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Despite recent advances in surgical and multimodal therapies, the overall

survival (OS) of advanced colorectal cancer (CRC) patients remains low.

Thus, discerning sensitive prognostic biomarkers to give the optimistic

treatment for CRC patients is extremely critical. N6-methyladenosine (m6A)

and long noncoding RNAs (lncRNAs) play an important role in CRC progression.

Nonetheless, few studies have focused on the impact of m6A-related lncRNAs

on the prognosis, tumor microenvironment (TME) and treatment of CRC. In this

study, 1707 m6A-related lncRNAs were identified through Pearson correlation

analysis and Weighted co-expression network analysis (WGCNA) using The

Cancer Genome Atlas (TCGA) cohort. Then, 28 m6A-related prognostic

lncRNAs were screened by univariate Cox regression analysis, followed by

identifying two clusters by consensus clustering analysis. A prognostic model

consisted of 8 lncRNA signatures was constructed by the least absolute

shrinkage and selection operator (LASSO). Kaplan–Meier curve analysis and a

nomogram were performed to investigate the prognostic ability of this model.

The risk score of prognostic model act as an independent risk factor for OS rate.

Functional enrichment analysis indicated that lncRNA signatures related tumor

immunity. The low-risk group characterized by increased microsatellite

instability-high (MSI-H), mutation burden, and immunity activation, indicated

favorable odds of OS. Moreover, the lncRNA signatures were significantly

associated with the cancer stem cell (CSC) index and drug sensitivity. In

addition, 3 common immune genes shared by the lncRNA signatures were

screened out. We found that these immune genes were widely distributed in

2 cell types of TME. Finally, a ceRNA network was constructed to identify ZEB1-

AS1 regulatory axis in CRC. We found that ZEB1-AS1 was significantly

overexpressed in tumor tissues, and was related to the metastasis of EMT
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and the chemoresistance of 5-Fu in CRC. Therefore, our study demonstrated

the important role ofm6A-related lncRNAs in TME remodeling. Moreover, these

results illustrated the levels of ZEB1-AS1 might be valuable for predicting the

progression and prognosis of CRC, and further provided a new target for the

diagnosis and treatment of CRC patients.
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Introduction

Colorectal cancer (CRC) is one of the most common

malignant tumors and the second leading cause of cancer-

related death worldwide (Siegel et al., 2013). The morbidity

rate of CRC remains on the rise: currently, nearly 1.8 million

people are diagnosed andmore than 900,000 people die each year

from CRC (Sung et al., 2021). Currently, the therapy methods for

CRC include surgery, neoadjuvant chemoradiotherapy,

postoperative chemoradiotherapy, targeted therapy, and

immunotherapy (Tang et al., 2015). Despite recent advances

in surgical and multimodal therapies, the 5-year survival rate

remains poor for patients with postoperative recurrence and

advanced CRC patients (Ganesh et al., 2019; Zhang et al., 2019).

The TMN stage system has been widely used for clinical practice

to predict patient prognosis and therapy decision-making.

Dishearteningly, CRC has a complex status due to its

heterogeneity; for instance, right-hemi and left-hemi CRC

patients, even at the same stage, can show significantly

different outcomes (Gallois et al., 2018). Thus, the

development of sensitive biomarkers to accurately predict the

prognosis and to monitor therapeutic effects in CRC patients is

needed. Notably, one of the most important factors in the

tumorigenesis and progression of CRC is driven by the

accumulation of epigenetic changes, and epigenetic alterations

can be developed as a clinical biomarker for prognostic and

therapeutic uses (Jung et al., 2020).

N6-methyladenosine (m6A) serves as one of the most

common and abundant epigenetic-methylation modifications,

playing a crucial role in RNA processing, transport, and other

functions (Zeng et al., 2018; Sun et al., 2019). m6A modification

is regulated by methyltransferase (writers), demethylase

(erasers), and binding proteins (readers) (Yang et al., 2018).

Many studies have revealed that m6A modifications are

associated with the development and prognosis of CRC (Li

et al., 2019; Tsuruta et al., 2020). In addition, lncRNAs serve

as a category of RNAs that do not encode proteins, and it has

been reported that the aberrant expression of lncRNAs is related

to the tumorigenesis, malignant progression, and poor prognosis

of CRC patients (Bhan et al., 2017; Zhou et al., 2020). Indeed, the

one important mechanism for achieving m6A functions in the

cell involves modifying the lncRNAs(Zhou et al., 2016).

Identification of specific lncRNA biomarkers associated with

the prognosis of CRC would be of great clinical significance.

Therefore, studies on m6A-related lncRNAs should be a focus if

potential prognostic biomarkers for CRC patients are to be

discovered. As is known, the tumor microenvironment

(TME), which consists of stromal and immune cells, can

affect the progression of cancer, and further provides a

potential immunotherapy target (Nicholas et al., 2016).

However, few studies have investigated the immune cell

infiltration of m6A-related prognostic lncRNAs in CRC

(Zhang et al., 2021a; Zeng et al., 2021), which might play an

important role in tumorigenesis and malignant progression.

Here, we established clustering subtypes based on m6A-

related lncRNAs to determine the relationships between the

clustering subtypes, TME scores, prognosis, and immune cell

infiltration, and further developed a CRC prognostic algorithm

by using 8 m6A-related lncRNA signatures. This m6A-related

lncRNAs algorithm showed considerable performance, which

was confirmed by internal validation. In addition, the algorithm

determined that high-risk patients were characterized by poor

immune cell infiltration and clinical outcomes. Further, a

nomogram including clinical risk factors together with an

algorithm risk score was built, it was equipped with clinical

utility and showed better performance. In addition. we explored

the expression of 3 immune genes shared by the lncRNA

signatures in different cell types of TME, which explained the

mechanism of action of m6A-related lncRNAs. Finally, we

reported that ZEB1-AS1 promoted carcinogenesis, metastasis

of EMT and the chemoresistance of 5-Fu in CRC. Overall, the

findings of this study suggest that the potential relationships

between m6A-related lncRNAs, prognosis, and the TME of CRC

patients, which may help developing novel therapeutic strategies

for improving the overall clinical outcome of this disease.

Materials and methods

Data sources preparation and
preprocessing

The RNA transcriptome dataset, including 480 tumor

samples and 41 normal samples, as well as corresponding

clinical information regarding CRC, were downloaded from

the Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.

Frontiers in Genetics frontiersin.org02

Li et al. 10.3389/fgene.2022.947747

https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.947747


gov/) data portal. The other clinical characteristics, including the

disease-free interval (DFI), progression-free interval (PFI), and

disease-specific survival (DSS) of the 545 CRC patients, were

downloaded from the USCS Xena website (https://xena.ucsc.edu/

welcome-to-ucsc-xena). To distinguish between protein-coding

genes and lncRNA genes for subsequent analyses, GTF files from

Ensembl (https://asia.ensembl.org) were downloaded. CRC

patients with missing survival values as well as a survival time

of 0 days were excluded for these analyses. The data acquisition of

the list of the immune genes was downloaded from the ImmPort

database (https://www.immport.org). The 39 m6A regulator

genes were identified from the published literature (Tu et al.,

2020; Zhang et al., 2021b; Wang et al., 2021; Yu et al., 2021;

Zhang and Yang, 2021). The m6A regulators contain 9 writers

(METTL3, METTL14, METTL16, WTAP, VIRMA, ZC3H13,

RBM15, RBM15B, and PCIF1), 27 readers (YTHDC1,

YTHDC2, YTHDF1, YTHDF2, YTHDF3, HNRNPC, FMR1,

LRPPRC, HNRNPA2B1, IGF2BP1, IGF2BP2, IGF2BP3,

RBMX, TRMT112, ZCCHC4, CPSF5, CPSF6, CBLL1, SETD2,

SRSF3, SRSF10, XRN1, NXF1, PRRC2A, ELAVL1, EIF3A, and

EIF3H), and 3 erasers (FTO, ALKBH3, and ALKBH5). For this

process, the criteria of |Pearson R| > 0.4 and p < 0.001 were used

to evaluate the correlation between m6A regulator genes and

lncRNAs using Pearson’s correlation analyses.

