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A B S T R A C T   

Mathematical modeling of epidemiological diseases using differential equations are of great importance in order 
to recognize the characteristics of the diseases and their outbreak. The procedure of modeling consists of two 
essential components: the first component is to solve the mathematical model numerically, the so-called forward 
modeling. The second component is to identify the unknown parameter values in the model, which is known as 
inverse modeling and leads to identifying the epidemiological model more precisely. The main goal of this paper 
is to develop the forward and inverse modeling of the coronavirus (COVID-19) pandemic using novel compu-
tational methodologies in order to accurately estimate and predict the pandemic. This leads to governmental 
decisions support in implementing effective protective measures and prevention of new outbreaks. To this end, 
we use the logistic equation and the SIR (susceptible-infected-removed) system of ordinary differential equations 
to model the spread of the COVID-19 pandemic. For the inverse modeling, we propose Bayesian inversion 
techniques, which are robust and reliable approaches, in order to estimate the unknown parameters of the 
epidemiological models. We deploy an adaptive Markov-chain Monte-Carlo (MCMC) algorithm for the estimation 
of a posteriori probability distribution and confidence intervals for the unknown model parameters as well as for 
the reproduction number. We perform our analyses on the publicly available data for Austria to estimate the 
main epidemiological model parameters and to study the effectiveness of the protective measures by the Austrian 
government. The estimated parameters and the analysis of fatalities provide useful information for decision- 
makers and makes it possible to perform more realistic forecasts of future outbreaks. According to our 
Bayesian analysis for the logistic model, the growth rate and the carrying capacity are estimated respectively as 
0.28 and 14 974. Moreover for the parameters of the SIR model, namely the transmission rate and recovery rate, 
we estimate 0.36 and 0.06, respectively. Additionally, we obtained an average infectious period of 17 days and a 
transmission period of 3 days for COVID-19 in Austria. We also estimate the reproduction number over time for 
Austria. This quantity is estimated around 3 on March 26, when the first recovery was reported. Then it decays to 
1 at the beginning of April. Furthermore, we present a fatality analysis for COVID-19 in Austria, which is also of 
importance for governmental protective decision-making. According to our analysis, the case fatality rate (CFR) 
is estimated as 4% and a prediction of the number of fatalities for the coming 10 days is also presented. Addi-
tionally, the ICU bed usage in Austria indicates that around 2% of the active infected individuals are critical cases 
and require ICU beds. Therefore, if Austrian governmental protective measures would not have taken place and 
for instance if the number of active infected cases would have been around five times larger, the ICU bed capacity 
could have been exceeded.   

1. Introduction 

The coronavirus COVID-19 pandemic is a new infectious disease 
which emerged from China in fall 2019 and then spread around the 
world. This pandemic spreads through (micro-) droplets and its outbreak 

speed is very high. 
The first reported case of SARS-CoV-2 was identified in Wuhan, 

China. The first case outside of China was reported in Thailand on 
January 13, 2020 [1]. Since then, this ongoing outbreak has now spread 
all over the world [2]. Till May 21st, this pandemic has infected around 
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5230000 individuals around the world and caused more than 335000 
deaths. Out of more than 2780000 active cases around the world, 2% are 
critical patients. Source of the data is the Johns Hopkins CSSE database 
(https://github.com/CSSEGISandData/COVID-19). 

The COVID-19 pandemic was first officially confirmed to have 
spread to Austria on February 25, 2020 and till May 21st more than 
16400 people have been infected and 633 deaths and 833 active cases 
have been reported. Various databases have reported different numbers 
and some of them update their daily reported data even for preceding 
days. For instance, the Federal Ministry of Social Affairs, Health, Care 
and Consumer Protection, Republic of Austria (https://info.gesundheits 
ministerium.at), has updated the number of deaths till May 21 to 657. 
However, here we have used the Johns Hopkins CSSE database. Fig. 1 
displays daily confirmed cases as well as total cumulative count of 
confirmed, active and fatality cases in Austria. By removing deaths and 
recoveries from total cases, we obtain the “currently infected cases” or 
“active cases” (cases still awaiting an outcome). 

