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Abstract 28 

The general stress response (GSR) protects bacteria from a wide range of stressors. In 29 

Alphaproteobacteria, GSR activation is coordinated by HWE/HisKA2 family histidine kinases 30 

(HKs), which can exhibit non-canonical structure and function. For example, while most light-31 

oxygen-voltage sensor-containing HKs are light activated dimers, the Rubellimicrobium 32 

thermophilum RT-HK has inverted “dark on, light off” signaling logic with a tunable 33 

monomer/dimer equilibrium. Here, we further investigate these atypical behaviors of RT-HK and 34 

characterize its downstream signaling network. Using hydrogen-deuterium exchange mass 35 

spectrometry, we find that RT-HK uses a signal transduction mechanism similar to light-36 

activated systems, despite its inverted logic. Mutagenesis reveals that RT-HK 37 

autophosphorylates in trans, with changes to the Jα helix linking sensor and kinase domains 38 

affecting autophosphorylation levels. Exploring downstream effects of RT-HK, we identified two 39 

GSR genetic regions, each encoding a copy of the central regulator PhyR. In vitro 40 

measurements of phosphotransfer from RT-HK to the two putative PhyRs revealed that RT-HK 41 

signals only to one, and does so at an increased intensity in the dark, consistent with its 42 

reversed logic. X-ray crystal structures of both PhyRs revealed a substantial shift within the 43 

receiver domain of one, suggesting a basis for RT-HK specificity. We probed further down the 44 

pathway using nuclear magnetic resonance to determine that the single NepR homolog 45 

interacts with both unphosphorylated PhyRs, and this interaction is decoupled from activation in 46 

one PhyR. This work expands our understanding of HWE/HisKA2 family signal transduction, 47 

revealing marked variations from signaling mechanisms previously identified in other GSR 48 

networks. 49 

 50 

Introduction 51 

Bacteria are relatively simple organisms that directly face complex environmental 52 

challenges, such as fluctuations in nutrient availability, osmolarity, pH, and temperature. To 53 
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sense and adapt to their changing surroundings, bacteria commonly use two-component 54 

systems (TCSs), minimally comprised of a sensor histidine kinase (HK) and cognate response 55 

regulator (RR)3,4. Signal input to the HK’s sensor domain modulates autophosphorylation of a 56 

conserved histidine residue within its dimerization and histidine phosphotransfer (DHp) domain 57 

by an ATP molecule bound to its catalytic ATP-binding (CA) domain. This phosphoryl group is 58 

subsequently transferred to a conserved aspartate residue within the receiver (REC) domain of 59 

the RR. This relay ultimately affects cellular output, typically via RR-mediated transcription5-7. 60 

The vast number of HKs can be classified into families based chiefly on their primary 61 

sequence features. Among these groupings, the lesser-studied HWE/HisKA28,9 superfamily is 62 

distinguished by a motif near the phosphoacceptor histidine residue (H-box), a conserved 63 

arginine (R-box), a long ATP lid, and a glutamate that replaces the first asparagine of the N-box. 64 

These unique features evidently result in higher-order differences that further distinguish this 65 

family. First, while canonical HKs are membrane-bound and strictly homodimeric, many of the 66 

HWE/HisKA2 HKs characterized thus far are soluble and non-dimeric. This phenomenon is 67 

exemplified most dramatically by the monomeric EL34610 and the hexameric EsxG11 proteins. 68 

With only two full-length structures solved to date10,12, there is still much to be learned about the 69 

primary sequence features that underly higher order structural differences and how this family 70 

fits into the broader structural picture of sensor HKs. 71 

Another defining characteristic of HWE/HisKA2 family members is their involvement in 72 

the general stress response (GSR) networks of Alphaproteobacteria13-20. The GSR is a gene 73 

expression program that enables bacteria to cope with a range of adverse conditions such as 74 

oxidative stress, heat shock, and UV exposure2,13,21. This response works using a so-called 75 

“partner-switching” mechanism, whereby HK activity – and subsequent phosphorylation of a 76 

downstream PhyR regulator22-27 – controls the activity of a transcriptional inhibitor known as 77 

NepR. In the absence of stress, transcription is prevented by NepR binding to the σEcfG general 78 

transcription factor. Stress activates an HWE/HisKA2 HK, phosphorylating the PhyR and 79 
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promoting sequestration of NepR away from σEcfG, allowing transcription of stress-responsive 80 

genes to occur. Details of the mechanism which links PhyR phosphorylation to NepR binding 81 

remain unclear, as initial models25,28 have proposed that phosphorylation of the PhyR REC 82 

domain produces an open state that allows NepR to bind its σ-like (SL) domain, while more 83 

recent studies suggest that nascent interaction of NepR with unphosphorylated PhyR precedes 84 