Weighted gene co-expression networks
analysis

We first extracted a total of 1725 m6A-related lncRNAs for

WGCNA by using a “WGCNA” package (Langfelder and

Horvath, 2008). When the optimal soft threshold was

graphically determined, we then converted the adjacency

matrix into the topological overlap matrix (TOM). The

modeEigenges function in the “WGCNA” package was used

to calculate the dissimilarity of the module eigengenes (MEs).

We further estimated the association between MEs and clinical

traits by |Pearson R| > 0.2 and p < 0.05. Finally, we identified the

modules that were significantly associated with the clinical traits

for further analyses.

Consensus clustering based on m6A-
related prognostic lncRNAs

According to the expression of 28 m6A-related prognostic

lncRNAs (univariate Cox regression analysis, p < 0.01), We

followed the methods of Wei Song et al. (Song et al., 2021). to

clarify the biological characteristics using the R package

“ConsensusClusterPlus.” In different clustering subtypes, the

principal component analysis (PCA), t-distributed stochastic

neighbor embedding (t-SNE), Kaplan–Meier survival analysis,

and TME scores were performed.

Risk model construction and validation of
m6A-related prognostic lncRNAs

We screened the prognosis of m6A-related lncRNAs by

univariate Cox regression analysis (p < 0.01), and then analyzed

LASSO Cox regression by using the R package “glmnet” (Xu et al.,

2020). The risk score was calculated according to the following: Risk

score =∑Expi * βi (Expi, each lncRNA expression; βi, each lncRNA
coefficient). Next, subgroups, including the low-risk group and high-

risk group, were established based on the training dataset median

risk score. Receiver operating characteristic (ROC) analysis was used

to assess the accuracy of the lncRNA signatures in the training

dataset, testing dataset, and complete dataset by using the R package

“timeROC” (Zhang et al., 2021a; Zeng et al., 2021). Effective

dimensionality reduction, model recognition, and grouping

visualization of high-dimensional data for the risk model were

performed by principal component analysis (PCA) and

t-distributed stochastic neighbor embedding (t-SNE).

Tumor microenvironment cells infiltration
based on gene set enrichment analysis and
functional enrichment analysis

To explore the potential KEGG pathway related to the m6A-

related prognostic lncRNAs, the GSEA method was performed to

screen the significant pathways between different clustering subtypes

(p < 0.05). The infiltration of 22 human immune cell subsets were

calculated by the CIBERSORT algorithm for each patients and

infiltrative fractions of 22 immune cell types in different clustering

subtypes were visualized by using the R package “vioplot” (Li et al.,

2021a). TME scores of CRC patients were calculated by using the

ESTIMATE algorithm. We also used boxplots to examine the

differential expression levels of immune checkpoints between

different clustering subtypes. Further, according to the median

risk score, we performed the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis to identify

functional comments by applying the R package “clusterProfiler”

(p < 0.05) in high- and low-risk group (Zhao et al., 2020; Gong et al.,

2021). ssGSEA was performed using the R package “GSVA” (Zhang

et al., 2021a; Zeng et al., 2021), and immune cell infiltration scores

were calculated to evaluate the activity of immune-related pathways.

Construction of a nomogram for
prediction

Based on the lncRNA signatures’ risk score and other clinical

predictors, the nomogram prediction model was set up by using

the R package “rms” for the 1-year, 3-year, and 5-year OS

(Iasonos et al., 2008). The calibration and accuracy of the

nomogram were verified by the calibration plot (bootstrap

methods with 1,000 replicates).
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Mutation, microsatellite instability, cancer
stem cell index, and drug susceptibility
analysis

To determine the somatic mutations of CRC patients

between high- and low-risk groups, the mutation annotation

format (MAF) from the TCGA database was followed by the

methods of Xi Zhang et al. based on “maftools” R package (Zhang

et al., 2021c). We also calculated the tumor mutation burden

(TMB) score for each patient with CRC in the two risk groups.

Furthermore, we analyzed the relationships between the two risk

groups and microsatellite instability (MSI) and cancer stem cell

(CSC) index. To explore differences in the therapeutic effects of

chemotherapeutic drugs in patients in the two risk groups, we

calculated the semi-inhibitory concentration (IC50) values of

chemotherapeutic drugs commonly used to treat CRC followed

by the methods of Min Zhou et al. based on the “pRRophetic”

package (Zhou et al., 2021).

Identification and validation of immune
genes and ceRNA networks shared by
lncRNA signatures

The pearson’s correlation analysis was performed to screen

common immune genes shared by 8 lncRNA signatures. The

STRING website (https://string-db.org/) was used to predict

interactions between functional proteins. The miRcode (http://

www.mirco de. org/) database was utilized to predict lncRNA

targets interacting with miRNAs. TargetScan (http://www.targe

tscan. org/), miRDB (http://www.mirdb.org/miRDB/), and

miRTarBase (http://mirtarbase.mbc.nctu.edu.tw) were used

to predict the relationship between miRNAs and target

mRNAs. The Cytoscape plug-in cytoHubba was performed

to identify the hub immune genes. The generated ceRNA

networks were visualized by Cytoscape software (version 3.8.

2, https://www.cytoscape.org/). The Kaplan-Meier survival

analysis was used to compare the survival difference between

high- and low-expression of immune genes. To characterize

immune genes expression distribution and the heterogeneity in

TME of CRC, we search for single-cell sequencing data of CRC

from Tumor Immune Single-cell Hub (TISCH) (Sun et al.,

2021). The CRC_GSE146771_10X dataset was selected for

further analysis.

Cell culture, real-time PCR and
oligonucleotide transfection

The normal intestinal epithelial FHC cells was purchased

from ATCC and grown in RPMI-1640 (Gibco, United States).

The colon cancer cell lines HCT116 and HT29 were obtained

from ATCC and grown in McCoy’s 5A (Gibco, United States).

All cells culture medium was supplemented with 10% FBS

(Gibco) and 1% penicillin and streptomycin (Beyotime,

China) and cultured at 37°C in a humidified 5%

CO2 atmosphere. Total RNA was extracted from normal and

tumor cell lines by Trizol reagent (Invitrogen, Carlsbad, CA,

United States). The total RNA was performed to synthesize

complementary DNA (cDNA) by using PrimeScript RT

reagent Kit (Takara, Japan). The cDNAs were subjected to

SYBR Green assays (Takara) based RT-qPCR on a CFX-96

instrument (Bio-Rad Laboratories). The primers used in real-

time PCR assays were listed in Supplementary Table S1. SiRNA

was obtained from Genepharma (Shanghai, China)

(Supplementary Table S1). Oligonucleotide transfection was

performed by using Lipofectamine 3000 (Invitrogen,

United States), while nonspecific mRNAs were used as

negative controls. The Ct values obtained from different

samples were compared using the 2−ΔΔCT method. GAPDH

served as internal reference genes and all plasmids were

constructed by Shanghai Obio Techonology Company,

Shanghai, China.

