unique association with COVID-19 while rest of the 521 genera (highlighted in yellow) shared between the condition. (B) Venn diagram 
comparison of unique and shared archaeal genera where 48 (highlighted in yellow) genera shared between the condition, and 12 genera had unique association with 
non-COVID URTI and COPD) diseases. (C) Venn diagrams representing unique and shared viral genera identified in both metagenomes. Of the detected viral genera 
(n = 61), 16 and 30 genera had unique association with COVID-19 and non-COVID diseases, respectively, and 15 genera (highlighted in yellow) were found to be 
shared between the study metagenomes. (D) Venn diagrams showing the unique and shared viral strains in COVID-19 and Non-COVID diseases. Out of viral strains 
detected, 356 strains (highlighted in yellow) shared between the condition while 303 and 373 strains had unique associations with COVID-19 and Non-COVID 
metagenomes, respectively. More information on the taxonomic results are available in Data S1. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 3. The phylum level taxonomic profile 
bacteria in COVID-19 (BD and China), and 
respiratory tract (UK and USA) disease 
metagenomes. Stacked bar plots showing the 
relative abundance and distribution of the 
15 top abundant phyla, with ranks ordered 
from bottom to top by their increasing pro-
portion. The first four bar plots represent the 
abundance of bacterial phyla in the corre-
sponding category of COVID-19 (BD and 
China) and non-COVID (URTI; USA and 
COPD; UK) disease, and the last two bar 
plots depict overall relative abundance of 
phyla in COVID-19 and non-COVID meta-
genomes, respectively. The distribution and 
relative abundance of the bacterial phyla in 
the study metagenomes are also available in 
Data S1.   

M.N. Hoque et al.                                                                                                                                                                                                                               



Gene Reports 23 (2021) 101200

7

destroying the invading microbes, and thereby protecting the 
commensal organisms (Hoque et al., 2020b; Hoque et al., 2020c), but 
unregulated inflammation is an underlying cause of many chronic dis-
eases like COPD. Our findings demonstrated that the non-COVID related 
COPD and URTI patients had the higher relative abundance of certain 
dominant bacterial genera including Prevotella, Streptococcus, Veillonella, 
Rothia, Actinomyces, Neisseria, Fusobacterium, Lactobacillus, Atopobium, 

Megasphaera, Porphyromonas, Bacteroides, Peptostreptococcus, Clos-
tridium, and Bifidobacterium. The inflammatory mediators are associated 
with parts of dominant microbiome in the lungs, which suggesting that 
inflammation might impair the structure of growth environment of 
microbiome and the microbiome changes might in turn promoted the 
COPD (Ditz et al., 2020) and URTI (Man et al., 2017) inflammations. The 
upper respiratory tract is generally considered to be a major reservoir for 

Fig. 4. The genus level taxonomic profile bacteria in COVID-19 (BD and China) and non-COVID (URTI; USA and COPD; UK) disease metagenomes. Stacked bar plots 
showing the relative abundance and distribution of the 34 most top abundant bacterial genera, with ranks ordered from bottom to top by their increasing proportion. 
The first four bar plots represent the abundance of bacteria in the corresponding category of COVID-19 (BD and China) and non-COVID (URTI; USA and COPD; UK) 
disease, and the last two bar plots depict overall relative abundance of bacterial genera in COVID-19 and non-COVID metagenomes, respectively. Only the 33 most 
abundant genera are shown in the legend, with the remaining genera grouped as ‘Other genera’. The distribution and relative abundance of the bacterial genera in 
the study metagenomes are also available in Data S1. 