PhyR phosphorylation and open state formation29. 85 

From this basic architecture, several variations on GSR signaling have been observed, 86 

from multiple paralogous copies of various GSR key components2,13,21,27,30-32 to differences in 87 

the signaling logic of the histidine kinases which control pathway activity. One example of the 88 

latter is provided by our prior work on a novel HWE/HisKA2 from Rubellimicrobium 89 

thermophilum DSM 1668433 called RT34934 (referred to here as RT-HK). This protein contains a 90 

light-oxygen-voltage (LOV)14,35,36 sensor domain, which detects blue light via the photoreduction 91 

of a bound flavin cofactor and concomitant formation of a covalent protein/flavin adduct. As 92 

seen for some of its HWE/HisKA2 relatives, we determined that RT-HK is not strictly dimeric; 93 

instead, its dimer-leaning equilibrium shifts towards more compact/monomeric conformations 94 

under lit conditions and in the absence of ATP34. More unexpectedly, we found that its net 95 

kinase activity is higher in the dark than in the light34. To our knowledge, RT-HK is the only 96 

naturally occurring LOV-HK with its signaling logic inverted from the more standard light-97 

activated mode, though we note that genetic studies of E. litoralis DSM 8509 suggest the 98 

presence of a dark-activated GSR under partial control of a LOV-HK37. A similar inverted logic 99 

has been conferred upon some engineered light-sensing HKs via alterations to the helical 100 

linkers between the sensor and catalytic domains (stemming from the Jα helix in LOV systems), 101 

but no generally applicable pattern for achieving this outcome has been established38,39. 102 

Here, we further investigated RT-HK’s oligomeric state and reversed signaling logic, as 103 

well as its downstream partners. We found that RT-HK likely uses a signal transduction 104 
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mechanism similar to light-activated systems, as well as an in trans mode of 105 

autophosphorylation, and the length and register of its Jα linker can be altered to affect net 106 

autophosphorylation levels. Exploring downstream effects of RT-HK, we identified two homologs 107 

of PhyR in the genome, RT-PhyR and RT-PhyR′. In vitro phosphotransfer measurements 108 

showed that RT-HK only specifically signals to RT-PhyR, and at an increased intensity in the 109 

dark consistent with autophosphorylation levels. Crystal structures of both PhyR variants 110 

uncovered a substantial structural shift in RT-PhyR′ immediately following its phosphorylation 111 

site, suggesting a possible mechanism of RT-HK preference for RT-PhyR. Further down the 112 

GSR pathway, we observed unexpected interaction modes between the single NepR homolog 113 

and both unphosphorylated PhyRs, as the RT-PhyR’:NepR interaction is decoupled from 114 

phosphorylation, indicating a phosphorylation-independent function for this homolog. Thus, this 115 

system exhibits signaling variations at three levels – HK reversed logic, HK phosphorylation of 116 

RT-PhyR′, and binding of RT-PhyR′ to RT-NepR′ – that broaden our view of the signaling 117 

paradigms in this class of bacterial two-component pathways. 118 

 119 

Results 120 

Light signal propagation in a dark-activated histidine kinase 121 

We set out to further investigate the inverted signaling logic and oligomeric state 122 

equilibrium of RT-HK we previously identified34, seeking to better characterize how RT-HK is 123 

able to take the same light input as other studied natural LOV-HKs and return an opposite 124 

output. In these systems, the light signal is propagated across a considerable distance of 125 

approximately 60 Å from the flavin cofactor within the LOV domain to the ATP in the kinase 126 

domain (Figure 1a). While the dynamics of light signaling have been examined in some LOV-127 

HKs40-45, this is the first time it has been explored in a naturally occurring dark-activated system. 128 

We began at the global level, using limited trypsinolysis to probe the accessibility of RT-HK 129 
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under different illumination conditions (dark vs. lit) and nucleotide states (apo vs. AMP-PNP-130 

bound). Using SDS-PAGE analyses of these experiments, we found that RT-HK is markedly 131 

more protease-susceptible under lit than dark conditions (Figure 1b). More specifically, 132 

quantitation of the intact protein band in these gels (Figure 1c) showed that both illumination 133 

and nucleotide state influenced protein accessibility, with a rank order of protease stability being134 

lit apo > lit AMP-PMP > dark apo > dark AMP-PNP. This trend is reminiscent of that seen for 135 

RT-HK oligomeric state, where the equilibrium was shifted towards monomer in the lit apo state 136 

and dimer in the dark ATP state34. 137 

 

Figure 1: RT-HK protease accessibility is dependent on illumination and nucleotide-
binding state, and autophosphorylates in trans. a) AlphaFold1 model of dimeric RT-HK 
(top) and domain architecture (bottom) and with domains colored correspondingly. The 
predicted phosphoacceptor histidine residue is shown as sticks, and bound FMN and ATP 
molecules are shown as spheres, with the distance between them highlighted. b) SDS-PAGE 
gels showing trypsin cleavage pattern of RT-HK over time in dark, lit, apo, and AMP-PNP-
bound states. c) Intensity of intact protein band over time, with points fit to an exponential 
curve. d) Multiple sequence alignment of RT-HK with other well-studied HKs. Dashed boxes 
are drawn around the predicted phosphoacceptor His and Mg-chelating Asn residues. e) RT-
HK AlphaFold model with mutated H152 and N256 residues shown as sticks. f) 
Phosphoimaged SDS-PAGE gels of autophosphorylation assay reactions show substantial 
32P incorporation only in wild-type (WT) and H152A/N256A mixed (Mix) samples (n=3).
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To further elucidate the relationship between RT-HK oligomeric state and activity, we 138 

investigated the autophosphorylation mechanism, seeking to establish if this HK phosphorylates 139 

its conserved phosphoacceptor His residue using the γ-phosphate of the ATP molecule bound 140 

either to the same monomer subunit (in cis) or the opposite subunit (in trans). The mechanism 141 

can be determined by assaying kinase activity on samples composed of a blend of two RT-HK  142 

variants which each contain one of two mutants, one deficient in the phosphoacceptor His 143 

residue and the other deficient in a conserved Mg2+-chelating Asn. Neither of these mutants can 144 

autophosphorylate as a homodimer, but when the two are heterodimerized, activity will be 145 

restored only if the HK uses a trans mechanism46. We identified the appropriate RT-HK point 146 

mutations needed for this assay, H152A and N256A, by using a multiple sequence alignment47 147 

