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The degradation of BaP into hydroxybenzo[a]pyrene by Mn-corrolazine and its regulation
by an oriented external electronic field (OEEF) were systematically studied using first-
principle calculations. Extensive density function calculations showed that the degradation
of BaP into hydroxybenzo[a]pyrene by Mn-corrolazine occurs via a three-step process in
the absence of OEEF, in which a more toxic and stable epoxide intermediate is generated.
However, upon application of OEEF along the intrinsic Mn-O reaction axis, the degradation
of BaP into hydroxybenzo[a]pyrene is greatly simplified. The negative charge on the
terminal O atom of Mn-OO corrolazine increases with an increase in the OEEF
intensity. As the intensity of the OEEF increases over 0.004 a.u., the negatively
charged terminal O atom has the ability to directly abstract the positively charged H
atom of BaP and the degradation of BaP into hydroxybenzo[a]pyrene can be completed
via a one-step process, avoiding the production of more toxic epoxide intermediates.
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1 INTRODUCTION

With the development of modern industry, the use of fossil fuels and discharge of soot, flue gas and
industrial wastewater have resulted in serious environmental pollution from polycyclic aromatic
hydrocarbons (PAHs) (Paulik et al., 2016; Poater et al., 2018; Wu et al., 2018; Yan et al., 2021). As a
representative of carcinogenic PAHs, benzo[a]pyrene (BaP) bearing five fused aromatic rings, which
is classified as a Group I “human carcinogen” by the World Health Organization (WHO)
International Agency for Research on Cancer IARC (2021), has caused irreversible damage to
air, water and soil (Lemieux et al., 2015; Strobel et al., 2015; Roberts et al., 2016). Moreover, BaP is
persistent organic pollutant, which poses a serious threat to global food security (Średnicka et al.,
2021). Seafood with increasing BaP content increases the risk of cancer (Wang et al., 2020) and BaP
in roast meat, smoked meat and fried foods will cause serious damage to animals and human organs,
such as the liver and kidneys (Takeshita and kanaly, 2019; Iko Afé et al., 2020; Cunha et al., 2021;
Goedtke et al., 2021; Mertens et al., 2021; Ge et al., 2022). Very recent studies (Kostoff et al., 2020)
have indicated that people exposed to increased levels of BaP will lead to degradation or dysfunction
of the immune system and people will become more susceptible to 2019-nCoV. Therefore, to
eliminate the toxicity of BaP, it is essential to study its degradation.
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BaP is mainly degraded via chemical oxidation, photo-
oxidation, microbial degradation and bioaccumulation in the
natural environment (Wilson and Jones, 1993; Rubio-
Clemente et al., 2018). Among them, the use of bacteria or
fungi to biodegrade BaP has received a lot of research
attention (Kou et al., 2009; Kuppusamy et al., 2016; Ping et al.,
2017; Qin et al., 2017; Delsarte et al., 2018; Gan et al., 2018; Harry-
Asobara and Kamei, 2019; Ostrem Loss et al., 2019; Sampaio
et al., 2019; Tian et al., 2019), but this approach has a series of
drawbacks, such as low catalytic efficiency and difficulty in
cultivating suitable bacteria (Wang et al., 2012; Wongwongsee
et al., 2013). From the perspective of utilizing solar energy,
photocatalysis is one of the most attractive BaP degradation
methods reported to date (Kou et al., 2009). BaP can be
directly photodegraded upon adsorbing solar energy (Miller
and Olejnik, 2001) or degraded using sensitized photochemical
reactions (Mill et al., 1981; Fasnacht and Blough, 2002). Recently,
the group Luo et al. (2015); Luo et al. (2018) has reported for the
first time that natural porphyrins can promote the
photoconversion of BaP in water into quinones using singlet
oxygen generated via a photocatalytic detoxification reaction
(Zang et al., 2007). In addition, the possible oxidative
degradation mechanisms and pathways of BaP in the
atmosphere have been explored by Dang et al. (2015).
However, despite the involvement of transition metals in
many catalytic processes (Fujihara and Tsuji, 2019; Lin et al.,
2021; Parmar et al., 2021; Sánchez-López et al., 2021; Yang et al.,
2021; Zhou et al., 2021; Zhou et al., 2022), the use of transition
metal complexes as non-sacrificial oxidants for the degradation of
BaP has not been reported in the literature.