Infected people need breathing assistance and a large number of 
them require medical treatment in an intensive care unit (ICU). Coun-
tries which are affected by COVID-19 attempt to keep the daily number 
of cases below the capacity of their health care system. In order to avert 
the disastrous inundation of hospitals, the virus must be kept from 
spreading fast. To this end, countries have been implementing protective 
measures such as closing schools, canceling mass gatherings, working 
from home (home office), self-quarantine, self-isolation, avoiding 
crowds, social distancing, wearing protection masks, etc. 

In this work, we propose Bayesian inference for the analysis of the 
COVID-19 data in order to estimate the crucial unknown quantities of 
the pandemic models. We use an adaptive MCMC method to find the 
probability distributions and confidence intervals of the epidemiological 
models parameters using the Austrian infection data. We use this anal-
ysis for the prediction of the duration of the epidemic in Austria as well 
as the total number of infected people and fatalities till the end of the 
epidemic. The model validation shows a very good agreement between 
the computational and measurement data of infections in Austria which 
proves the reliability and the accuracy of the predictions. This is of great 
importance for making governmental decisions in implementing the 
measures in order to prevent the spread of the virus. 

This paper is organized as follows: Section 2 presents the logistic and 
SIR (susceptible-infected-removed) epidemiological models and in-
troduces their unknown parameters. Section 3 is devoted to the Bayesian 
analysis as the inversion method which is proposed for quantifying the 
uncertain model parameters in the epidemiological models. Numerical 

results of the forward and inverse epidemic models including the 
quantification of uncertain parameters of the model validation using the 
measurement data, pandemic forecast, fatality analysis and the effect of 
governmental protective measures are presented in Section 4. Finally, 
conclusions are drawn in Section 5. 

2. Mathematical models for COVID-19 

Predictive mathematical models are essential for the quantitative 
understanding of epidemics and for supporting decision-makers in order 
to implement the most effective and protective measures. Many math-
ematical models for the spread of infectious diseases [3–6] and in 
particular for the novel COVID-19 [7–11] have been presented and 
analyzed. Here we start with the logistic equation as a preliminary 
model for epidemics and continue with the SIR model and its extensions 
[12–17]. 

2.1. The logistic model 

The logistic equation is a nonlinear ordinary differential equation, 
which is used for modeling population growth. This ODE is also well- 
known as logistic growth model and is given by 

y
′

(t)= αy(t)
(

1 −
y(t)
β

)
, y(0)= y0, (1)  

where y0 ∕= 0 is the initial population size (initial number of confirmed 
cases), y denotes population size (total accumulated confirmed cases) 
and t time. Furthermore, α and β are respectively the growth rate 
(infection rate) and the carrying capacity (maximum number of 
confirmed cases), which are positive constants. 

The solution to the logistic model equation is 

y(t)=
βy0

y0 + (β − y0)e− αt,

which can be rewritten as 

y(t)=
β

1 + Ae− αt,

where 

A=
β − y0

y0
.

Fig. 1. (Left) Daily confirmed count of coronavirus infected cases and (right) total cumulative count of confirmed infected, active and fatality cases (till May 21st) 
in Austria. 
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The inflection point represents the time that maximal rate of 
confirmed cases (growth rate) occurs. The inflection point of the logistic 
function is calculated as 

t* =
ln(A)

α ,

where the estimated number of infected people is β/2. However, there 
are generalizations of the naïve logistic function, and we will present 
numerical results based on them in Section 4.2. 

2.2. The SIR model 

The susceptible-infected-removed (SIR) model is an epidemiological 
model that computes the number of people infected with a contagious 
disease in a closed population over time. The Kermack-McKendrick 
model [18–20] is one of the SIR models, which is defined by the system 

dS
dt

= −
βIS
N

, (2a)  

dI
dt

=
βIS
N

− γI, (2b)  

dR
dt

= γI (2c)  

of ordinary differential equations, where β and γ are the infection and 
recovery rates, respectively. The model consists of three components: S 
for the number of susceptible, I for the number of infectious, and R for 
the number of recovered or deceased (or immune) individuals. 
Furthermore, N denotes the constancy of population, i.e. 

S(t)+ I(t) + R(t) = N. (3) 

Moreover, the dynamics of the infectious class depends on the basic 
reproduction number, which is defined as 

R0 : =
β
γ
.