(Figure 1d) and predicted structural model1 (Figure 1e). As expected, each of these mutants 148 

alone did not incorporate a measurable amount of 32P from the γ-32P-ATP substrate in 149 

autophosphorylation assays (Figure 1f), but we observed restored kinase activity in samples  150 

mixing the two mutants. These results indicate that RT-HK autophosphorylates in trans. 151 

Notably, we saw higher kinase activity of the mixed samples in the dark than in the light, 152 

demonstrating that the signaling logic was not affected by the mutations. 153 

 The accessibility of RT-HK to hydrogen-deuterium exchange (HDX) was next assessed 154 

at the peptide level using a mass spectrometry readout (HDX-MS). Exchange was measured in 155 

six different states, varying lit and dark conditions of the LOV domain with either apo, ADP, or 156 

AMP-PNP nucleotide states of the kinase domain. Mapping the difference in deuterium uptake 157 

between lit and dark conditions in apo, AMP-PNP-, and ADP-bound nucleotide states onto the 158 

RT-HK AlphaFold model (Figure 2) illustrates several key areas of difference. Intriguingly, 159 

peptides throughout the LOV domain exhibited bimodal distributions (Figure S1), with an 160 

increased ratio of the fast-exchanging population consistently present under lit conditions, 161 

regardless of nucleotide state. For two LOV domain peptides with unimodal distributions (17-22 162 

& 70-79) as well as a peptide in the Jα linker helix (127-148), we observed increased exchange 163 
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under lit conditions. These data are consistent with prior HDX studies of LOV domains and 164 

proteins by NMR48,49 or MS50. The pattern changes substantially in DHp and CA regions, where 165 

nucleotide is essential for large-scale HDX. This is exemplified by a peptide from the DHp 166 

 

Figure 2: Different regions of RT-HK are differentially affected by light or nucleotide 
state as assayed by HDX-MS. RT-HK AlphaFold models are colored according to 
deuterium uptake differences (lit-dark %D) in apo, AMP-PNP-, and ADP-bound states at 
300 s, with red (or blue) reflecting increased (or decreased) exchange in the light, 
respectively. Chiefly bimodal regions are colored dark grey. Uptake plots are shown for 
selected peptides whose positions are indicated by residue numbers on the models. Error 
bars represent standard deviation of 3 replicates. 

8
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region (182-189), which experienced similar exchange under dark and lit conditions in the apo 167 

state but showed higher exchange in the dark once nucleotide was added. A peptide at the 168 

interface between the DHp and CA (213-231) shows nucleotide dependence only in the light. In 169 

the ATP lid region of the CA domain (286-315), the peptide shows decreased exchange when 170 

AMP-PNP is bound, especially in the dark. Overall exchange in the DHp-CA domains is similar 171 

between both nucleotide states, with ADP having a more muted effect. All-in-all, it is clear that 172 

nucleotide is required for post-LOV signal transmission and the DHp is at the heart of this 173 

process. 174 

 Our HDX-MS results highlighted the importance of Jα-containing peptides in signal 175 

transduction, prompting us to look further into this region. Previous work on chimeric engineered 176 

light-sensing HKs has shown that altering the length of this helix can markedly affect how light 177 

input controls net kinase activity38,39,51. This phenomenon is generally attributed to 178 

conformational changes in the coiled-coil linker between the light-sensing and effector modules 179 

of the HK. Intriguingly, the predicted RT-HK structural model has a pronounced break in the 180 

coiled-coil between the Jα helix and DHp, likely caused by residue P143 (Figure 3a). Four 181 

residues surrounding this region were systematically deleted and the effect on net kinase 182 

activity was assessed in vitro using a γ-32P-ATP substrate (Figure 3b). 183 

As expected, the wild-type RT-HK showed a sizeable increase in net 184 

autophosphorylation in the dark state as compared to the lit state. Surprisingly, removing a 185 

single residue to produce the Jα1 mutant caused a drop in dark state activity, resulting in a 186 

modest reversal of the signaling logic. The next amino acid deletion (notably, the P143 residue 187 

likely “kinking” this region) had the opposite effect – activity in both states increased greatly 188 

compared to wild type and the reversed signaling logic was restored. The activity of Jα3 was 189 

comparable to wild type, though attenuated in the dark state. And lastly, Jα4 showed a similar 190 

effect to Jα1, with a sharp drop in net autophosphorylation levels and another slight reversal of 191 
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the signaling logic. All-in-all, these results suggest a helical-type periodicity of approximately 3.8 192 

residues, highlighting the importance of the Jα helix and subsequent coiled coil in transmitting 193 

signal between sensor and effector domains. 194 

 195 

The role of a dark-activated LOV-HK in a paralogous GSR 196 

After investigating how the light signal propagates through the RT-HK molecule, we set 197 

out to identify signaling partner/s and determine if the reversed logic is transferred downstream. 198 

Recognizing that HWE/HisKA2 family HKs are often involved in the GSR13-20, we searched the 199 

R. thermophilum DSM 16684 genome for homologs of the key players: the sigma factor σEcfG, 200 

 