Western blot analysis

Total cellular protein was extracted and separated by 10%

SDS-PAGE then transferred to polyvinylidene fluoride (PVDF)

membranes. Membranes were blocked with 5% non-fat dry milk

in PBST for 1 h at room temperature and then incubated with the

primary antibodies overnight at 4°C, followed by incubation with

secondary antibodies for 2 h at room temperature. Specific

protein bands were visualized using the enhanced

chemiluminescent (ECL) assay kit (Thermo Scientific, PA,

United States). The following primary antibodies were used

for western blotting, E-cadherin (3195), N-cadherin (13116),

Vimentin (5741), β-catenin (8457). All antibodies were

purchased from Cell Signaling.

Drug susceptibility analysis, cell
proliferation assay and drug cytotoxicity
assay

Spearman’s correlation analysis was performed to

calculate the correlation between key lncRNA signatures

expression and chemotherapeutics IC50 values (statistical

significance was set at p < 0.05). Cell Counting Kit-8

(CCK8; Yeasen, China) was performed to assay the

percentage of viable cells based on different treatment

conditions. Firstly, cells were seeded in 96-well plates with

100 ul culture medium. Secondly, the 10 ul of CCK-8 solution

was added to each well at specific time points and incubated at

37°C for 4 h. The reaction product was measured according to

the manufacturer’s protocol.
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Statistical analysis

All statistical analyses were performed using R software

(v4.1.0), GraphPad Prism (version 9.0), and SPSS software

(23.0). To compare the gene expression levels, we applied the

single-factor analysis of variance, while the categorical

variables were determined using the Pearson chi-square

test. Kaplan–Meier curve analyses were used to identify the

survival differences between different groups. The

independent prognostic value of the risk model was

assessed by using the univariate and multivariate Cox

regression models. The Mann–Whitney test and an

independent t-test were used to compare the differences

between different groups. p < 0.05 was considered

statistically significant for all analysis results.

Results

Identification of m6A-related lncRNAs in
colorectal cancer patients

To identify potential m6A-related lncRNAs, we evaluated

the relationship between 39 m6Amethylation regulators and all

lncRNAs via combined Pearson correlation analysis and

Weighted gene co-expression network analysis (WGCNA).

We first identified 13,185 interactions and 1,725 m6A-

related lncRNAs with │Pearson R│> 0.4 and a p < 0.001. As

is known, WGCNA is a network analysis method used to

identify co-expression modules based on the correlation

coefficient. In addition, it is applied to multi-sample data,

with >15 samples (Langfelder and Horvath, 2008) usually

required. To make the results better and more reliable, the

number of samples usually required is > 20 (24). Therefore, we

randomly selected 100 samples to construct the gene co-

expression network. We then calculated the 1,725 m6A-

related lncRNAs associated with clinical traits, including age,

gender, the pathologic stage, overall survival (OS) time,

progression-free interval (PFI), and TMN stages. In our

study, the parameters were established by setting the soft

threshold power to 6 (scalefree R2 = 0.8) and the height to

0.89, and 20 modules were identified (Figures 1A–D). The

correlation between module eigengene (ME) values and

clinical traits was measured to determine the association

between the modules and clinical characteristics. The results

in Figure 1E show that a total of 11 modules were closely

correlated with clinical characteristics (│Pearson R│> 0.2 and a

p < 0.05). For example, the green, tan, magenta, pink, cyan,

FIGURE 1
Weighted co-expression network analysis. (A) Hierarchical clustering dendrograms of identified co-expressed m6A-related lncRNAs in
modules of CRC. (B) cluster analysis of samples dendrogram. Analysis of the scale-free fit index (C) and the mean connectivity (D) for various soft-
thresholding powers. (E)Heatmaps of the module-trait associations were evaluated by the correlation and p value betweenmodule eigengenes and
sample traits.
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brown, blue, salmon, and grey modules were significantly

associated with tumor progression. The brown, turquoise,

and yellow modules were significantly associated with

prognosis. The brown and grey modules were significantly

associated with age and gender. These results indicate that

each module might represent the specific clinical characteristics

and potential biological significance of CRC patients. Thus,

these 11 modules with a total of 1,707 m6A-related lncRNAs

were selected to further explore the correlation between the

progression and prognosis of CRC patients.

Consensus clustering analysis of m6A-
related prognostic lncRNAs in colorectal
cancer patients

We screened the prognostic lncRNAs derived from the

1,707 m6A-related lncRNAs using univariate Cox regression

analysis (p < 0.01). A total of 28 m6A-related prognostic

lncRNAs in the TCGA dataset were significantly correlated

with overall survival. Among them, 27 m6A-related

prognostic lncRNAs (AC074117.1, ASH1L−AS1,

FIGURE 2
Identification of m6A-related prognostic lncRNAs. (A) Univariate cox regression analysis of OS for 28m6A-related prognostic lncRNAs in TCGA
cohorts. (B) Consensus clustering cumulative distribution function (CDF) for k = 2 to 9. (C) Consensus clustering matrix for k = 2. (D) Kaplan–Meier
OS curves for the two clusters.
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AC069222.1, ZKSCAN2−DT, AC018653.3, ZEB1−AS1,

AC073111.1, LINC00174, AC003101.2, AP001619.1,

AL161729.4, AC139149.1, AC005229.4, AP006621.2,

AP001469.3, AL138921.1, AC008760.1, AC156455.1,

NSMCE1−DT, AC012360.3, AL135999.1, AC145285.2,

NIFK−AS1, U91328.1, SEPTIN7−DT, PRKAR1B−AS2,

ATP2B1−AS1) were risk factors with a hazard ratio >1,
while 1 m6A-related prognostic lncRNA (AC008494.3) was

a protective factor with a hazard ratio <1 (Figure 2A). To

further clarify the correlation between these 28 m6A-related

lncRNAs’ expression character and OS in patients, we

performed consensus clustering analysis to identify CRC

prognosis subtypes based on these lncRNAs. Results

showed that the patients were separated into two different

subtypes according to the optimal clustering stability value

(k = 2), with 316 cases included in cluster 1 and 117 cases

included in cluster 2 (Figures 2B,C). The overall survival of

cluster 2 for CRC patients was worse than that of cluster 1 (p <
0.001) (Figure 2D). GSVA enrichment analysis was performed

to identify the differences in biological behavior between these

two subtypes. As shown in Figure 3A, cluster 1 was

significantly enriched in intestinal pathogen infection,

sphingolipid metabolism, the functions of lysosome,

tryptophan and fatty acid metabolism, amino sugar and

nucleotide sugar metabolism, glutathione and galactose

metabolism. Further, Gene Set Enrichment Analysis

(GSEA) was used to elucidate the potential regulatory

mechanisms leading to the differences between the two

FIGURE 3
TME infiltration and immune-oncology targets in cluster 1/2 subtypes constructed by 28 m6A-related prognostic lncRNAs. (A) Biological
processes analyzed by GSVA which showed the active biological pathways in distinct subtypes. (B) The variance analysis of ImmuneScore,
StromalScore, and ESTIMATEScore in cluster 1/2 subtypes. (C) The abundance of 22 TME infiltrating cells between the two CRC subtypes by
ssGSEAScore. (D) The differential infiltration levels of 22 kinds of immune cells in cluster 1/2 subtypes based on the CIBERSORT platform. (E)
Expression of immune checkpoints in cluster 1/2 subtypes. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 4
Characterization of cluster 1/2 subtypes and construction ofm6A-related lncRNA signatures based on 28m6A-related lncRNAs. (A)Heatmap of
the associations between the cluster 1/2 subtypes and clinical characteristics. (B,C) The cluster 1/2 subtypes based on 28 m6A-related prognostic
lncRNAs were performed to Principal Component Analysis (B) and t-Distributed Stochastic Neighbor Embedding (C) analysis. (D) Plots of the
minimum 10-fold cross-validation to select the tuning parameter in the LASSO regression. (E) The LASSO coefficient of 28 m6A-related
prognostic lncRNAs. (F) Heatmap for the correlations between all m6 A genes and the 8 prognostic m6A-related lncRNAs. (G) Alluvial diagram of
subtype distributions in groups with different m6A-related lncRNA signatures and survival outcomes. *p < 0.05; **p < 0.01; ***p < 0.001.
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clusters of CRC patients. As shown in Supplementary Figures

S2A,S2B, we discovered that patients in cluster 1 were mainly

enriched with citrate cycle TCA, oxidative phosphorylation,

the functions of proteasomes and peroxisomes, amino sugar

and nucleotide sugar metabolism, and adhesion junctions, the

Wnt signaling pathway, dorso-ventral axis formation, taste

transduction, and basal cell carcinoma were involved in

cluster 2.