If the reproduction number is high, the probability of a pandemic is 
high, too. This number is also used to estimate the herd immune 
threshold (HIT). If the reproduction number multiplied by the percent-
age of susceptible individuals is equal to 1, it shows an equilibrium state 
and thus the number of infectious people is constant. 

Additionally, the recovery period is defined by 

t1 =
1
γ  

and describes the average days to recover from infection. The trans-
mission period in the sense of the average days to transmit the infection 
to a person is defined by 

t2 =
1
β
.

However in a population with vital dynamics, new births can provide 
more susceptible individuals to the population, which sustain an 
epidemic or allow new introductions to spread in the population. Taking 
the vital dynamics into account, the SIR model is extended to 

dS
dt

= μN −
βIS
N

− νS, (4a)  

dI
dt

=
βIS
N

− γI − νI, (4b)  

dR
dt

= γI − νR, (4c)  

where μ and ν denote the birth and death rates, respectively. To maintain 

a constant population, we assume μ = ν is the natural mortality rate. 

3. Bayesian inversion for the model parameters 

We propose Bayesian inversion methods, in which probabilities are 
used as a general concept to represent the uncertainty in the model 
parameters in order to solve the backward/inverse problem of COVID- 
19, i.e., the problem of accurate estimation of the epidemiological 
model parameters as well as the reproduction ratio. Bayesian inference 
in the context of the statistical inversion theory is based on Bayes’ 
Theorem and represents the uncertainty probabilistically by defining a 
probability distribution over the possible values of the parameters and 
uses sample data to update this distribution. Bayesian analysis, in 
contrast to traditional inverse methods, is a robust inversion technique 
for determining parameters, yields the (a posteriori) probability distri-
bution, and has the advantage of updating the prior knowledge about 
the unknown quantity using the measurement/observation data, giving 
confidence intervals for the unknowns instead of providing a single es-
timate. We have already successfully applied Bayesian inversion tech-
niques to various PDE models in engineering and medicine in order to 
identify parameters (see for instance Ref. [21–24]). 

3.1. Bayesian analysis 

As mentioned, the Bayesian inversion approach is a robust and 
reliable technique to quantify the uncertain parameters of the epidemic 
models. In fact, the solution of the inverse problem is the posterior 
density that best reflects the distribution of the parameter based on the 
observations. As the observations or measurements are subject to noise, 
and the observational noise, i.e., the error e due to modeling and mea-
surement, is unbiased and i.i.d. (independent and identically distrib-
uted), it can be represented by random variables as 

Y = f (Q) + e, (5)  

where e is a mean-zero random variable and Y is a given random vari-
able representing observed data or measurements, for which we have a 
model f(Q) (observation operator) dependent on a random variable Q 
with realizations q = Q(ω) representing parameters to be estimated 
[25]. 

Assume a given probability space (Ω, F, P), where Ω is the set of 
elementary events (sample space), F a σ-algebra of events, and P a 
probability measure. Furthermore assume that all the random variables 
are absolutely continuous. 

Bayes’ Theorem in terms of probability densities can be written as 

π(q|y)= π0(q)π(y|q)
π(y) (6)  

with 

π(y) : =
∫

Rp
π0(q)π(y|q)dq∕= 0, (7)  

where the unknown parameters q = (q1,…, qp) ∈ Rp and the observed 
data y are realizations of the random variables Q and Y, respectively. 
Furthermore, π0(q), π(q|y), and π(y|q) are the probability density func-
tions of the prior, posterior, and (data) sampling distributions, respec-
tively. A probability density function is density of a continuous random 
variable, which is used to specify the probability of the random variable 
falling within a particular range of values. The density π(y|q) of the data 
provides information from the measurement data to update the prior 
knowledge, and it is well-known as the likelihood density function. The 
goal of Bayesian inversion is to estimate the posterior probability density 
function π(q|y), which reflects the uncertainty about the quantity of 
interest q using measurement data y. 

Equation (6) gives the posterior density and summarizes our beliefs 
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about q after we have observed y. Therefore, Bayes’ Theorem for inverse 
problems can be stated as follows. 