Figure 3: Deletions in Jα linker affect net RT-HK autophosphorylation levels and 
signaling logic. a) Schematic showing positions of amino acid deletions for each construct 
(top) and AlphaFold model of RT-HK with deleted residues shown as sticks (bottom). b) 
Autophosphorylation assays (plots above, phosphoimages below) are plotted as 
concentration vs. time for each protein, with dark measurements shown as black lines and lit 
shown in red. The bar plot shows the initial velocity measured from the linear portion of each 
curve, with dark measurements shown in dark grey and lit measurements in red. Each 
point/bar indicates the mean and all error bars span +/- one SD (n=3). 
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the anti-sigma factor NepR, and the anti-anti-sigma factor PhyR response regulator. This search201 

revealed two sets of GSR genes encoded in separate genomic loci, which we refer to as GSR 202 

and GSR′ (Figure 4a). GSR′ exhibits the typical organization, containing one copy each of 203 

NepR, PhyR, and σEcfG (RT-NepR′, RT-PhyR′, and RT-σEcfG’), as well as another HWE-family 204 

HK (distinct from RT-HK). Surprisingly, the GSR region also contains its own copies of PhyR 205 

and σEcfG (RT-PhyR and RT-σEcfG). It is uncommon to find multiple copies of GSR regulators 206 

within a single organism and several studies have focused on this phenomenon27,32,52.  207 

With these two putative downstream PhyR partners in hand, we explored the ability of 208 

 

Figure 4: RT-HK reversed signaling logic is transferred to downstream partner RT-
PhyR. a) Architecture of the two GSR loci in R. thermophilum DSM 16684 with genomic 
locations specified below. Arrows indicate open reading frames. Promoter regions (grey 
arrows) were predicted from the consensus sequence GGAAC-N16-17-C/GGTT2. b) 
Phosphoimaged gels tracking the in vitro transfer of a 32P-labeled phosphoryl group from RT-
HK to RT-PhyR (left) and RT-PhyR′ (right). Experiments were performed in dark (top) and lit 
(bottom) conditions, and samples were taken at 30 s and 10 min timepoints. A negative 
control (phosphorylated RT-HK only) was run at each timepoint in the left-most lane and 
triplicate samples were run in consecutive lanes. The top band in each lane corresponds to 
the mass of phosphorylated RT-HK and bands below this correspond to the mass of the 
phosphorylated PhyR homolog.  

11
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RT-HK to phosphorylate each using an in vitro phosphotransfer assay53 (Figure 4b). We 209 

measured such phosphotransfer at two timepoints: a short timepoint (30 s) to identify the 210 

kinetically preferred cognate partner, coupled with a longer timepoint (10 min) to characterize 211 

any non-specific transfer. At the short timepoint, we observed transfer only to RT-PhyR, 212 

suggesting that it is the cognate partner of RT-HK. Further, the intensity of the phosphorylated 213 

RT-PhyR bands were higher in the dark condition at both timepoints, indicating RT-HK’s 214 

reversed logic had been transferred downstream. Notably, RT-PhyR′ was phosphorylated only 215 

at the longer timepoint and without a marked illumination dependence, suggesting that it is a 216 

non-specific partner. 217 

Though there are clear differences between the ability of the two PhyR paralogs to 218 

interact with RT-HK, the root of these differences is not immediately apparent from their primary 219 

sequences, as they share 64% identity and generally align well with PhyRs from other 220 

organisms (Figure S2). To provide a structural basis for RT-HK specificity among these two 221 

related proteins, we solved the crystal structures of RT-PhyR (1.99 Å resolution; PDB ID: 9BY5) 222 

and RT-PhyR′ (2.83 Å resolution; PDB ID: 9CB6); data collection and refinement statistics for 223 

both structures are summarized in Table S1. RT-PhyR and RT-PhyR′ were solved as a 224 

crystallographic trimer and a tetramer, respectively. 225 

In the structures of both RT-PhyR (Figure 5a) and RT-PhyR′ (Figure 5b), we observed 226 

a typical arrangement between the sigma-like (SL) and receiver (REC) domains. The fold of the 227 

SL domain is a seven α-helical bundle consisting of the σ2 (α1-3) and σ4 (α5-7) regions, which 228 

are connected by a disordered loop that includes α4. Unsurprisingly, no electron density was 229 

present for the disordered loop in RT-PhyR′. However, we were able to model this loop into 230 

monomer B of the RT-PhyR structure, where it adopts an atypical position (Figure S3). The C-231 

terminal end of the SL domain leads into the REC domain, which displays the canonical α/β fold 232 

in both proteins. 233 
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Aligning the two PhyR paralog structures shows a reasonably high degree of overall 234 

similarity (2.7 Å Cα RMSD) (Figure 5c), with a notable major shift in the position of the loop 235 

connecting the β3 strand (immediately following the phosphoacceptor D residue) and 236 

subsequent α10 helix (α3 in standard REC nomenclature). Adding other PhyR structures into 237 

the alignment (Figure 5c), it is evident that RT-PhyR′ adopts an unusual conformation not 238 

routinely seen in other REC domains. This large-scale shift in RT-PhyR′ is likely related to the 239 

unique position of a conserved Q residue (Q193), which “leans in” and diminishes the solvent 240 

accessibility of the phosphoacceptor D (D191) (Figure 5d). Two residues in the α9 helix of RT-241 

 

Figure 5: Comparisons of RT-PhyR and RT-PhyR′ crystal structures. a) RT-PhyR (PDB 
ID: 9BY5) and b) RT-PhyR′ (PDB ID: 9CB6) crystal structures with domains and secondary 
structure elements labeled. The phosphoacceptor D residues are shown as sticks. c) Aligned 
RT-PhyR and RT-PhyR′ crystal structures highlight differences in the position of the β3-α10 
loop and α10 helix (white arrows). d) Aligning several known PhyR structures (labeled 
according to first two letters of their host organism; BQ PhyR: 5UXW, BA PhyR: 4G97, CV 
PhyR: 3N0R) to the RT-PhyR/RT-PhyR overlay illustrate that the RT-PhyR′ β3 loop–α10 
helix position is the outlier. The green zoomed-in region highlights the unique position of 
Q193 in RT-PhyR′ near phosphoacceptor D191. Surface representation comparisons 
illustrate the limited solvent accessibility of D191 in RT-PhyR′. 