Our group has recently reported that Mn-corrolazine can
activate oxygen in the air via an electron spin-flip mechanism
under visible light irradiation, which forms a singlet [Mn]-O-O
species with terminal radical characteristics (Zhu et al., 2018). In
fact, corrole has been widely used in many fields (Zhu and Liang,
2015; Zhu et al., 2016; Li and Cao, 2018; Lvova et al., 2018; Liang
et al., 2019; Zheng et al., 2020; Dedic et al., 2021; Li et al., 2021).
Very recently, oriented external electric fields (OEEFs) have
been extensively studied as a ‘smart agent’ by Shaik et al. (2016);
(Ramanan et al., 2018; Wang et al., 2018); Shaik et al. (2020).
They found that the interaction between OEEFs and dipole
moments can change the electron transfer process and enhance
the ionicity in the direction of the “reaction axis”, resulting in
the regioselectivity of the reaction. Furthermore, our group has
also found that OEEFs can effectively regulate the catalytic
activity of metal-corrolazines (Wang et al., 2021; Zhu et al.,
2021). Therefore, in order to discover a new effective and
environmentally-friendly strategy for the degradation of BaP,
we have explored the degradation mechanism of BaP to form
hydroxybenzo[a]pyrene using Mn-corrolazine involving a
[Mn]-O-O species. We further studied the regulation of
OEEF on the degradation process. Based on considerable
theoretical calculations, we have discovered the reasonable
reaction process and OEEF regulation mechanism, which
provide a theoretical foundation for further experimental
research on the degradation of BaP using Mn-corrolazine
regulated by OEEF.

2 COMPUTATIONAL METHODS

The B3LYP density functional method (Lee et al., 1988;
Stephens et al., 1994) in combination with an effective core
pseudopotential basis set (LANL2DZ) for the Mn atom and 6-
31G(d) basis set for all other atoms (B1) was used for all
geometry optimizations and frequency calculations performed
in the Gaussian 16 package (Frisch et al., 2016). The energies
were refined using single-point calculations (Stuyver et al.,
2020) utilizing the B3LYP functional with D3BJ dispersion
correction (Grimme et al., 2011) coupled with 6-311+G (d,p)
(Andersson and Uvdal, 2005) and aug-cc-pVQZ (Mn)
(Kendall and Harrison, 1992), i.e., B3LYP-D3(BJ)/6-311+G
(d,p), aug-cc-pVQZ (Mn) level of theory (B2). Zero-point
energy (ZPE) corrections were taken from the B3LYP/6-
31G(d), LANL2DZ (Mn) level of theory. Twelve structures
formed by [Mn]-O-O adsorbing different H atoms from BaP
were fully optimized to obtain the most stable structure. Based
on this structure, the degradation of BaP was studied in which
the reactant complexes (RC), transition states (TS),
intermediates (IM), and products (P) were fully optimized
without any symmetry constraints. Frequency calculations
were carried out at the same level of theory in order to
assess the nature of a stable point on the potential energy
surface and estimate the thermodynamic properties.
Moreover, intrinsic reaction coordinate (IRC) analysis was
used to further confirm the TS correlating to their
corresponding RC and P.

To investigate the effect of OEEF on the reaction, the OEEF Fz
along the intrinsic Mn-O reaction axis perpendicular to the
corrolazine ring was applied using the keyword “field = M ±

SCHEME 1 | Definitions of the OEEF. FZ is along the intrinsic Mn-O
reaction axis perpendicular to the corrolazine ring. The inset indicates the
definition of a positive OEEF (Fz > 0) and the stabilizing orientation of the dipole
moment (μz).
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N”, as shown in Scheme 1. The positive direction of the electric
field vector in Scheme 1 follows the Gaussian 16 convention. In
addition, the electric field strength of Fz was in the range of
0.001–0.01 a.u. (1 a.u. = 51.4 V/Å).

3 RESULTS AND DISCUSSION

3.1 Reactive Site Screening
Figure 1 shows that BaP has 12 H atoms in different chemical
environments and in order to find the most reasonable
reaction site, we optimized the different RC formed by
these 12 different H atoms in BaP and the [Mn]-O-O
corrolazines, respectively. Figure 2 and Table 1 show that
BaP and [Mn]-O-O corrolazine form weak interaction
complexes, in which the bond lengths of dO1-HX (X = 1, 2,
3, ..., 12), where the numbers refer to the serial numbers of the
H atom, are very similar in the range from 2.537 to 2.845 Å,
and the bond length of dO1-H11 was the smallest, indicating its
interaction was the strongest. Similarly, the energies of these
structures are very similar, in which the difference between
the highest energy and the lowest energy was only 1.07 kcal/
mol, which originates from the weak interaction formed
between BaP and [Mn]-O-O corrolazine. In addition, the
energy of structure 11 was the lowest, again proving that it
was the most stable. Furthermore, Table 1 shows the bond
lengths of Mn-O and O-O were 1.617 and1.265 Å,
respectively, which are similar to the results obtained in

FIGURE 1 | Partial atomic numbers of BaP.