Theorem 1 (Bayes’ Theorem for inverse problems [25,26]). Let π0(q)
be the prior probability density function of the realizations q of the 
random parameter Q. Let y be a realization or measurement of the 
random observation variable Y. Then the posterior density of Q given the 
measurements y is 

π(q|y)= π0(q)π(y|q)
π(y) =

π0(q)π(y|q)∫

Rp π0(q)π(y|q)dq
. (8) 

Computing the integral appearing in Bayes’ Theorem 1 is costly 
especially if the parameter space Rp is high-dimensional. Another 
problem with quadrature rules is that they require a relatively good 
knowledge of the support of the probability distribution, which is usu-
ally part of the information that we seek [25,26]. In Section 3.2 we 
shortly discuss the algorithms for Bayesian estimation, which do not 

require evaluations of the integral and that are used to achieve the nu-
merical results for the nonlinear model equation. 

3.2. Markov-chain Monte-Carlo (MCMC) methods 

Markov-chain Monte-Carlo methods are a class of Monte-Carlo 
methods with the general idea of constructing Markov chains whose 
stationary distribution is the posterior density [25]. The 
Metropolis-Hastings algorithm is an MCMC algorithm to draw samples 
from a desired distribution by building a Markov-chain of accepted 
values (out of proposed values) for the unknown parameter as a poste-
riori distribution. In this algorithm, the first state of the chain q0 is given 
and the new state qk, k = 1, 2,…,N, of the chain is constructed based on 
the previous state qk− 1. To this end, a new value q* is proposed using the 
proposal density function J(q*|qk− 1) = N(qk− 1, σ2

P), where σP is the 
proposal covariance. Admissibility of this proposed value is tested by 
means of calculating the acceptance ratio α(q*|qk− 1), which is defined by 

α(q*|qk− 1)=min
(

1,
π(q*|y)

π(qk− 1|y)
⋅
J(qk− 1|q*)

J(q*|qk− 1)

)

, (9)  

where π(q|y) and J are respectively posterior and the proposal distri-
butions. Applying Bayes’ Theorem of inverse problems, we calculate α as 

α(q*|qk− 1)=min
(

1,
π(y|q*)π0(q*)

π(y|qk− 1)π0(qk− 1)
⋅
J(qk− 1|q*)

J(q*|qk− 1)

)

, (10)  

where J(qk− 1|q*)= J(q*|qk− 1) for symmetric proposal functions and 
π0(q) is a given prior distribution. Furthermore, π(y|q) is the likelihood 
distribution which is defined by 

π(y|q)=N
(
y, σ2

L

)
=

1
(2πσ2

L)
n/2e− Sq/2σ2

L , (11)  

where σL is the likelihood covariance, Sq :=
∑n

i=1(yi − fi(q))2 is the sum 
of squares error and f(q) denotes the parameter-dependent model 
response. If the proposed value is admissible, it is accepted as qk, 
otherwise the old value is kept. The mechanism of acceptance and the 
evolution of the chain are clearly described in Algorithm 1, which is an 
adaptive MCMC algorithm and will be explained in the next subsection. 
More details can be found for example in Ref. [27–30] and we refer the 
reader especially to [25, Chapter 8]. 

Although the convergence speed is determined by the choice of a 
good proposal distribution, at least tens or hundreds of thousands of 
samples are necessary to converge to the target distribution. Choosing 

Table 1 
Estimated confidence intervals and mean of Markov chains for the parameters of 
the logistic model using Bayesian inversion method for Austria.  

Parameter Description Estimated mean Confidence interval 95% 

α Growth rate 0.28 [0.23, 0.33] 
β Carrying capacity 14974  [12703, 17244]  

Table 2 
Estimated and actual number of the infected cases in Austria at the inflection 
point of the logistic model.  

Inflection point t*  Infected cases at inflection point 

Estimated Estimated Actual 
March 27 7486 7697  

Table 3 
Estimated confidence intervals and means of Markov chains for the parameters 
of the SIR model using Bayesian inversion method for Austria.  