13
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PhyR′ also adopt distinct positions: a well-conserved R at the N-terminus (R173) and another R 242 

at the C-terminus (R184) “reach out” toward the typical position of the β3 loop and α10 helix, 243 

respectively (Figure S4).  244 

Continuing to the next steps of the signaling pathway, we used 15N/1H TROSY 245 

experiments with uniformly 15N-labeled RT-PhyR or RT-PhyR′ to investigate their functional 246 

properties and interactions with the single R. therm. NepR homolog, RT-NepR′ (Figure 4a). 247 

When titrated with the phosphoryl group analog BeF3
-, both spectra showed extensive chemical 248 

 

Figure 6: RT-PhyR binds RT-NepR′ and BeF3
- with positive cooperativity while RT-

PhyR′ binds these ligands with negative cooperativity. 15N/1H TROSY of 210 µM 15N-
labeled RT-PhyR (left) and 220 µM 15N-labeled RT-PhyR′ (right). Proteins were titrated with 
a) BeF3

-, b) RT-NepR′, or c) both at concentrations indicated in panel insets. Chemical shift 
perturbations that best illustrate the effects of each condition are expanded in each panel.
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shift perturbations, with slow exchange behavior (Figure 6a). RT-PhyR′ reached saturation at 249 

the highest BeF3
- titration point, whereas RT-PhyR did not, suggesting weaker binding by RT-250 

PhyR. Similar slow exchange phenomena were observed when titrating RT-NepR′ to each 251 

homolog (Figure 6b), but only RT-PhyR′ reached saturation at the highest titration point of RT-252 

NepR′. This suggests that RT-PhyR has a lower affinity for RT-NepR′ than RT-PhyR′ does, 253 

similar to the BeF3
- observations. We underscore that the substantial chemical shift 254 

perturbations we observed for RT-NepR′ titrations into the apo-forms (i.e. no BeF3
-) of both 255 

PhyR proteins were unexpected, as comparable studies in other PhyR/NepR pairs showed no 256 

interaction 24,25,27 or much smaller peak shifts20,29. 257 

To explore the coupling of PhyR proteins binding to BeF3
- and RT-NepR′, and thus 258 

investigate the phosphorylation dependence of this interaction, we titrated BeF3
- into RT-PhyR 259 

or RT-PhyR′ samples that were pre-equilibrated with RT-NepR′ (Figure 6c). We observed 260 

markedly different results compared to the single titrations above: For RT-PhyR, we saw many 261 

peaks shift into positions distinct from those seen when the protein was titrated with either 262 

substance alone, indicating a synergistic effect. On the other hand, addition of BeF3
- to RT-263 

NepR′-equilibrated RT-PhyR′ did not cause any substantial spectral shifts, showing that RT-264 

PhyR′ binds RT-NepR′ to the exclusion of BeF3
- rather than cooperatively. 265 

 266 

Discussion 267 

In this work, we investigate the unusual properties of RT-HK oligomeric state and 268 

signaling logic seen in our prior study34 and assess their impact on downstream partners. We 269 

uncovered three key features of the R. therm. GSR that expand the typical signaling paradigm 270 

at different levels: 1) RT-HK is dark-activated, but uses a signal transduction mechanism similar 271 

to light-activated systems, 2) RT-HK’s reversed signaling logic is transferred only to RT-PhyR, 272 

while RT-PhyR′ is apparently inaccessible to HK phosphodonors, and 3) RT-PhyR′ shows 273 
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negative cooperativity for activation and RT-NepR′ binding. Our work enhances the current 274 

understanding of this complex stress response, introduces novel regulatory modes, and 275 

underscores the necessity of testing structural and functional models derived from homology.  276 

To investigate how the inverted signal is propagated through RT-HK, we used HDX-MS 277 

(Figure 2). Interestingly, bimodal distributions were seen for m/z spectra of peptides throughout 278 

the LOV domain, strongly suggesting the existence of two distinct conformational states (Figure 279 

S1). A higher abundance of the fast-exchanging population under lit conditions suggests that a 280 

higher proportion of the LOV domain adopts the associated conformation in the light. At the C-281 

terminus of the LOV domain, in the Jα linker helix, exchange increased under lit conditions in all 282 

nucleotide states. This result is consistent with the widely held observation that the Jα helix 283 

plays a key role in transmitting light-mediated conformational changes39,48,51,54. For example, Jα 284 

undocking from the LOV domain upon illumination has been seen in AsLOV248,55,56 and 285 

increased accessibility of the Jα helix has been seen in lit-state EL22249. Our HDX-MS 286 

measurements also highlight that nucleotide is essential for building a light responsive state, as 287 

evidenced by changes in the DHp and CA regions upon nucleotide addition. These results are 288 

generally comparable to EL34642, where light-induced changes are also seen throughout the 289 