Fig. 5. The genus level taxonomic profile archaea in 
COVID-19 (BD and China) and respiratory tract dis-
ease (UK and USA) metagenomes. Stacked bar plots 
showing the relative abundance and distribution of 
the 30 most abundant genera, with ranks ordered 
from bottom to top by their increasing proportion. 
The first four bar plots represent the abundance of 
archaea in the corresponding category of COVID-19 
(BD and China) and non-COVID (URTI; USA and 
COPD; UK) disease, and the last two bar plots depict 
overall relative abundance of archaeal genera in 
COVID-19 and non-COVID metagenomes, respec-
tively. Only the 29 most abundant genera are shown 
in the legend, with the remaining genera grouped as 
‘Other genera’. The distribution and relative abun-
dance of the archaeal genera in the study meta-
genomes are also available in Data S1.   
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potential pathogens, including Streptococcus, Veillonella, Pseudomonas, 
Clostridium, Rothia, and Neisseria, to expand and subsequently spread 
towards the lungs, which could potentially lead to a chronic infection 
like COPD (Man et al., 2017; Ditz et al., 2020). The findings of the 
present study suggested that bacteriome composition in COVID-19 and 
non-COVID associated COPD and URTI might be similar at phylum level, 
however, could vary significantly at genus and strain levels which might 
be related to the age, gender, weight, food habit, and different living 
environment (Wang et al., 2018). Thus, establishing and maintaining a 
balanced microbiota in the COVID-19 and non-COVID respiratory dis-
ease (URTI and COPD) samples that is resilient to pathogenic expansion 
and invasion could prove vital for respiratory health. Moreover, 94.57% 
bacterial genera including Staphylococcus, Mycobacterium, Burkholderia, 
Prevotella, Streptomyces, Neisseria, Acidovorax, Fusobacterium, Strepto-
coccus, Erythrobacter, and Bacteroides shared between COVID-19 and 
non-COVID (COPD and URTI) metagenomes suggesting their diverse 
role in the pathophysiology of human diseases (Man et al., 2017; Ditz 
et al., 2020; Khatiwada and Subedi, 2020). However, the mechanisms 
for the pathophysiology of COVID-19 and other respiratory tract dis-
eases (non-COVID) as well as specific host-microbiome interactions 
supporting the changes in microbiome compositions, are considered 
below and not well-established. 

Viral infections predispose patients to secondary bacterial and 
archaeal infections, which often have a more severe clinical course 
(Brundage, 2006; Yildiz et al., 2018; Shen et al., 2020; Zuo et al., 2020). 
Until now, most of the respiratory tract disease associated microbiomes 
reported so far are limited to bacteriome composition (Man et al., 2017; 
Singh et al., 2017; Li et al., 2019; Ditz et al., 2020; Shen et al., 2020) 
while a plethora of other concomitant microbial components including 
archaea and viruses could also be detected (Koskinen et al., 2017; Hoque 
et al., 2019; Hoque et al., 2020b). Unlike bacteria, the diversity and 
composition of archaea and viruses always remained much lower in 
COVID-19 and non-COVID (URTI and COPD) samples. The COVID-19 
and non-COVID related COPD samples had higher number of archaeal 
and viral genera with significantly varied relative abundances. Among 
the identified archaeal components of the microbiomes, the methano-
genic archaea Methanosarcina was the most abundant genus in both 
sample groups. Most methanogenic archaea coexist and interact closely 
with anaerobic bacteria (Hoque et al., 2020b; Hoque et al., 2020c). 