Two m6A-related prognostic lncRNA
subtypes associated with tumor
microenvironment infiltration, immune-
oncology targets, and clinical
characteristics

To further investigate the correlation with TME

infiltration, we then analyzed the differences in terms of

ImmuneScore, StromalScore, and EstimateScore between

cluster 1 and cluster 2. Our results revealed that cluster

2 had a lower ImmuneScore and StromalScore than cluster

1, which might indicate that cluster 2 had a higher tumor

purity (Figure 3B). According to the CIBERSORT algorithm,

we observed that the score of 22 TME infiltrating cells were all

significantly poorly activated in cluster 2 by ssGSEAScore

(Figure 3C). In addition, we found that the abundance of

22 TME infiltrating cells were significantly differentially

expressed in two subtypes. For example, innate immune

cell infiltration was abundant in cluster 1, including

the presence of M2 macrophages, NK cells, and

neutrophils cells, while B memory cells and CD4+ T naive

cells were enriched in cluster 2 (p < 0.05) (Figure 3D).

Therefore, this was consistent with the fact that the

ImmuneScore of cluster 1 was higher than that of cluster

2. Furthermore, we investigated the associations between

immune checkpoints and the two subtypes. Figure 3E

shows that 38 immune checkpoints were differentially

expressed between cluster 1 and cluster 2, including PD-1,

PD-L1, PD-L2, and CTLA-4. Finally, the expression profile of

28 m6A-related prognostic lncRNAs and their association

with clinical characteristics, including age, gender, the

pathologic stage, and TMN stages, was presented in a

heatmap. We found that the M classification of

TMN stages was significantly different between the two

subtypes (p < 0.05) (Figure 4A). In addition, we also

demonstrated that the two different subtypes could be well

distinguished by principal component analysis (PCA)

and t-distributed stochastic neighbor embedding (t-SNE)

analysis (Figures 4B,C). Taken together, our results

indicated that the 28 m6A-related prognostic

lncRNAs were involved in shaping the TME, and

represented different prognostic characteristics in CRC

patients.

LncRNA signature construction and
validation of a risk model in colorectal
cancer patients

To clarify the biological function of m6A-related lncRNAs, we

further explored the prognostic value of CRC patients by merging

the expression and clinical data. A total of 433 patient samples were

divided into the training dataset (N = 217) and the test dataset (N =

216). We then performed a LASSO penalized Cox regression

analysis to construct an 8 m6A-associated lncRNA signatures

model using the training dataset (Figures 4D,E). Therefore, the

risk score for each patient in the training dataset, testing dataset, and

complete dataset was calculated based on the risk formula: risk

score = AC008494.3 * (−0.964259730717564) + ZKSCAN2-DT *

0.010056256050767 + ZEB1-AS1 * 0.413400864759708 +

AC005229.4 * 0.154898466270611 + U91328.1 *

0.077293286865632 + AC156455.1 * 0.112691335331562 +

PRKAR1B-AS2 * 0.485291921513758 + ATP2B1-AS1 *

0.0706027766158002. The correlation between m6A genes and

8 m6A-related lncRNA signatures was shown in Figure 4F. An

alluvial diagram was used to visualize the distribution of patients in

the two subtypes and two risk score groups (Figure 4G). Moreover,

survival curves showed that all the 8m6A-related lncRNA signatures

were survival-associated with OS (Figure 5A). Further, the three

datasets were categorized into low- and high-risk groups based on

the training dataset median value of the prognostic risk grade. The

results of Kaplan–Meier (KM) curve analysis showed that the low-

risk group had a better prognosis than the high-risk group in the

complete, training and testing datasets (p < 0.05) (Figures 5B–D).

The correlation between the 8 lncRNA signatures and the risk score

can be observed in the heatmap, and the distribution of the risk score

and survival time of CRC patients is displayed in the training and

testing datasets (Figures 5E,F). These results shown that the

expression levels of ZKSCAN2−DT (HR: 1.421, 95%CI:

1.218–1.657), ZEB1−AS1 (HR: 2.125, 95%CI: 1.495–3.021),

AC005229.4 (HR: 1.481, 95%CI: 1.101–1.992), U91328.1 (HR:

2.30, 95%CI: 1.339–3.951), AC156455.1 (HR: 1.178, 95%CI:

1.074–1.293), PRKAR1B−AS2 (HR: 2.092, 95%CI: 1.424–3.073),

and ATP2B1−AS1 (HR: 7.787, 95%CI: 2.55–23.782) were higher,

while the expression levels of AC008494.3 (HR: 0.129, 95%CI:

0.027–0.605) was lower in the high-risk group than in the low-

risk group. In addition, the area under the curve (AUC) values for 5-

year OS were 0.74, 0.78, and 0.69 in the complete, training and

testing datasets, respectively (Figures 6A–C). Interestingly,

compared with others’ risk models (0.62 and 0.67) (Zhang et al.,

2021a; Zeng et al., 2021), our testing datasets’ AUC values (5-year)

for the risk signature are the highest, and the AUC of the risk score

was also higher than the AUCs of other clinicopathological

characteristics (Supplementary Figure S3A), indicating that our

signature is a reliable prognostic model. To further predict the

ability of the prognostic model, the disease-free interval (DFI),

progression-free interval (PFI), and disease-specific survival (DSS)

were investigated to distinguish high- and low-risk in CRC patients.

Frontiers in Genetics frontiersin.org09

Li et al. 10.3389/fgene.2022.947747

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.947747


FIGURE 5
Construction and validation of a risk model based on the 8 m6A-related lncRNA signatures. The OS curve of 8 m6A-related lncRNA signatures
for the low- and high-expression groups with the cut-off value 0.599 from TCGA cohorts (A). Kaplan-Meier survival curves of the OS for patients in
the complete dataset (B), training dataset (C), and testing dataset (D) between the high- and low-risk group. The distribution of the risk score, survival
time and survival status, and the heatmap of the 8 m6A-related lncRNA signatures in the training dataset (E), testing dataset (F) between the
high- and low-risk group.
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As predicted, the DFI, PFI, and DSS differed between the low- and

high-risk group, implying that the lncRNA signatures had good

accuracy in the prognostic prediction of CRC (p < 0.05)

(Supplementary Figures S3B–S3D). Subsequently, the PCA and

t-SNE were performed to test the difference between the low-

and high-risk groups based on the 39 m6A methylation

regulators, 28 m6A-related lncRNAs, and 8 lncRNA signatures.

Notably, our results suggested that the low- and high-risk group

were better distinguished by the 8 lncRNA signatures than the

39 m6A genes as well as the 28 m6A-related lncRNAs

(Figures 6D–I).