FIGURE 2 | Optimized structures of the different reactant complexes.
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our previous study (Zhu et al., 2018), indicating that the
[Mn]-O-O moiety in structure 11 has strong oxidation
ability. Therefore, we chose structure 11 as the RC to
further explore the degradation of BaP.

3.2 Reaction Mechanism of [Mn]-O-O
Catalysed Oxidation of BaP Into 11-OH-BaP
Figure 3 shows [Mn]-O-O corrolazine catalyses the
degradation BaP into 11-hydroxybenzo[a]pyrene (11-OH-
BaP) via three steps: 1) epoxidation, 2) hydrogen transfer

and 3) rearrangement. The first epoxidation step in which
11,12-epoxybenzopyrene (IM1) was generated from BaP.
The O-O bond in the [Mn]-O-O moiety was tilted and its
terminal O1 attacks the C12 atom in the BaP moiety. The BaP
moiety then rotates and its C11 atom attacks the terminal O1
atom to form 11,12-epoxybenzopyrene with a reaction
activation energy of 23.3 kcal/mol. During this step, the
hybridization of C11 and C12 changes from sp2 to sp3.
Following the epoxidation step, IM2 was formed via a
hydrogen transfer step. In this step, the C11-O1 bond was
broken and at the same time, the C11-H11 was broken with
H11 being transferred to C12 and C11 returns to sp2

hybridization. The activation energy of this step was up to
37.98 kcal/mol. The third step was an H atom rearrangement
to form 11-OH-BaP (P), in which one H atom on C12 is
transferred to O1, followed by a rebound reaction to form P
with C12 returning to sp2 hybridization. In addition, the
activation energy in this step was even higher (up to
53.47 kcal/mol). Using whole process analysis, P was the
most stable with the lowest energy compared to RC, IM1
and IM2. However, as the activation energies in step 2 and
step 3 are very high (37.98 and 53.47 kcal/mol respectively),
it is difficult to reach the final product (P) via TS2 and TS3.
Thus, the reaction will stop at the intermediate product,
11,12-epoxybenzopyrene, which is a carcinogen and even
more toxic than BaP. Therefore, it is necessary to seek an
efficient way to degrade BaP into the final non-toxic product,
11-OH-BaP.

TABLE 1 | |O1-HX (X = 1, 2, 3, ..., 12), Mn-O, O-O bond lengths (Å), relative
electronic energies and zero-point energies (ΔE, ΔE0, kcal/mol).

Structure dO1-HX(X=1, 2,

3, ......,12)

dMn-O dO-O ΔE ΔE0

R1 2.697 1.617 1.264 0.218 0.166
R2 2.776 1.617 1.262 0.792 0.683
R3 2.671 1.617 1.264 0.319 0.263
R4 2.599 1.617 1.263 1.015 0.907
R5 2.608 1.618 1.264 0.953 0.838
R6 2.703 1.619 1.263 0.945 0.809
R7 2.648 1.617 1.264 0.342 0.288
R8 2.845 1.617 1.262 0.725 0.604
R9 2.778 1.617 1.261 0.802 0.684
R10 2.676 1.617 1.263 0.705 0.647
R11 2.537 1.617 1.265 0 0
R12 2.563 1.618 1.264 1.068 0.958

FIGURE 3 | Predicted reaction pathway for the generation of 11-OH-BaP from BaP via [Mn]-O-O corrolazine catalytic oxidation in the absence of an electric field.
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3.3 One-step Degradation Mechanism
Regulated by OEEF
3.3.1 The Effect of OEEF on the RC and TS
To simplify the reaction process so that BaP can be degraded into
11-OH-BaP in one-step, thereby avoiding the production of
highly toxic epoxybenzopyrene, we applied an OEEF Fz along
the z-axis, which is the intrinsic Mn-O bond reaction axis
perpendicular to the corrolazine ring, in order to regulate the
degradation reaction process, as shown in Scheme 1.