Parameter Description Estimated mean Confidence interval 95% 

β Transmission rate 0.36 [0.32, 0.39] 
γ Recovery rate 0.06 [0.03, 0.09]  

Fig. 2. The marginal histograms of posterior distribution for the two quantities of interest in the logistic model, namely α and β.  
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Fig. 3. The marginal histograms of posterior distribution for the three quantities of interest in the SIR model, namely β, γ and R0.  
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the optimal proposal scaling is a crucial issue and affects the MCMC 
results; if the covariance of the proposal distribution is too small, the 
generated Markov chain moves too slowly, and if it is too large, the 
proposals are rejected. Hence, optimal proposal values should be found 
to avoid both extremes, which leads to adaptive MCMC methods 
[31–33]. In the following section, we will consider an adaptive algo-
rithm that helps sample from potentially complicated distributions. 

3.3. Delayed-rejection adaptive-Metropolis (DRAM) algorithm 

Searching for a good proposal value can be done manually through 
trial and error, but this becomes intractable in high dimensions. 
Therefore, adaptive algorithms that find optimal proposal scales auto-
matically are advantageous. The delayed-rejection adaptive-Metropolis 
(DRAM) algorithm is an efficient adaptive MCMC algorithm [32]. It is 
based on the combination of two powerful ideas to modify the 
Markov-chain Monte-Carlo method, namely adaptive Metropolis (AM) 
[34,35] and delayed-rejection (DR) [36,37], which are used as global 
and local adaptive algorithms, respectively. AM finds an optimal pro-
posal scale and updates the proposal covariance matrix, while DR up-
dates the proposal value when q* is rejected. 

The basic idea of the DR algorithm is that, if the proposal q* is 
rejected, delayed rejection (DR) provides an alternative candidate q** as 
a second-stage move rather than just retaining the previous value qk− 1. 
This process is called delayed rejection, which can be done for one or 
many stages. Furthermore, the acceptance probability of the new 
candidate(s) is calculated. Therefore, in the DR process, the previous 
state of the chain is updated using the optimal parameter scale or pro-
posal covariance matrix that has been calculated via the AM algorithm. 

The AM algorithm is a global adaptive strategy, where a recursive 
relation is used to update the proposal covariance matrix. In this algo-
rithm, we take the Gaussian proposal centered at the current state of the 
chain qk and update the chain covariance matrix at the k-th step using 

Vk = spCov(q0, q1,…, qk− 1) + εIp, (12)  

where sp is a design parameter and depends only on the dimension p of 
the parameter space. This parameter is specified as sp := 2.382/p as the 
common choice for Gaussian targets and proposals [38], as it optimizes 
the mixing properties of the Metropolis-Hastings search in the case of 
Gaussians. Furthermore, Ip denotes the p-dimensional identity matrix, 
and ε ≥ 0 is a very small constant to ensure that Vk is not singular, and in 
most cases it can be set to zero [32]. 

The adaptive Metropolis algorithm employs the recursive relation 

Fig. 4. Estimated total cumulative count of coronavirus confirmed infected 
cases in Austria using Bayesian analysis for the logistic model versus actual or 
measured infected population. 

Fig. 5. Estimated total count of coronavirus infected and recovered cases using 
Bayesian analysis for the SIR model as well as actual confirmed active cases 
in Austria. 

Fig. 6. Estimated total cumulative count of infected cases using the Gompertz function (left) and a generalized logistic function (right) versus the observed infected 
population in Austria. 
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Vk+1 : =
k − 1

k
Vk +

sp

k

(

kqk− 1q⊤
k− 1 − (k+ 1)qkq⊤

k + qkq⊤
k

)

to update the proposal covariance matrix, where the sample mean qk is 
calculated recursively by 

qk = qk +
k

k + 1

(

qk− 1 − qk

)

.

A second-stage candidate q** is chosen using the proposal function 

J2(q**|qk− 1, q*) : =N
(
qk− 1, γ2

2Vk
)
, (13)  

where Vk is the covariance matrix produced by the adaptive algorithm 
(AM) as the covariance of the first-stage and γ2 < 1 is a constant. The 
probability of accepting the second-stage candidate, having started at 
qk− 1 and rejected q*, is 

α2(q**|qk− 1, q*) : =min
(

1,
π(q**|y)J(q*|q**)(1 − α(q*|q**))

π(qk− 1|y)J(q*|qk− 1)(1 − α(q*|qk− 1))

)

, (14)  

where α is the acceptance probability (15) in the non-adaptive approach. 
The acceptance probability is computed so that reversibility of the 
posterior Markov chain is preserved (for more details see for example 
[25, §8.6]). The DRAM technique is summarized in Algorithm 1. 