DHp in the nucleotide-bound states. In both cases, an increase in exchange is seen in the helix 290 

surrounding the phosphoacceptor histidine. Overall, RT-HK evidently uses a similar signal 291 

transduction mechanism as light-activated systems, despite its reversed signaling logic.  292 

The role of Jα helix properties in LOV-HK signal transmission has been a focus of 293 

several studies involving the chimeric engineered YF1 LOV-HK protein39,51,54, which also 294 

exhibits a “dark active, lit inactive” reversed logic. A common theme among these works is the 295 

importance of the heptad periodicity of the continuous coiled-coil linker helix between sensory 296 

and output modules in defining signaling logic. Since our structural model of RT-HK shows a 297 

proline-mediated break in its analogous linker, we made systematic deletions to alter the length 298 
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of (and potentially linearize) this region while assessing its role in signal transduction (Figure 299 

3a). We saw a clear stepwise change in net dark state activity as single residue deletions were 300 

made (Figure 3c): Jα1 dropped below WT; Jα2 greatly increased; Jα3 saw a decrease relative 301 

to Jα2; and Jα4 exhibited the least activity overall. This pattern is strikingly similar to the 302 

periodicity of a coiled coil linker and what has been observed for YF139,51,54. 303 

We next asked how RT-HK’s inverted signaling logic might affect downstream partners. 304 

HWE/HisKA2 family HKs are well-established as sensory proteins in the GSR networks of 305 

Alphaproteobacteria13-20. We discovered that the R. therm. genome includes two homologous 306 

copies of each of the key GSR regulators σEcfG  and PhyR. While many prior studies have 307 

focused on systems with multiple copies of σEcfG , only two have addressed those with multiple 308 

PhyR copies27,32,57, and no systemic investigation has been done in a system with the same 309 

combination of GSR regulators as R. therm.. In general though, the combinations of GSR 310 

protein copies and interactions among them tend to vary between systems31,58,59; an observation 311 

consistent with the hypothesis that multiple copies have diverged to assume different regulatory 312 

roles. We used in vitro phosphotransfer measurements to assess signaling from RT-HK to both 313 

PhyR proteins, identifying RT-PhyR as the cognate partner (Figure 4b). Additionally, more 314 

efficient phosphotransfer in the dark state indicates that RT-HK’s inverted logic is transferred to 315 

RT-PhyR. We further investigated the structural basis of RT-HK preference for RT-PhyR by 316 

solving X-ray crystal structures of both PhyR homologs (Figure 5). While both structures adopt 317 

typical SL and REC domain folds, the β3 loop-α10 helix of RT-PhyR′ is markedly shifted relative 318 

to RT-PhyR and PhyRs from various other organisms (Figure 5d). At the residue level (Figure 319 

5d & S4), we observed residue Q193 “leaning-in,” decreasing the solvent accessibility of the 320 

phosphoacceptor D and limiting its ability to be phosphorylated by an HK partner. We note that 321 

this site is accessible to BeF3
- in our NMR experiments, leaving open the potential for small 322 

molecule phosphodonors like acetyl phosphate to control the system. 323 
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Our results also lend insights into interactions further downstream between the PhyR 324 

homologs and RT-NepR′. NMR titration experiments showed large chemical shift perturbations 325 

upon addition of BeF3
- or RT-NepR′ alone to both PhyRs (Figure 6a,b). These results are 326 

inconsistent with the broadly-accepted hypothesis that REC domain phosphorylation produces 327 

an open state PhyR necessary for NepR binding22-27, and instead suggest a more complex 328 

mechanism, such as the one previously proposed where nascent NepR binding and PhyR 329 

phosphorylation act cooperatively to form the inhibitory PhyR~P/NepR complex29. Indeed, our 330 

results for RT-PhyR indicate a synergistic effect expected from such a mechanism (Figure 6c). 331 

However, the analogous interactions seem to be inverted in RT-PhyR′, which exclusively binds 332 

RT-NepR′ when provided with both RT-NepR′ and BeF3
-, suggesting a negatively cooperative 333 

function for this homolog. The propensity for the unphosphorylated PhyR homologs to bind RT-334 

NepR′ may be related to the density for the typically flexible α4 helix seen in the RT-PhyR 335 

structure. This helix plays a role in NepR binding23,25,28, acting as a “molecular doorstop” to 336 

prevent NepR displacement by the REC domain21, and adopts distinct positions based on the 337 

presence of NepR. Alignment of the RT-PhyR SL domain with PhyR structures from other 338 

organisms reveals a shift in this region (Figure S3) where its α4 helix is situated between the 339 

expected NepR-bound and unbound positions. However, we are wary of overinterpreting this 340 

particular detail, as intermolecular interactions between RT-PhyR molecules in the crystal 341 

involve the α4 helix, so this position may be artificially stabilized. 342 

Taken together, our results support the model depicted in Figure 7. In the dark, RT-HK 343 

increases its net in trans autophosphorylation and signals to its cognate partner RT-PhyR much 344 

more efficiently than to RT-PhyR′. Still, both proteins adopt distinct conformations upon addition 345 

of a phosphoryl group analog. In the absence of phosphorylation, both PhyRs interact 346 

extensively with RT-NepR′, each adopting a third conformation. In RT-PhyR, these two 347 

pathways from the unphosphorylated conformation evidently act synergistically to promote 348 
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formation of the final phosphorylated RT-NepR′-bound complex, as previously proposed for C. 349 

crescentus29. In contrast, the absence of a conformation representing the final inhibitory RT-350 