We first considered the effect of the Fz on the stability of RC in
the range of 0–0.01 a.u. Table 2 and Figure 4A show the
application of the Fz increases the stability of the RC, in
which the relative electronic energy increases upon increasing
the electric field intensity. To further explore the reason why the
stability of the RC becomes stronger due to the application of the
Fz, we analysed the change in the dipole moment in the
z-orientation of the RC upon changing the Fz. Table 2 shows
the dipole moment in the z-orientation of the RC increases from
|–2.19| D without OEEF to |–20.05| D in Fz = 0.01 a.u. Thus, the
enhanced stability of the RC originates from the interaction

between the increased dipole moment in the z-orientation and
the Fz.

For the TS, the effect of the OEEF becomes complex, in which
different Fz strengths exhibit different behaviour. Table 2 shows
for Fz < 0.008 a.u., the OEEF destabilizes the TS upon increasing
its relative electronic energy. However, further increasing the
intensity of Fz to more than 0.008 a.u., the OEEF stabilizes the TS
upon decreasing its relative electronic energy, as shown in the
insert of Figure 4B. The change in the stabilization can be
attributed to the repulsion between the OEEF and increasing
dipole moment in the z-orientation of the TS, from 5.07 D
without an electric field to 2.24 D in Fz = 0.002 a.u. However,
further increasing with dipole moment results in the dipole
moment in z-orientation flipping its direction at the critical Fz
value of 0.003 a.u., and the repulsion between the OEEF and
molecular dipole moment in the z-orientation becomes attractive.
Thus, the OEEF stabilizes the TS.

3.3.2 The Effect of the OEEF on the Reaction
Mechanism
We further investigated the effect of the OEEF on the
mechanism of the degradation of BaP into 11-OH-BaP and
discovered a very significant phenomenon. The reaction
mechanism changes upon increasing the OEEF intensity,
i.e., the degradation of BaP into 11-OH-BaP was simplified
from a three-step process to a one-step process in which the
H11 atom in BaP was directly transferred to the terminal O1
atom in [Mn]-O-O, followed by a rebound reaction of the
resulting OH group back to BaP to form 11-OH-BaP, as
shown in Figure 5. To further explore the reason for the
change in the BaP degradation mechanism, we calculated the
Mulliken charges of the atoms in the TS involved the H11
atom transfer step. Table 3 shows the Mulliken charge at O1
was –0.203 |e| without the OEEF. As the Fz strength increases
from 0 to 0.004 a.u., the Mulliken charge of the O1 atom
increases from –0.21 |e| to –0.30 |e|, increasing its attraction to
the positively charged H11 atom. However, the BaP moiety in

TABLE 2 | | Variation in the relative electronic energy and dipole moment on the
z-axis for the reactants (RC) and transition states (TS) under different electric
field strengths in the range of 0–0.01 a.u. Units: ΔE, kcal/mol and μz, D.

FZ (10−4) (a.u.) Complex (ΔE, μz)

RC (ΔE) RC (μz) TS (ΔE) TS (μz)

0 0 −2.19 0 5.07
10 0.26 −4.94 1.89 2.27
20 −1.86 −6.46 3.06 2.24
30 −2.51 −7.92 3.47 −1.35
40 −5.53 −10.98 3.32 −6.38
50 −8.84 −12.56 10.58 −9.68
60 −11.53 −13.51 8.28 −11.16
70 −15.14 −15.15 5.27 −13.02
80 −19.17 −16.81 1.81 −14.89
90 −23.52 −18.41 −2.05 −16.67
100 −28.19 −20.05 −6.50 −18.61