Algorithm 1. The DRAM algorithm   

4. Numerical results 

In this section, we present simulation results of Bayesian inversion 
and the adaptive MCMC method (see Algorithm 1) for the two epidemic 
models, namely the logistic and the SIR models, using the data of the 
COVID-19 outbreak in Austria. The results include model parameter 
estimation, model validation and outbreak forecasting. 

4.1. Parameter estimation 

According to Bayesian analysis, the unknown parameters of the lo-
gistic and SIR models using the data of COVID-19 outbreak in Austria 
were found and summarized in Table 1 and Table 3, respectively. These 
tables show the confidence intervals for the models parameters as well 
as the mean of the obtained Markov chains in the Bayesian inference. 

Furthermore, Tables 2 and 4 include temporal quantities such as 
inflection time of the outbreak estimated using the Bayesian inference 
for the logistic and SIR models. According to our analysis, March 27 is 
estimated as the inflection point of the outbreak in Austria, when the 
maximal rate of confirmed cases (growth rate) occurs. The estimated 
total number of confirmed cases till the inflection point agrees with 
measured data (see Table 2). 
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Fig. 2 and Fig. 3 illustrate marginal histograms of posteriori distri-
bution for the quantities of interest respectively in the logistic and SIR 
models using Bayesian analysis. 

4.2. Model validation 

Here, we aim to validate the logistic and SIR models for forecasting 
the COVID-19 outbreak by comparing the Bayesian simulation results 
and the actual data. Fig. 4 illustrates the actual number of infected in-
dividuals in Austria till now, as well as the estimated number of infected 
people according to the Bayesian inversion for the logistic equation. 

Fig. 5 displays a similar estimation using the Bayesian inference for 
the SIR model, which shows a very good agreement between the mea-
surements and the simulation. 

Fig. 6 illustrates the number of infected people estimated using the 
Gompertz function and a generalized logistic function. The Gompertz 
function is a sigmoid function which describes population growth and it 
is defined by 

G(t) : = ae− be− ct
, (18)  

where a is an asymptote, and b and c are the negative growth rates. The 

second derivative of G(t) gives the point of maximum rate t = ln(b)/c in 
which the growth of daily cases will start to decrease. In contrast to the 
logistic function, the Gompertz function does not have a symmetrical 
first derivative at the inflection point. 

As another more complex generalization of logistic method, we apply 
the model 

P(t) : =
M

(1 + e− at+b)
α, (19)  

where a is growth rate and M is the carrying capacity. Furthermore, b is 
multiplication of the growth rate and unknown inflection time. More-
over, α = 1/ν, where ν > 0 affects near which asymptote maximum 
growth occurs. 

The comparison shows a better agreement between the measured 
data and both of the Gompertz estimation and the generalized logistic 
function than the naive logistic function (see Figs. 4 and 6). 

Quantifying the uncertain parameters such as the reproduction 
number leads to calculate the average number of days to recover from 
the infection and gives useful information about properly and accurately 
implementing protective measures in order to prevent the spread of the 
virus. Furthermore, the parameter identification in the epidemic model 
makes it possible to predict the length of the pandemic, the number of 
infected individuals and the fatality rate. 

In Fig. 7, the actual and estimated infection rates are depicted. 
This rate is defined by 

infection rate : =
ΔIn

In− 1
, n ∈ {2, 3,…}, (20)  

where ΔIn = In − In− 1, In and In− 1 are infected population of consequent 
times (e.g. in days or weeks), which are obtained using the estimated 
infection from the SIR model. Fig. 8 shows the estimated and actual 
reproduction number R(t) at day t for Austria, i.e. the average number of 
people someone infected at time t would infect over their entire infec-
tious lifespan. In order to calculate R(t), we apply the formula 

R(t)=
Iinc(t)

∑t*1
τ=1ω(t)Iinc(t − τ)

, (21)  

where Iinc(t) is the number of incident cases at time t and t*
1 = 17 is the 

average estimated infectious period in days (see Table 4). The normal 
distributed function ω specifies the so-called infectivity profile during 
the infectious period [39,40]. The first recovery in Austria was reported 
on March 26, where the reproduction number is estimated around 3. 
This estimated quantity decays to 1 in the beginning of April, and since 
then remains below 1 (till the time of writing this paper on May 21, 
2020). The measured R(t) is below 1 in April, then oscillates around 1 for 
the rest of time frame in this study. In this figure, the threshold of R = 1 
is also displayed in the sense that there is no immediate public health 
emergency any more when the reproduction number is below this 
threshold. 