Stratification analysis and independent
prognostic value of the lncRNA signatures

The heatmap was performed to show the expression levels of

lncRNA signatures in the high- and low-risk group (Figure 7A).

Moreover, the heatmap also demonstrated the significant differences

in terms of the pathologic stage (p < 0.01), two subtypes (p < 0.001),

TMN stages (p < 0.05) and immuneScore (p < 0.01) between the

high- and low-risk group. Specifically, we found that the risk score

increased significantly from Stage I-II to Stage III-IV. The TMN

stages also presented a significant divergence from the T1-2, M0,

FIGURE 6
ROC, PCA, and t-SNE analysis between the high- and low-risk group. The 1-, 3-, and 5-years ROC curves of 8 m6A-related lncRNA signatures
for the OS prediction in the complete dataset (A), training (B), and testing (C). Principal component analysis (PCA) between the high- and low-risk
group based on (D) 39m6Amethylation regulators, (F) 28m6A-related prognostic lncRNAs, and (H) 8m6A-related lncRNA signatures. t-Distributed
Stochastic Neighbor Embedding (t-SNE) analysis between the high- and low-risk group based on (E) 39 m6A methylation regulators, (G)
28 m6A-related prognostic lncRNAs, and (I) 8 m6A-related lncRNA signatures.
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FIGURE 7
The association of risk score with clinical characteristics, and univariate andmultivariate Cox regression analyses for the risk score based on the
8 m6A-related lncRNA signatures. (A)Heatmap of the correlation of 8 m6A-related lncRNA signatures with cluster 1/2 subtypes, immuneScore, and
clinical characteristics. Different levels of risk score associated with pathologic-stage (B), TMN staging (C–E), and clusters (F). Univariate Cox
regression analysis and multivariate Cox regression analyses for the complete dataset (G,H), respectively), training dataset [(I,J), respectively]
and testing dataset [(K,L), respectively]. *p < 0.05; **p < 0.01; ***p < 0.001.
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N0 classification to T3-4, M1, N1-3 classification. Moreover, CRC

patients in cluster 2 were associated with a higher risk score than that

of patients in cluster 1 (Figures 7B–F). After investigating the

association between the lncRNA signatures and clinical factors in

CRC patients, as shown in Supplementary Figures S4A–S4F we

found that CRC patients in the high-risk group tended to have a

lower overall survival rate than the low-risk group in our different

stratifications, including age, gender, pathologic stage, and TMN

stages. These results suggest that m6A-related lncRNA signatures

can predict the prognosis of CRC regardless of clinical factors.

Furthermore, univariate and multivariate Cox regression analyses

were used to investigate whether the lncRNA signatures could be

used as independent prognostic factors in the training, testing, and

complete datasets. Through analyses, we found that the lncRNA

signatures could act as independent predictors for the prognosis of

CRC (Figures 7G–7L).

Construction of a nomogram for the
individualized prediction model

Given the importance of the lncRNA signatures in predicting

the prognosis of CRC patients, we further attempted to construct

a nomogram based on the multivariate cox regression for

FIGURE 8
Construction and evaluation of a predictive nomogram. (A) The nomogram predicts the probability of overall survival at the 1-, 3-, and 5-year.
(B) The calibration plot of the nomogram predicts the probability of the 1-, 3-, and 5-year overall survival. *p < 0.05; **p < 0.01; ***p < 0.001.
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predicting the OS at 1-, 3-, and 5- years. As shown in Figure 8A,

the predominant predictive ability of the risk score in the

nomogram was exhibited compared with the clinical

characteristics, including age, gender, and stage. Moreover, the

calibration plots indicated that the 1-, 3-, and 5- year OS rates

could be predicted relatively well in the complete dataset

(Figure 8B).

Relationship of lncRNA signatures with
tumor mutation burden, microsatellite
instability and cancer stem cell index

Based on the TCGA-COAD mutation data, we first assessed

the potential relationship between the TMB level and OS, and

observed that the survival rate of patients with high TMB was

FIGURE 9
Comprehensive analysis of the m6A-related lncRNA signatures in CRC. (A) Kaplan–Meier curves for the high- and low-TMB with the cut-off
value 2.711 of 433 colon cancer patients in TCGA cohorts. (B) TMB difference in the high- and low-risk groups. (C) Kaplan–Meier curves for CRC
patients in TMB and risk score subgroups. (D,E) The waterfall plot of somatic mutation features established with the high- and low-risk groups. (F,G)
The correlation between two-risk groups and MSI. (H) The correlation between two-risk groups and CSC index. (I) The relationship between
two risk groups and TIDE.
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lower than that of patients with low TMB (the optimal cut-off =

2.711, p = 0.031, HR: 1.598, 95%CI: 1.041–2.453) (Figure 9A). In

addition, Figure 9B showed a higher TMB in the low-risk groups

than that in high-risk groups, and combination of the lncRNA

signatures risk model and TMB (respectively defined as H-TMB

+ high-risk, H-TMB + low-risk, L-TMB + high-risk, and L-TMB

+ low-risk) could clearly stratify patients better (the optimal cut-

off = 2.711, p < 0.001, HR: 2.205, 95%CI: 1.416–3.435)

(Figure 9C). Interestingly, patients with L-TMB + high-risk

group had worse survival outcomes than patients with

H-TMB + low-risk, indicating that the trend of survival

advantage in the L-TMB group was reversed by the risk score.

Further, the distribution variations of the top ten somatic

mutations genes between two risk signature models were

analyzed based on the TCGA-COAD cohort (Figures 9D,E).

Except for the APC and TP53, other mutated genes were higher

mutations frequencies in the low-risk groups compared to the

high-risk groups. Moreover, correlation analyses revealed that

the high-risk groups were associated with microsatellite stable

(MSS) and low microsatellite instability (MSI−L) status, while

low-risk groups were correlated with high microsatellite

instability (MSI-H) status (Figures 9F,G). In addition, we

analyzed the relationships between risk score and cancer stem

cell (CSC) in the two risk groups. As shown in Figure 9H, the

result demonstrated a negative correlation between risk score and

the CSC index values (R = −0.13, p < 0.01), implying that the low-

risk score had more distinct stem cell properties and a lower

degree of cell differentiation.

lncRNA signatures predict sensitivity of
colorectal cancer to immunotherapy and
chemotherapy

There is increasing evidence that patients with a high TMB or

MSI-H status may benefit from PD-L1 treatment (Snyder et al.,

2014; Topalian et al., 2016; Picard et al., 2020). However, we

found there was no difference in dysfunction and exclusion score

by using the Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm between the two risk groups (Figure 9I), which was

inconsistent with previous studies, and might be related to the

fact that there were no statistical differences in immune

checkpoints between high- and low-risk groups in our study

(Supplementary Figure S3F). In addition, CRC recurrence is

attributed to chemoresistance. Thus, we further performed to

analysis the drug-sensitivity (IC50 value) that currently were

used for the treatment of CRC (such as shikonin, cisplatin,

gemcitabine, paclitaxel, gefitinib, sorafenib, pazopanib and

camptothecin) by using the “pRRophetic” package.

Interestingly, we found that the patients in the high-risk

group had lower IC50 values for shikonin and pazopanib,

while IC50 values of cisplatin and sorafenib were significantly

lower in the patients with low-risk group (Supplementary Figure

S5). Moreover, we found that the IC50 values of most existing

drugs, such as bortezomib, cytarabine, and metformin, were

significantly lower in low-risk groups than those in high-risk

groups, while IC50 values of bleomycin, imatinib, midostaurin,

nilotinib, and so on were significantly lower in the patients with

high-risk groups. Together, these results showed that ours

lncRNA signatures were associated with drug sensitivity, and

might provide therapeutic schedules for further analysis.