FIGURE 4 | (A) Variation in the relative electron energy of the reactants (RC) with the electric field strength. (B) Variation in the relative electron energy of the
transition states (TS) with the electric field strength.
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the reactant complex rotates continuously in this process,
from almost parallel to the Mn-O bond to almost
perpendicular to the Mn-O bond, so that the effect of the
OEEF parallel to the Mn-O bond on BaP initially increases
and then decreases. Therefore, the Mulliken charge on the
H11 atom first increases from 0.175 |e| at Fz = 0 to 0.179 |e| at
Fz = 0.002 a.u., and then decreases to 0.144 |e| at Fz = 0.004
a.u., which is the minimum value. In addition, the attraction
of the negatively charged terminal O1 atom to the positively
charged H11 atom was also weakened. Therefore, the reaction
mechanism remains a three-step process, in which the
terminal O1 atom is attracts to the C12 atom to form an
epoxybenzopyrene intermediate. However, further increasing
the OEEF intensity increases the negative charge on the
terminal O1 atom to be more than 0.3 |e|. At the same
time, the BaP moiety further rotates and deviates from
direction parallel to the Mn-O bond, so the effect of the
OEEF on BaP moiety was significantly strengthened and
the positive charge on the H11 atom increases sharply.
Moreover, as the positive charge of H11 exceeds that of
C12, the interaction between H11 and the terminal O1
atom is stronger than that between C12 and O1, resulting
in the TS to change from O1 attacking C12 to O1 attacking
H11. Due to the change in the TS, the H11 atom can be
directly transferred to the O1 atom to form 11-OH-BaP via a
subsequent rebound reaction. Thus, the degradation of BaP
into 11-OH-BaP was greatly simplified from a one-step to
three-step process. Moreover, the simplified degradation
reaction of BaP avoids the production of toxic
epoxybenzopyrene.

Analysis of the reaction activation energy of the
degradation reaction of BaP into 11-OH-BaP upon the

application of the OEEF shows its effect on the RC and TS
was similar in the first step with the reaction activation energy
varying slightly from Fz = 0 to Fz = 0.004 a.u. When the Fz was
increased from 0.004 to 0.005 a.u., the reaction activation
energy increases sharply from 17.03 to 28.80 kcal/mol due
to the fundamental change in the TS. However, further
increasing the OEEF from Fz = 0.005 to Fz = 0.01 a.u., the
reaction activation increases slightly because the structure of
the TS remains unchanged. Analysis of the whole reaction
process shows that the reaction activation energy of the one-
step process in Fz > 0.005 a.u. was higher than that in the first
step of the three-step process and the activation energy of the
one-step process was significantly less than those of the second
and third step in the three-step process. Therefore, the
regulation of the OEEF significantly simplifies the
degradation reaction of BaP to an effective and
environmentally-friendly process, which is of great
significance to the food industry.

4 CONCLUSION

BaP is widely found in the natural environment and food, etc.,
and its degradation is of great significance for biosafety
because of its carcinogenicity as a Group I “human
carcinogen”. We have used Mn-OO corrolazine to degrade
BaP into 11-OH-BaP in order to detoxify it. The degradation
process occurs via a three-step process under field-free
condition, i.e., epoxidation, hydrogen transfer and
rearrangement, in which a more toxic epoxide intermediate
is produced. Due to the high stability of the epoxide
intermediate with an activation energy of up to 53.47 kcal/
mol for further reaction, BaP is difficult to degrade into 11-
OH-BaP using [Mn]-O-O corrolazine. However, the
application of an OEEF along the intrinsic Mn-O reaction
axis, which is more easily aligned in practical applications,
greatly simplified the degradation of BaP into 11-OH-BaP. As
the OEEF can effectively regulate the charge on the terminal O
atom in [Mn]-O-O corrolazine, the H atom in BaP can be
directly attracted by the terminal O atom to generate 11-OH-
BaP via a subsequent rebound reaction. Thus, the complex

FIGURE 5 | The one-step reaction process converting BaP into 11-
OH-BaP.

TABLE 3 | | Mulliken charges (|e|) of some atoms in the reactive centre of the
transition state and activation energies ΔE0 (electronic energies + ZPE: kcal/
mol) under an electric field.

FZ (10−4) (a.u.) O1 H11 C12 Activation energy

0 −0.203 0.175 −0.170 23.30
10 −0.216 0.171 −0.160 17.32
20 −0.210 0.179 −0.168 21.37
30 −0.230 0.166 −0.151 21.42
40 −0.300 0.144 −0.164 17.03
50 −0.357 0.276 −0.179 28.80
60 −0.362 0.280 −0.181 29.07
70 −0.368 0.285 −0.183 29.58
80 −0.374 0.291 −0.184 30.07
90 −0.379 0.294 −0.185 30.50
100 −0.386 0.299 −0.185 30.92
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three-step degradation process of BaP into 11-OH-BaP has
been simplified into a one-step process, avoiding the
generation of the more toxic and stable epoxide
intermediate. This effective and environmentally-friendly
degradation process will have a far-reaching impact on
areas such as the environment and food industry.
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