4.3. Fatality analysis 

Social-distancing and other protective measures started in Austria 
around March 16, 2020 in order to slow down the outbreak and 
consequently to prevent an increase in fatalities by keeping the cases 
that require hospitalization below the capacity of the healthcare system. 
In Fig. 9, the daily fatalities in Austria as well as the relative change in 

Fig. 7. Infection rate in Austria.  

Fig. 8. Reproduction number in Austria.  

Table 4 
Estimated temporal quantities for Austria using the SIR model.  

Quantity Description Average Estimation (days) 

t1  Infectious period 16.7 
t2  Transmission period 2.8  
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fatalities are illustrated. 
Applying the fatality ratio as well as confirmed infected cases, we 

present a fatality analysis which is of importance for governmental 
protective decision-making. In epidemiology, a case fatality rate (CFR) is 
the proportion of deaths from a certain disease compared to the total 
number of people diagnosed with the disease for a certain period of time. 
Fig. 10 depicts the case fatality rate (CFR), which is defined by 

CFR : =
fatalities

fatalities + recoveries
, (22)  

and we call it the true CFR here, in contrast to the naive CFR defined by 

naive CFR : =
fatalities
infections

. (23) 

The straightforward calculations using the recorded data in Austria 
show that both CFR and naive CFR converge to the same value of CFR* =

0.04 (Fig. 10). 
We can roughly predict the fatalities using the confirmed infections, 

a shift, and the CFR. The shift is approximately equal to the time be-
tween infection and death/recovery (currently average estimated to be 
17 days (see Table 4)) minus the incubation time (currently estimated to 
be 5–6 days [41]) minus 1 day for testing and reporting (see Fig. 11). The 
average time between infection and death is reported approximately 

17.8 days in Ref. [42]. The estimator of fatalities in Austria is defined by 

fatality cases : =CFR* × confirmed infected cases (shifted by 10 days).

Fig. 11 shows a good agreement between the estimated fatalities and 
true values in Austria. 

4.4. The impact of governmental protective measures 

Here, in order to study the effect of the protective measures imple-
mented by the Austrian government, we compare the infection rate and 
the infected population in different time intervals with and without 
implementing the measures. Although public health measures were in 
place from March 16 to control the spread of COVID-19, Austrians 
started to practice social distancing in advance. Table 5 shows the 
weekly infection rate in Austria and how it decays in subsequent weeks. 
The comparison between the estimated infection rates in subsequent 
weeks before and after implementing the protective measures highlights 
the importance and effectiveness of the measures such as social- 
distancing and lock-down in controlling and slowing down the spread 
of COVID-19. 

The main goal of protective measures and lock-down is to “flatten the 
curve”, i.e., to decrease the infection rate so that the healthcare system is 

Fig. 9. Fatalities in Austria including the daily fatalities (left) and the relative change in fatalities (right).  

Fig. 10. Case fatality rate (CFR) in Austria.  Fig. 11. Prediction of number of fatalities in Austria.  
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kept from becoming overwhelmed with too many critical cases at the 
same time. In countries where the counterfactual scenario i.e., no public 
health interventions is applied, for instance in Sweden, the ICU demand 
is estimated to be almost 20 times higher than the intensive care ca-
pacity in the country and a much larger number of deaths is predicted 
[43]. However according to Institute for Health Metrics and Evaluation 
(IHME) database (http://www.healthdata.org/), France, Italy, and 
Spain, where lock-downs were enacted, also experienced problems due 
to the limited numbers of ICU beds. In early April, these countries 
experienced an overload in their health care systems. 