The correlation between lncRNA
signatures and distinct tumor
microenvironment infiltration

To explore the interactions between lncRNA signatures and

the TME of CRC, we further employed Gene Ontology (GO)

enrichment analysis and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis to determine differences

between the low- and high-risk group using the risk model. The

results indicated that the lncRNA signatures were mainly

correlated with the immune response, nucleosome assembly,

protein heterodimerization activity, systemic lupus

erythematosus, and neutrophil extracellular trap formation

(Figures 10A,B). Notably, the low-risk groups were closely

associated with a high ImmuneScore, whereas the stromal

score was no obvious differences in two risk groups

(Figure 10C). In addition, we compared the enrichment scores

of the immune cells and the immune-related pathways between

the low- and high-risk group in CRC patients based on the

lncRNA signatures. As shown in Figure 11E, the levels of

immune cell infiltration in the high-risk group were generally

lower than those in the low-risk group, especially for

CD8+T cells, neutrophils, natural killer (NK) cells, T helper

(Th) cells (Tfh, Th1, and Th2 cells), tumor-infiltrating

lymphocytes (TILs) and regulatory T (Treg) cells. Moreover,

the immune-related pathways were less active in the high-risk

group than in the low-risk group (Figure 10D). To further

confirm the correlation of lncRNA signatures with the

immune microenvironment, we investigated the abundance of

22 different immune cell types between the low- and high-risk

groups using CIBERSORT algorithm (Figure 10E). We found

that half of the 22 immune cell types (B cells memory,

CD4 memory-activated T cells, CD8 memory-activated

T cells, dendritic cells, macrophages, monocytes, neutrophils,

regulatory T cells, follicular helper T cells, T17 helper and

T2 helper cells) were significantly differentially expressed in

the two risk groups, and all of them were downregulated in

the high-risk group compared with the low-risk group

(Figure 10F). Furthermore, the risk score was negatively

correlated with the abundance of eosinophil cells,

CD8 memory-activated T cells, CD4 memory-activated

T cells, B memory cells and regulatory T cells (Tregs)

(Figure 10G). Also, we assessed the potential relationship
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between lncRNA signatures expression and the abundance of

immune cells, and observed that most immune cells were

significantly associated with the lncRNA signatures

(Supplementary Figure S3E). These results indicated that the

m6A-related lncRNAs were involved in the immune cell

infiltration of CRC.

Identification and validation of immune
genes shared by lncRNA signatures

Given the differential of the ImmuneScore between the high-

and low-risk group, we further attempted to perform the Kaplan-

Meier survival analysis. As shown in Figure 11A, the OS in the

FIGURE 10
Functional enrichment analysis and comparison of the immune activity between high- and low-risk group based on the 8m6A-related lncRNA
signatures. (A) The Bubble graph for gene ontology (GO) analysis. (B) The Barplot graph for Kyoto Encylopedia of Genes and Genomes (KEGG)
analysis. (C) Correlations between the two-risk groups and TME score. (D) Comparison of the score of immune cells and immune-related pathways
between the high-and low-risk group by ssGSEAScore. (E) Barplot showing the proportion of 22 kinds of tumor-infiltrating immune cells in
CRC. Column names of plot were sample ID. (F) The differential infiltration levels of 22 kinds of immune cells between the two-risk groups based on
the CIBERSORT platform. (G) The association of risk score with Eosinophil cells, B cells memory, CD8+T cells, CD4 memory-activated T cells and
regulatory T (Treg) cells. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 11
Expression distribution of the 3 immune genes in TME of CRC. (A) Kaplan–Meier curves for the high- and low-immunescore with the cut-off
value 56.042 of 441 CRC patients. (B) Sankey relational diagram for 8 m6A-related lncRNA signatures and DEIGs. (C) Heatmap for DEIGs generated
by comparison of the high score group vs the low score group in ImmuneScore (Row name of heatmap is the gene name, and column name is the ID
of samples which not shown in plot). (D) PPI network showing the interactions of DEIGs (the minimum required interaction score was 0.9). (E)
Fifty hub immune genes in this network with a score of >2. (F)Univariate Cox regression analysis with 458 DEIGs, listing the significant factors with p <
0.05. (G)Venn plot showing the common immune genes shared by leading 50 nodes in PPI and significant factors in univariate Cox. (H)Differentiated
expression of 3 immune genes in the normal and tumor sample. (I) The OS curve of 3 immune genes for the low- and high-expression groups with
the cut-off value 2.896. (J) The association between the expression of PIK3CD, PLCG2 and ZAP70 and the abundance of tumor-infiltrating immune
cells in CRC based on TISCH. **p < 0.01; ***p < 0.001.
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high ImmuneScore group was longer than that in the low

ImmuneScore group. To ascertain the exact changes in the

genetic profiles in the TME regarding immune components,

variance analysis of high and low scores was performed by

setting FDR <0.05 and |log2 FC| ≥ 1. A total of

2764 differentially expressed immune genes (DEIGs) were

obtained from ImmuneScore with the cut-off value 56.042 of

441 CRC patients (Table S2). Further, 458 DEIGs having the

FIGURE 12
Validation of ZEB1-AS1 in CRC tissues and cell lines. (A) The sankey diagram depicted the relationship between 5 m6A regulators, 2 lncRNA
signatures and 3 immune genes. (B) The ceRNA network based on 2 lncRNA signatures. (C,D) Bar plot for the relative expression of ZEB1-AS1 in CRC
cell lines and normal cell line. (E) Bar plot for the relative expression of ZEB1-AS1 between CRC tissues and normal tissues. (F) The correlation of
ZEB1-AS1 expression with clinicopathological staging characteristics. (G) Survival analysis for CRC patients with different ZEB1-AS1 expression.
Patients were labeled with high expression or low expression depending on the comparison with the median expression level. (H,I) Transfection
efficiency of ZEB1-AS1 siRNA was determined by RT-qPCR. **p < 0.01; ***p < 0.001; ****p < 0.0001.
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8 lncRNA signatures were screened using the correlation analysis

(|Pearson R| > 0.1 and FDR <0.05) (Figure 11B). Among them,

456 genes were up-regulated and 2 genes were down-regulated

(Figure 11C, Supplementary Table S3). To further explore the

underlying mechanism, a protein–protein interaction (PPI)

network was conducted based on STRING (version 11.5) with

the highest confidence score of 0.9. The interactions between

458 genes are shown in Figure 11D, and the cytoscape plug-in

cytoHubba was utilized to determine the top 50 hub immune

genes (Figure 11E). Univariate Cox regression analysis for the

survival of CRC patients was performed to determine the

significant factors among 458 DEIGs (Figure 11F). Further,

the common immune genes were identified from two lists,

which were top 50 hub immune genes in PPI network and

significant prognosis factors in univariate Cox regression.

Finally, only 3 immune genes, named PIK3CD, PLCG2 and

ZAP70, were overlapping from the above analyses (Figure 11G).

Wilcoxon rank sum test revealed that the expression of the

3 immune genes in the tumor samples were all significantly

lower than that in the normal samples (Figure 11H), which was

consistent with the result of GEPIA 2 database (Supplementary

Figure S6A). In addition, the survival analysis showed that CRC

patients with 3 immune genes low expression had longer survival

than that high expression (Figure 11I). For further validation, we

used TISCH to depict the expression distribution of 3 immune

genes in the TME of CRC. It was found that PIK3CD was

enriched in NK cells, CD8 + T cells, CD8 + Tex, CD4 +

Tconv cells, mononuclear/macrophage subsets and B cells.

PLCG2 was abundant in NK cells, CD8 + T cells, CD8 + Tex,

mononuclear/macrophage subsets, B cells and plasma.