PhyR′~P/RT-NepR′ complex strongly suggests a phosphorylation-independent function for this 351 

homolog, the details of which remain unclear. Ultimately, in vivo confirmation of interactions 352 

between GSR proteins and their functional importance will be advantageous, but our 353 

biochemical and structural data make strong predictions regarding the differential roles of RT-354 

PhyR and RT-PhyR′. All-in-all, these results supplement the existing variety and degree of 355 

interactions among copies of GSR regulators. This undoubtedly reflects a wealth of GSR 356 

regulatory modes between organisms which have yet to be fully characterized.  357 

 358 

Experimental Procedures  359 

Cloning, protein expression and purification  360 

DNA encoding sequences of RT-HK, RT-PhyR and RT-PhyR′ (NCBI Gene locus tags 361 

RUTHE_RS05260, RUTHE_RS05225, and RUTHE_RS12555, respectively) were amplified 362 

 

Figure 7: Summary of proposed binding modes for R. therm. PhyR homologs. This 
model illustrates the distinct conformations adopted by RT-PhyR (left) and RT-PhyR′ (right) 
identified in this study. RT-HK is depicted in blue and RT-NepR′ is in green. The relative 
sizes of the reaction arrows indicate the equilibrium position.

19
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from Rubellimicrobium thermophilum DSM 16684 genomic DNA and Jα deletion genes were 363 

ordered from Twist Biosciences. Genes were cloned into the pHis-Gβ1-parallel expression 364 

vector60. The resulting RT-HK plasmid was used as a template to produce H152A and N256A 365 

mutants by site-directed mutagenesis. All constructs were verified by DNA sequencing before 366 

being transformed into Escherichia coli BL21(DE3) cells (Stratagene). Cells were grown in LB 367 

containing 100 µg/mL ampicillin at 37°C and proteins were overexpressed as previously 368 

described42. Cells were harvested, resuspended in buffer containing 50 mM Tris (pH 8.0), 100 369 

mM NaCl, and 10 mM MgCl2, and lysed by sonication. Lysates were centrifuged at 20,000 xg 370 

and 4°C for 45 min. Supernatants were filtered through 0.45 µm and bound to a Ni2+ Sepharose 371 

affinity column (Cytiva). The His6-Gβ1 tagged protein was washed with 4 column volumes of 372 

cell resuspension buffer supplemented with 20 mM imidazole and eluted with 250 mM 373 

imidazole. Eluted proteins were incubated with His6-TEV protease and exchanged into 374 

imidazole-deficient buffer by dialysis overnight at 4°C. Proteins were separated from the tags 375 

and His6-TEV protease by Ni2+ affinity chromatography and were further purified by size-376 

exclusion chromatography on either a HiLoad 16/600 Superdex 200 pg or a Superdex 200 377 

Increase HiScale 16/40 (Cytiva) equilibrated with 50 mM Tris (pH 7.0) (for RT-PhyR, RT-PhyR′, 378 

and RT-NepR′) or 10 mM MES (pH 6.5) (for RT-HK and mutants), and 100 mM NaCl, 10 mM 379 

MgCl2, and 1 mM DTT. For light-sensitive proteins, all purification steps were performed under 380 

dim red light. Concentrations were determined from the theoretical absorption coefficient, ε280 for 381 

PhyRs and RT-NepR’, calculated from the sequence using the ExPASy ProtParam server61, 382 

and ε446 = 11,800 M-1 cm-1 for all variations of RT-HK.  383 

 384 

Limited trypsinolysis  385 

Reactions were performed on 30 µM RT-HK in a buffer containing 50mM Tris (pH 8.0), 386 

100 mM NaCl, 10 mM MgCl2, and 1 mM DTT. Samples of apo and 1.6 mM AMP-PNP-387 
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equilibrated proteins were equilibrated in lit and dark conditions. Trypsin was added in a 1:1400 388 

ratio to RT-HK, and aliquots were removed to a 4 mM PMSF quench solution at timepoints of 0, 389 

0.5, 1, 5, 10, 20, 30, 45, and 60 min. Samples were subjected to SDS-PAGE analysis and 390 

visualized using Coomassie blue stain. 391 

 392 

Production of H152A/N256A heterodimer 393 

Samples of ~100 µM H152A and N256A mutants in buffer containing 10 mM MES (pH 394 

6.5), 100 mM NaCl, 10 mM MgCl2, and 1 mM DTT were mixed and allowed to equilibrate at 4°C 395 

for 30 min. The mixture was then added to a dialysis cassette and placed in 500 mL of the same 396 

buffer supplemented with 6 M urea and allowed to stir at room temperature for 4 hr. The 397 

cassette was then placed into 1 L of the original buffer and stirred overnight at 4°C. The mixture 398 

was then reconstituted with 250 µM FMN by 30 min equilibration at 4°C and subsequently 399 

separated on a Superdex 200 Increase HiScale 16/40 (Cytiva). 400 

 401 

Autophosphorylation assays of cis/trans and Jα mutants 402 

Experiments were performed as previously described10,42. Reactions contained 20 µM 403 

protein (40 µM for the heterodimer) in a buffer of 10 mM HEPES (pH 8.0), 100 mM NaCl, 5 mM 404 

MgCl2, 2 mM DTT, and 10% glycerol. A mixture of unlabeled ATP and 10 µCi [γ-32P] ATP was 405 

added to each protein to initiate the reaction (final ATP concentration 500 µM). Aliquots were 406 

removed at time points of approximately 1, 1.5, 2.5, 4, 8, 6, and 32 min for Jα deletion 407 

experiments and 30 min only for cis/trans experiments, then quenched in a 4x SDS-gel loading 408 

buffer.  409 

 410 

Hydrogen-deuterium exchange mass spectrometry  411 
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30 µM RT-HK was prepared in buffer containing 10 mM MES, pH 6.0, 25 mM NaCl, 5 412 

mM MgCl2, and 1 mM DTT and incubated in dark or light conditions with 1.6 mM ADP or AMP-413 