The fatality forecast in Section 4.3 is valid as long as protective 
measures are in place, otherwise the number of fatalities will increase 
due to a large number of infected people and the limit in the capacity of 
intensive care unit (ICU) beds as the number of intensive cases increases 
dramatically. According to the website of the Federal Ministry of Social 
Affairs, Health, Care and Consumer Protection of Austria, around 700 
ICU beds have been available on average for COVID-19 patients since 
the beginning of the pandemic. Fig. 12 illustrates the average number of 
available ICU beds for COVID-19 patients and the reported number of 
occupied ICU beds in Austria. In early April around 26% and in mid-May 
around 5% of all available intensive care beds for COVID-19 patients 
were occupied by these patients. This amount of ICU beds usage shows 
that approximately 2% of the active infected individuals were critical 
cases and required ICU beds. If Austrian governmental protective mea-
sures would not have taken place and the reproduction number would 
have remained as before the measures, active infected cases would have 
increased dramatically. In the case the number of active infected cases 
would have been around five times larger, the ICU bed capacity could 
have been exceeded according to the rate of around 2% critical cases in 
Austria. 

5. Conclusions 

In this work, we developed an adaptive Bayesian inversion for 
epidemiological models, namely the logistic and the SIR models, in 
order to solve the inverse problem of estimating unknown quantities for 
the novel coronavirus COVID19. Quantifying the uncertainties in these 
models is essential since it leads to describe the characteristics of the 
epidemics on one hand and accurately forecasting the pandemic on the 
other hand. The proposed inversion recipe is robust and yields proba-
bility distributions and confidence intervals for the unknown parameters 
of the epidemic models including the growth rate of the outbreak and 
transmission and recovery rates as well as the reproduction number, 
whose quantification is crucial for decision-makers. 

We applied our methodology to the publicly available data for 
Austria to estimate the main epidemiological model parameters and to 
present a fatality analysis, all of which are of great importance for the 
government and decision-makers to adopt the most efficient and effec-
tive protective measures in order to prevent human and economic 
damages. We also validated the presented models by comparing the 
simulated and measured data, whose results show a very good 
agreement. 

Based on Bayesian analysis for the logistic model, the means of the 
growth rate α and the carrying capacity β are estimated respectively as 
0.28 and 14974. Furthermore for these parameters, 95% confidence 
intervals of [0.23,0.33] and 12703, 17244 are obtained. Moreover for 
the parameters of the SIR model, namely the transmission rate β and 
recovery rate γ the means of 0.36 and 0.06 as well as the 95% confidence 
intervals of [0.32,0.39] and [0.03,0.09] are inferred. Additionally, we 
obtained the infectious period of 17 days and transmission period of 3 
days for COVID-19 in Austria. The first recovery in Austria was reported 
on March 26, where the reproduction number is estimated around 3. 
This estimated quantity decays to 1 in the beginning of April, and since 
then remains below 1 (till the time of writing this paper on May 21, 
2020). The measured R(t) is below 1 in April, then oscillates around 1 for 
the rest of time frame in this study. 

Analyzing data of infected, recovered and death cases, we obtained 
that the case fatality rate (CFR) has converged to the value 4%. This 
estimation makes it possible to forecast the fatalities in the coming 10 
days. According to our analysis, the total number of death in Austria is 
estimated as 633 in May 21, which perfectly matches the measured data, 
according to the Johns Hopkins CSSE database. 

Furthermore, we estimated the infection rate for consequent weeks 
starting from before implementing the protective measures, which 
shows a significant decay after the measures are in place. Moreover, the 
ICU bed usage shows that approximately 2% of the active infected in-
dividuals were critical cases and needed ICU beds. If Austrian govern-
mental protective measures would not have taken place and the 
reproduction number would remain as before the measures, active 
infected cases would increase dramatically. In the case that the number 
of active infected cases was around five times larger, the ICU bed ca-
pacity could have been exceeded according to the rate of around 2% 
critical cases in Austria. These results indicate the impact of the mea-
sures such as social distancing and lock-down in controlling the spread 
of COVID-19. 
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Table 5 
Infection rate (see Equation (20)) and total cumulative infected population at 
the end of different time intervals with and without implementing the protective 
measures in Austria.   

without 
measures 

with measures 

Time interval March before 
18th 

March 
18–24 

March 
25–31 

April 
1–7 

April 
after 7th 

Infection rate 7.30 3.97 1.93 1.2 ≈ 1  
Infected 
population 

1332 5283  10180  12639  17000   
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