ZAP70 was essentially distributed in NK cells, CD8 + T cells,

CD8 + Tex, CD4 + Tconv cells and T proilf cells (Figure 11J).

These results suggest that these immune genes may be the

downstream regulators of m6A regulators and related

lncRNAs participated in TME remodeling (Figure 12A).

The correlation of lncRNA ZEB1-AS1
expression with epithelial/mesenchymal
transition and chemoresistance in
colorectal cancer patients

Increasing evidence indicates that ceRNAs regulatory

networks serve essential roles in the occurrence,

development, and regulation of tumors. Thus, we put the

ZEB1-AS1 and U91328.1 (related to immune genes) into the

miRcode11 database (highly conserved miRNA families) to

identify potential miRNA-targeting lncRNAs. To enhance the

accuracy of the prediction, we then identified the downstream

target mRNAs that were shared by only three databases:

miRDB, miRTarBase, and TargetScan. Finally, cytoscape was

used to construct a regulatory network of ceRNAs, including

1 m6A-related lncRNA (ZEB1-AS1), 5 miRNAs, and

152 mRNAs (Figure 12B). Additionally, multivariate

analyses revealed that ZEB1-AS1 expression was

independent risk factors affecting the prognosis of CRC

patients (Supplementary Figure S6B). Further, the

expression of ZEB1-AS1 was verified in 6 pairs of CRC

tissues and normal colon tissues and human colon mucosal

epithelial cell line FHC and human CRC cell lines HT29 and

HCT116 by RT-qPCR. As shown in Figures 12C–E, the

expression of ZEB1-AS1 was significantly upregulated in

CRC cell lines and tumor tissues, consistent with the

findings of our studies. In addition, our results revealed that

the expression of ZEB1-AS1 was related to the pathologic stage

(p = 0.009), and high expression of ZEB1-AS1 was also

associated with poor prognosis in CRC patients based on

the median of ZEB1-AS1 expression levels (p = 0.0086)

(Figures 12F,G). In the GEPIA 2 database, the results of

ZEB1-AS1 were consistent with ours, suggested that ZEB1-

AS1 was involved in the malignant progression of CRC

(Supplementary Figures S6C–S6H). Also, the TISCH

database was used to analyze the relationship between

ZEB1-AS1 expression and staging in different subsets of

cells. As shown in Supplementary Figure S6I, ZEB1-AS1 was

significantly correlated with staging in the mononuclear/

macrophage subgroup. To further explore the biological

function of ZEB1-AS1 on CRC, we analyzed the correlation

ZEB1-AS1 expression with the scores of the associated

signaling pathways. As is shown in Supplementary Figures

S7A–S7S, most of the signaling pathways in the CRC, especially

ZEB1-AS1 showed a high level of activation in the TGF-β,
EMT, angiogenesis, collagen formation and degradation of

extracellular matrix signaling pathway, but consistent

inhibition of the cellular response to hypoxia, DNA damage

response, MYC target response and accumulation of reactive

oxygen species (ROS) signaling pathways. Epithelial/

Mesenchymal Transition (EMT) is one of the core

mechanisms of tumor metastasis, and it is also one of the

main factors leading to poor prognosis of patients.

Interestingly, correlation analysis showed that ZEB1-AS1

was significantly positive correlated with N-cadherin and

vimentin (Supplementary Figure S7T). For further

validation, ZEB1-AS1 siRNA was transfected into HT29 and

HCT116 cells (Figures 12H,I). Reduction in ZEB1-AS1

significantly inhibited the proliferation ability of HT29 and

HCT116 cells (Figures 13A,B). Through the western blot

analysis, we found that EMT marker E-cadherin was up-

regulated, while N-cadherin was down-regulated in ZEB1-

AS1 siRNA transfected CRC cells (Figures 13C,D). Notably,

the protein level of Vimentin had no significant correlation

with the ZEB1-AS1 expression. In addition, 5-fluorouracil (5-

Fu) chemoresistance is a major challenge and the prognosis for

CRC patients can be very poor due to recurrence of disease

(Brenner et al., 2014). We further focused on the correlation of

ZEB1-AS1 expression with the sensitivities of 5-Fu
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(IC50 value) based on Genomics of Drug Sensitivity in Cancer

(GDSC). Interestingly, the IC50 values of 5-Fu suggested a

positive association with the expression levels of ZEB1-AS1

(p = 0.021) (Supplementary Figure S6J). Unsurprisingly, our

experiments results suggested that ZEB1-AS1 siRNA increased

cytotoxicity induced by 5-Fu in HCT116 and HT29 cells

(Figures 13E,F). In addition, the IC50 value of 5-Fu in

HCT116 and HT29 cells was approximately 50 μM and

60 μM, and ZEB1-AS1 siRNA increased IC50 value of 5-FU

induced apoptosis in HCT116 cells and HT29 cells compared

with controls (Figure 13G). Therefore, these results indicated

that elevated ZEB1-AS1 levels can promote carcinogenesis,

metastasis of EMT and the chemoresistance of 5-Fu in CRC.

Discussion

After witnessing the success of targeted molecular therapy in

some tumor clinical applications, there has been increasing

enthusiasm for research on the impact of lncRNAs on CRC

(Chang et al., 2021; Zhang et al., 2021d). In addition, an

increasing number of studies have shown that the

heterogeneity of CRC is characterized by distinct clinical

features, prognosis and therapy response (Linnekamp et al.,

2015; Zhai et al., 2017), and the differing expression of

noncoding RNAs has been revealed to be associated with

distinct clinical features, therapy response and clinical

outcomes (Zhou et al., 2018). However, the specific

FIGURE 13
ZEB1-AS1 promotes the CRC cell proliferation, metastasis of EMT and chemoresistance to 5-Fu in vitro. (A,B) The proliferative ability of
HCT116 and HT29 cells was determined by CCK8 assay. (C,D) Protein levels of E-cadherin, N-cadherin, and Vimentin were measured by Western
blot. Data are presented as means ± SD. (E,F) Cells were transfected by ZEB1-AS1 siRNA and then exposed to serial dilutions of 5-Fu for 48 h (cell
viability was determined by CCK8 assay and data are presented as the percentage of viable cells). (G) Cells were transfected by ZEB1-AS1 siRNA
and then in the presence of IC50 5-Fu for 48 h (cell viability was determined by CCK8 assay and data are presented as the percentage of viable cells).
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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influencing mechanism of m6A modification on prognostic

lncRNAs remains rare. Moreover, the overall mechanism of

lncRNAs in CRC is not yet completely understood.

In this study, 1707 m6A-related lncRNAs, using the TCGA

dataset, were selected in order to explore their association with

the TME, progression and prognosis of CRC. First, 28 m6A-

related lncRNAs were confirmed to be associated with the OS in

CRC patients. Subsequently, two different subtypes were

identified based on the 28 m6A-related lncRNAs, and cluster

2 appeared to have poor immune cell infiltration and clinical

results. Further, 8 of the m6A-related lncRNAs were successfully

used to construct an m6A-related lncRNA signatures model.