PNP for 30 min. Subsequent labeling and quenching was handled by the automated LEAP HDX 414 

platform (Trajan). Labeling was initiated in the same buffer prepared with 100% D2O for a 415 

precise amount of time before rapid mixing with a quench buffer containing 2 M GdHCl, 3% 416 

acetonitrile, and 1% formic acid at 0°C. Next, samples were digested on a Waters Enzymate 417 

BEH Pepsin Column before being eluted through a C18 analytical column (Hypersil Gold, 50 418 

mm length × 1 mm diameter, 1.9 μm particle size, Thermo Fisher Scientific) and injected into a 419 

Bruker maXis-II ESI-QqTOF high-resolution mass spectrometer. Processing of raw mass 420 

spectrometry data files was done with Bruker Compass Data Analysis 5.3 and Biotools 3.2 421 

software. Identified peptides were then disambiguated using the PIGEON tool62. All data files 422 

were then imported into version 3.3 of the HDExaminer software from Sierra Analytics to 423 

calculate exchange rate profiles. 424 

 425 

Phosphotransfer assays  426 

Phosphotransfer from RT-HK to RT-PhyR and RT-PhyR′ was measured as described 427 

previously24,53. Reactions took place in a buffer containing 10 mM HEPES (pH 8.0), 100 mM 428 

NaCl, 5 mM MgCl2, and 2 mM DTT. A mixture of unlabeled ATP and 24 µCi [γ-32P] ATP was 429 

added to RT-HK to initiate autophosphorylation (final ATP concentration 500 μM, and final HK 430 

concentration 10 µM). This reaction was allowed to occur for 10 min before a negative control 431 

aliquot was placed into 4x SDS-gel loading quench buffer, and the rest was mixed with an equal 432 

amount of RR candidate (final concentration both proteins 5 µM). Aliquots of this mixture were 433 

removed at 30 s and 10 min timepoints and placed into quench buffer. For dark measurements, 434 

all steps were performed under dim red light. For lit measurements, the samples were 435 

illuminated with a blue LED panel just prior to and throughout the course of the experiment. 436 
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Samples were subjected to SDS-PAGE analysis, gels were dried and exposed to a storage 437 

phosphoscreen, and bands were visualized by phosphoimaging with a Typhoon FLA 9500 438 

(Cytiva).  439 

 440 

Crystallization and structure determination of RT-PhyR and RT-PhyR′ 441 

Commercially available NeXtal PEGs and ComPAS suite screens were employed to find 442 

suitable conditions. Crystals of RT-PhyR and RT-PhyR′ were optimized and grown at room 443 

temperature using sitting-drops vapor diffusion method in the presence of 5 and 10 mM MgCl2, 444 

respectively. The RT-PhyR crystallization buffer consisted of 16% (w/v) PEG 10000 and 0.1 M 445 

Tris (pH 8.5). RT-PhyR′ was crystallized from a solution of 0.2 M KSCN, 20% (w/v) PEG2250, 446 

and 0.1 M BIS-TRIS propane (pH 6.0). Resulting crystals were cryoprotected with LV CryoOil 447 

(MiTeGen), looped, and flash-cooled in liquid N2 prior to data collection. Data were collected at 448 

the National Synchrotron Light Source II(NSLS-II) light source at Brookhaven National 449 

Laboratory using the FMX (17-ID-2) beamline for RT-PhyR and the AMX (17-ID-1) beamline for 450 

RT-PhyR′. Data were processed using the autoPROC toolbox63, resulting in datasets at 1.99 Å 451 

(RT-PhyR) and 2.83 Å (RT-PhyR′) resolution. Balbes64 was used to produce search models, 452 

and structures were determined by molecular replacement with Phaser65. Several cycles of 453 

refinement were conducted using Coot66 and Phenix65. Final data collection, processing, and 454 

refinement parameters are provided in Table S1. 455 

 456 

Titration experiments with BeF3
- and RT-NepR′  457 

Starting samples contained 215 µM 15N-labeled RT-PhyR and RT-PhyR′ in 50 mM Tris 458 

(pH 7.0), 100 mM NaCl, 10 mM MgCl2, and 5% D2O. These were titrated with BeF3
- (using a 459 

fresh 400 mM stock solution prepared by mixing 400 mM BeCl2 and 1.2 M NaF) to 460 

concentrations ranging from 1.5-20 mM, or with RT-NepR′ (using a 220 µM stock solution) to 461 
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concentrations ranging from 70-140 µM (while RT-PhyR/′ concentrations decreased 462 

accordingly). 15N/1H TROSY (15N/1H-WADE-TROSY67) spectra were collected at 313.1K on a 463 

Bruker Avance III HD spectrometer equipped with a 5mm TCI CryoProbe and operating at a 1H 464 

frequency of 800.05 MHz. NMRFx Analyst68 was used for data processing and analysis.  465 

 466 

Data availability— Structure factors and atomic coordinates have been deposited in the Protein 467 

Data Bank with PDB IDs 9BY5 and 9CB6. 468 

 469 

Supporting information – This article contains supporting information, including Table S1 and 470 

Figures S1-2.  471 
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