Methanogenic archaea utilize low molecular weight compounds, such as 
H2 + CO2, formic acid, or acetate, and therefore have symbiotic re-
lationships with the producers of these substrates. Therefore, it is 
reasonable to hypothesize that the presence or increase in level of 
methanogenic archaea alters the composition of the polymicrobial 
community thus resulting in changes in virulence of the flora (Maeda 
et al., 2013; Hoque et al., 2020b; Hoque et al., 2020c). The viral fraction 
of the microbiome was largely dominated by Betacoronavirus genus in 
the COVID-19 related samples of BD and China. Conversely, the virome 
fraction of the non-COVID (URTI and COPD) samples were mostly rep-
resented by the genera belonged to the order Caudovirales which consists 
of the three families of tailed bacterial viruses (bacteriophages) infecting 
bacteria and archaea (Hoque et al., 2019; Hoque et al., 2020b). The host 
range of Caudovirales is very broad and includes all major bacterial phyla 
found in our samples: Firmicutes, Bacteroidetes, Proteobacteria and Acti-
nobacteria. This corresponded with an increased relative abundance of 
these bacterial taxa in COPD and URTI metagenomes. Moreover, the 
presence of few predominating viral genera both in COVID-19 and non- 
COVID samples suggests that the crucial differences might be occurring 
at the strain level, and most of the genus identified in each sample were 
represented by a single strain. The COVID-19 related samples were 
dominated by only SARS-CoV-2 strain which was not detected in non- 
COVID samples. Notably, the other predominant viral species/strains 
in COVID-19 and non-COVID samples were mostly represented by bac-
teriophages including Proteus phage VB_PmiS-Isfahan, Mycobacterium 
phage Enkosi, Mycobacterium phage Phrux. Bacteriophages are naturally 
occurring viruses that use bacteria as hosts, and play an extremely 
important part in allowing relatively harmless bacteria to become 
pathogens (Huddleston, 2014; Hoque et al., 2019; Zheng et al., 2019). 
Recent scientific researches provide evidence that bacteriophages are 
overlooked human pathogens, implied in the triggering, and worsening 
of a number of human diseases (Zheng et al., 2019). The COVID-19 
causing SARS-CoV-2 strain showed neighboring relationship to human 
classic coronavirus, the SARS Coronavirus isolate Tor2 (SARS-CoV Tor2) 
corroborating with several recent studies (Hou, 2020; Konno et al., 
2020). However, our current findings demonstrated that archaea and 
viruses (other than SARS-CoV-2) neither cause COPD and URTI directly 
nor play a role in the initiation of the disease process, but later, when 
bacterial infection of the respiratory tract occurs, they replicate in the 

Fig. 6. The taxonomic profile virus in in COVID-19 
(BD and China) and respiratory tract disease (UK 
and USA) metagenomes. Stacked bar plots showing 
the relative abundance and distribution of the 20 
viral genera, with ranks ordered from bottom to top 
by their increasing proportion among the BD, China, 
UK and USA metagenomes. The first four bar plots 
represent the abundance of viruses in the corre-
sponding category of COVID-19 (BD and China) and 
non-COVID (URTI; USA and COPD; UK) disease, and 
the last two bar plots depict overall relative abun-
dance of viral genera in COVID-19 and non-COVID 
metagenomes, respectively. Only the 19 most abun-
dant genera are shown in the legend, with the 
remaining genera grouped as ‘Other genera’. The 
distribution and relative abundance of the viral 
genera in the study metagenomes are also available 
in Data S1.   
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immune and epithelial cells, and may act as a predisposing factor as well 
as a primary etiological agent for more severe URTI, and prolonged 
disease like COPD. 

The functional metagenomics analyses provided a promising op-
portunity for studying microbial-host interactions, and has uncovered 
significant differences in microbial metabolic functions in COVID-19 
and non-COVID metagenomes. In this study, the COVID-19 associated 
microbiomes harbored relatively higher abundance of genes coding for 
metabolism (especially for amino acid and energy), ABC transporters, 

membrane transport, virulence, disease and defense, regulation of 
virulence, programmed cell death, and primary immunodeficiency dis-
eases compared to non-COVID microbiomes. However, the specific role 
these altered metabolic pathways in the pathophysiology of the COVID- 
19 disease is not clearly explored still now. The metabolic activities 
related to virulence and immunosuppression have profound impact on 
SARS-CoV-2 infections as evidenced earlier from the SARS and MERS 
outbreaks (Thng et al., 2021). Most recently, several researchers 
comprehensively queried the impact of the microbiome on the 