According to the intermediate risk score, CRC patients were

divided into high- and low-risk groups, and our results showed

that significantly different clinicopathological characteristics,

prognosis, mutation, TME, immune checkpoints, MSI, CSC

index, and drug susceptibility between the two risk groups. In

addition, multivariate Cox regression analysis indicated that the

lncRNA signatures could act as an independent predictor, and

the AUC values obtained confirmed the signatures’ high

predictive power for CRC patients. We also constructed a

nomogram showing that the 1-, 3-, and 5- year OS rates

could be predicted relatively well. Further, we screened

3 downstream immune genes targeted by the lncRNA

signatures based on the hub and prognostic analysis. Recently,

PIK3CD has been reported to be associated with the homeostasis

and function of B and T cells, and can induce cancer cell growth

and invasion by activating AKT/GSK-3β/β-catenin signaling in

CRC (Chang et al., 2021; Zhang et al., 2021d). PLCG2 is

determined as a potential indicator of TME remodeling in

tumor, and dysfunction of PLCG2 is closely associated with

inflammation, immune disorders, and cancer (Koss et al.,

2014; Li et al., 2021b). ZAP70 has been found to be a master

regulator of adaptive immunity, and is essential for long-term

survival of naive CD8 + T cells (Fischer et al., 2010; Schim van der

Loeff et al., 2014). Subsequently, a Sankey diagram that depicted

the relationship between m6A methylation regulators, lncRNAs,

and immune genes was constructed. These results suggest that

lncRNA signatures may affect the immune cell infiltration

through 3 common immune genes and provide invaluable

insights into the future treatment of patients with CRC.

Finally, we determined that ZEB1-AS1 was the most

significant lncRNA signatures in CRC, and through in vitro

experiments, we were able to verify our conclusions. ZEB1-

AS1 has been reported that promotes PAK2 expression by

sponging miR-455-3p and further facilitating CRC cell growth

and metastasis (Ni et al., 2020). In addition, a recent study

revealed that ZEB1-AS1 is an independent prognostic factor

for patients with advanced gastric cancer receiving

chemotherapy (Chai et al., 2019). ZEB1-AS1 promotes

paclitaxel and cisplatin resistance by regulating MMP19 in

ovarian cancer (Dai et al., 2021). ZEB1-AS1 promotes triple-

negative breast cancer resistance to doxorubicin through miR-

186-5p/ABCC1 signaling (Lu et al., 2021). However, current

studies have focused on the effect of ZEB1-AS1 on cancer

proliferation, invasion and metastasis, but little information is

available regarding the effects of ZEB1-AS1 on chemoresistance.

Here, we found that ZEB1-AS1 was overexpressed in CRC and

conferred independent risk factors affecting the prognosis to

CRC patients. Further in vitro studies were performed to verify

that ZEB1-AS1 was involved in 5-Fu resistance in CRC. In

summary, m6A-related lncRNAs play a critical role in

malignant progression of CRC. Understanding the potential

molecular mechanism of these lncRNAs in CRC is important

to improve the knowledge of molecular biological basis of CRC

development and identify novel special biomarkers or

therapeutic target for CRC patients.

Immune cells, such as granulocytes, lymphocytes, and

macrophages are major cellular components of TME.

Increasing evidence has shown that effector T cells, memory

T cells, and T cell differentiation play a vital role in the immune

defense of CRC (Chang et al., 2021; Zhang et al., 2021d).

Increasing efforts in colon cancer immunogenomics have

shown that CRC tissues with higher densities of tumor-

infiltrating T cells indicate a good prognosis (Ma et al., 2020).

In our study, cluster 1 and low risk score, with a better prognosis,

showed higher infiltration of activated memory CD4 + and CD8

+ T cells, suggesting that they play a positive role in CRC

development. Further, our lncRNA signatures showed that the

low-risk group was closely associated with a high ImmuneScore.

We revealed that the levels of antitumour immune infiltrations

and the activity of immune-related pathways in the high-risk

group were lower than those in the low-risk group, which

indicated that the immune functions of the high-risk group

were overall impaired. Thus, the difference in survival rates

between the low- and high-risk groups might have been

caused by differing immune infiltration. The infiltration of

Tregs, which suppress the anti-cancer immune response, was

associated with poor prognosis (Tanaka and Sakaguchi, 2017).

Astonishingly, our study found that the number of Treg cells in

the low-risk group was significantly higher than that in the high-

risk group (p < 0.01). One reason for this inconsistency may be

that two main opposite roles of the subtypes of Treg cells in the

TME of CRC exist (Saito et al., 2016). Therefore, it is crucial for

future studies to identify the subtypes of Treg cells in CRC.

Recent studies revealed that B cells also participate in the

immune response, and was positively correlated with the

response to PD-1 blockade in soft-tissue sarcomas (Helmink

et al., 2020; Petitprez et al., 2020). In addition, tumor-infiltrating

B cells were associated with a favorable prognosis in CRC (Chang

et al., 2021; Zhang et al., 2021d). The high B cell infiltration have a

significantly lower risk of disease recurrence and prolonged

overall survival in metastatic CRC patients (Meshcheryakova

et al., 2014). In our study, we observed the abundance of memory

B cells in cluster B and high-risk groups with worse overall

survival were significantly lower than those in cluster A and low-
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risk groups, suggested that patients with cluster A and low-risk

groups might benefit from immunotherapy. Thus, infiltration of

B cell inhibited tumor progression in CRC, consistent with the

findings of previous studies. Eosinophils have been shown to

infiltrate multiple tumors, either as an integral part of the TME or

in response to various therapeutic strategies (Grisaru-Tal et al.,

2020). Furthermore, high tumor stromal eosinophil score has

been associated with a decreased risk for all-cause and colorectal

cancer death (Fernandez-Acenero et al., 2000; Prizment et al.,

2016). Consistent with previous publications, we noticed an

increased infiltration of eosinophils in cluster 1 and low risk

score groups with a favorable prognosis, which suggesting that

eosinophils play a role in the TME and can affect the prognosis

and response to therapy in CRC. In future, single-cell RNA

sequencing should be exploited to help dissect the diverse

phenotypic landscape of CRC infiltrating eosinophils under

physiological conditions and following therapy. Overall, our

study revealed that the m6A-related lncRNAs play a vital role

in TME infiltration, and it provides a new insight into the

association of immune infiltration with clinical significance in

CRC patients.

Nonetheless, our study has certain limitations. First, due

to the lack of available data about lncRNA sequencing in the

Gene Expression Omnibus (GEO) database and other

databases, further verification could not be performed. We

will continue to follow up sequencing cases in the future to

improve the prediction model based on the data from our

center. Several studies have adopted |Pearson’s R| > 0.3 and

p < 0.001 or |Pearson’s R| > 0.5 and p < 0.001 to screen m6A-

related lncRNAs(Zhang et al., 2021b; Zhang et al., 2021e).

However, whether Pearson’s R| > 0.3 or 0.5 could not classify

the patients into distinct molecular subtypes well in our study

(p > 0.05, data not shown). Thus, our process used the criteria

of |Pearson’s R| >0.4 and p < 0.001 to identify the m6A-

associated lncRNA, which was consistent with previous study

(Liu et al., 2021). Whether the other |Pearson’s R| values can

affect the results of the study deserve further investigation.

Additionally, most of the results were predicted by

bioinformatics analysis, further experiments in vitro or in

vivo are needed to demonstrate the associations between these

factors.

Conclusion

In this study, our results provide a novel lncRNA signatures

model for predicting the prognosis of CRC patients. Moreover,

the lncRNA signatures between the low- and high-risk group

were closely associated with the immune infiltration, and this

offers a significant basis for future studies on the relationships

between m6A-related lncRNA and TME in CRC. We also

determined the therapeutic liability of lncRNA signatures in

targeted therapy, immunotherapy, and chemotherapy. These

findings highlight the crucial clinical implications of m6A-

related lncRNA and provide new ideas for guiding

personalized therapy strategies in CRC patients. In addition,

high expression of ZEB1-AS1 can be used as a molecular

marker to identify CRC patients in high-risk groups, and a

potential therapeutic target to improve the survival of CRC

patients.
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