Fig. 7. The species and/or strain level taxonomic representation of viruses in COVID-19 and non-COVID (URTI and COPD) metagenomes. Sequences are assigned to 
different taxonomic index in PathoScope (PS) analysis using minimum identity of 95% and minimum alignment length 20 as cutoff parameters. The slanted 
phylogenetic trees were generated with the top 100 abundant strains of viruses in the COVID-19 (A) and non-COVID (B) metagenomes based on the maximum 
likelihood method using the NCBI taxonomy tree and visualized with iTOL (interactive Tree Of Life). The bootstrap considered 1000 replicates. The scale bar 
represents the expected number of substitutions averaged over all the analyzed sites. The length of the scale bar represents 1 nucleotide substitution per 100 po-
sitions. Different colors are assigned according to the taxonomic ranks of the viruses. The species and/or strains used in the phylogenetic tree are also available in 
Data S1. 
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metabolome throughout the body, and found that microbiota affected 
the metabolomics of every organ (Hoque et al., 2020b; Lee-Sarwar et al., 
2020; Quinn et al., 2020). The observed increased abundance of genes 
for primary immune diseases (e.g., adenosine deaminase) in COVID-19 
and non-COVID-COPD pathogens is responsible for inhibition of T cell 
maturation and lymphocytic proliferation, very low CD4 count, cell-to- 
cell communication and therefore could be used as a selective marker for 
COVID-19 and COPD diagnosis. We identified several genes as being 
differentially expressed in COVID-19 microbiomes that were involved in 
bacterial physiology, such as the bacterial secretion system by which 
pathogenic bacteria to secrete virulence factors for host invasion 
(Depluverez et al., 2016). ABC transporters, which contribute to sub-
strate transport across the bacterial membrane and are related to anti-
biotic resistance (Wilson, 2016; Zhang et al., 2020; Hoque et al., 2020c), 
were also enriched with differentially expressed genes in the in COVID- 
19 microbiomes. 

The relative abundance and diversity of the genes coding for resis-
tance to antibiotics and toxic compounds (RATC) in the human respi-
ratory microbiome remain poorly characterized. The microbiomes 
(especially bacterial community) within this potential reservoir are 
becoming more resistant. In the context of SARS-CoV-2 virus infection, 
interactions between the virus, the host, and resident bacteria with 
pathogenic potential are known to complicate and worsen disease, 
resulting in coinfection and increased morbidity and mortality of 
infected individuals. Recent study on antimicrobial resistance and host- 
microbiome interaction during influenza virus infection revealed that 
antimicrobial resistance plays important roles in the pathogenesis of 
influenza-associated bacterial secondary infection (Zhang et al., 2020) 
supporting our present findings. Although, we may not have a complete 
record of past antibiotic use because antibiotics taken over-the-counter 
are often not reported, it is also possible that some of the RATC genes 
overexpressed in COVID-19 samples are unrelated to antibiotic use by 
the individuals in which these were detected and could be the result of 
transmission of antibiotic resistant strains between individuals. Trans-
mission of multidrug resistant bacteria both within the human 

population and between environmental reservoirs and humans is known 
to occur (Bengtsson-Palme et al., 2018). Some of the RATC functional 
groups identified across the four sample categories of both metagenomes 
are simply associated with multidrug resistant efflux pumps that natu-
rally function to extrude toxins and chemicals from the bacteria 
(Alvarez-Ortega et al., 2013; Zhang et al., 2020), and thus, antimicrobial 
resistance is a secondary effect during viral infections like SARS-CoV-2. 
However, the pathogenesis of SARS-CoV-2 infection, and its interaction 
with the host metabolism should be investigated in a broader aspect to 
fully elucidate the role of metabolic functional potentials in COVID-19. 

5. Conclusions 

The COVID-19 had significant effect on the diversity and composi-
tion of respiratory tract microbiomes of human. The COVID-19 associ-
ated microbiomes are rich in diversity, composition and functional 
capacity compared to the non-COVID respiratory disease (COPD and 
URTI)-related microbial communities. The identifiable changes in the 
microbiome diversity, composition and associated genomic features 
demonstrated in this study might be associated with the development, 
treatment, and resolution of COVID-19. The shared bacterial, archaeal 
and viral genera detected in this study suggest that respiratory tract 
disease associated microbiomes could have a profound impact on the 
pathogenesis of SARS-CoV-2 infection and severity of the disease. 
Moreover, the predominantly abundant bacterial pathogens along with 
the archaea and bacterial viruses (phages) could have important 
contribution for the generation of immune responses against viral 
attack, and this secondary microbial community might affect the 
outcome of COVID-19. The correlations of the microbiome composition 
and diversity in COVID-19 and non-COVID respiratory tract disease 
(COPD and URTI) determined in this study are also evidenced by the 
differences in the relative abundances of the genes associated with their 
concurrent resistomes (RATC) composition and several metabolic 
functional potentials. However, future studies should be directed to 
investigate the cross-talks between host and respiratory tract 

Fig. 8. Functional annotation of the COVID-19 (BD and China) and respiratory tract disease (UK and USA) metagenomes. (A) Heatmap representing the average 
relative abundance hierarchical clustering of the predicted KEGG Orthologs (KOs) functional pathways of the microbiome across four metagenome groups. (B) 
Heatmap showing the average relative abundance hierarchical clustering of the predicted SEED functions in different levels among the microbiomes of four met-
agenomes. The color bars (column Z score) at the top represent the relative abundance of putative genes. The color codes indicate the presence and completeness of 
each KEGG and SEED module, expressed as a value between − 2 (lowest abundance) and 2 (highest abundance). The red color indicates the more abundant patterns, 
while green cells account for less abundant putative genes in that particular metagenome. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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microbiomes in a large cohort of COVID-19 patients, and correlate with 
the severity of the disease. Furthermore, such studies would also be 
enhanced by the inclusion of gut microbiomes sampling in addition to 
the COVID-19 sampling for direct testing of microbial transfer across the 
gut-lung axis. 

Supplementary information supporting the findings of the study are 
available in this article as Data S1 and S2, and Fig. S1. Supplementary 
data to this article can be found online at https://doi.org/10.1016/j. 
genrep.2021.101200. 

Abbreviations 

COVID-19 Coronavirus disease 2019 
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus-2 
URTI Upper respiratory tract infection (URTI) 
COPD Chronic obstructive pulmonary disease (COPD) 
RATC Resistance to antibiotics and toxic compounds 
CZCR Cobalt-zinc-cadmium resistance 
MREP Multidrug resistance to efflux pumps 
RNASeqS RNA sequencing 
NCBI National center for biotechnology information 

Fig. 9. Distribution of the resistance to antibiotic and toxic compounds (RATC) genes in COVID-19 (BD and China) and respiratory tract disease (UK and USA) 
metagenomes. The circular plot illustrates the diversity and relative abundance of the RATC genes detected among the microbiomes of the four metagenomes through 
SEED subsystems analysis. The association of the RATC genes according to metagenome is shown by different colored ribbons and the relative abundances these 
genes are represented by inner blue colored bars. Part of the RATC functional groups are shared among microbes of the four metagenomes (BD, China, UK and USA), 
and some are effectively undetected in the microbiomes of the other metagenomes. Abbreviations- CZCR: cobalt-zinc-cadmium resistance, MREP: multidrug resis-
tance to efflux pumps, CH: copper homeostasis; BlaR1 Family: BlaR1 family regulatory sensor-transducer disambiguation, RFL: resistance to fluoroquinolones, AR: 
arsenic resistance, mdtABCD: the mdtABCD multidrug resistance cluster, BLAC: beta-lactamase resistance, OprN: mexe-mexf-oprn multidrug efflux system, CmeABC 
operon: multidrug efflux pump in Campylobacter jejuni, MRS: methicillin resistance in Staphylococci, MRO: mercury resistance to operon, CHCT: copper homeostasis: 
copper tolerance, CDR: cadmium resistance, RCHC: resistance to chromium compounds, ZR: zinc resistance, ER: erythromycin resistance, MRD: mercuric reductase, 
RVAN: resistance to vancomycin, SPVANT: Streptococcus pneumonia vancomycin tolerance locus, TRS: teicoplanin-resistance in Staphylococcus, ADCYS: adaptation to 
d-cysteine, BH: bile hydrolysis, LI: lysozyme inhibitors, PSGCB: polymyxin synthetase gene cluster in Bacillus, OprM: mexA-mexB-oprm multidrug efflux system, 
AADNYL: aminoglycoside adenylyltransferases, FR: fosfomycin resistance, MAR Locus: multiple antibiotic resistance to locus, OprJ: mexC-mexD-OprJ-multidrug- 
efflux-system. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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