
Review
Nucleic acid biomarkers to assess graft injury after liver
transplantation
Elissa Bardhi,1 Jennifer McDaniels,1 Thomas Rousselle,1 Daniel G. Maluf,1,2 Valeria R. Mas1,*
Keywords: liver trans-
plantation; biomarkers; mo-
lecular diagnostics;
transcriptomics; microRNAs;
extracellular vesicles; donor-
derived DNA; personalized
therapy

Received 13 September 2021;
received in revised form 13
December 2021; accepted 20
December 2021; available
online 26 January 2022
Summary
Many risk factors and complications impact the success of liver transplantation, such as ischaemia-
reperfusion injury, acute rejection, and primary graft dysfunction. Molecular biomarkers have the
potential to accurately diagnose, predict, and monitor injury progression or organ failure. There is a
critical opportunity for reliable and non-invasive biomarkers to reduce the organ shortage by
enabling i) the assessment of donor organ quality, ii) the monitoring of short- and long-term graft
function, and iii) the prediction of acute and chronic disease development. To date, no established
molecular biomarkers have been used to guide clinical decision-making in transplantation. In this
review, we outline the recent advances in cell-free nucleic acid biomarkers for monitoring graft
injury in liver transplant recipients. Prior work in this area can be divided into two categories:
biomarker discovery and validation studies. Circulating nucleic acids (CNAs) can be found in the
extracellular environment pertaining to different biological fluids such as bile, blood, urine, and
perfusate. CNAs that are packaged into extracellular vesicles may facilitate intercellular and inter-
organ communication. Thus, decoding their biological function, cellular origins and molecular
composition is imperative for diagnosing causes of graft injury, guiding immunosuppression and
improving overall patient survival. Herein, we discuss the most promising molecular biomarkers,
their state of development, and the critical aspects of study design in biomarker research for early
detection of post-transplant liver injury. Future advances in biomarker studies are expected to
personalise post-transplant therapy, leading to improved patient care and outcomes.
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Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
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Introduction
The field of liver transplantation (LT) has experi-
enced great advances over the last few decades,
largely due to the development of novel immuno-
suppressive drugs, technical refinements in sur-
gery, and effective postoperative management of
transplant recipients. Overall, adult and paediatric
liver transplant rates continue to increase at a
significant rate, reaching nearly 9,000 liver trans-
plants performed in the US alone each year. This
represents a 40.8% increase over the past decade as
reported by the 2019 Annual OPTN/SRTR Data.1

Such progress is accompanied by increased rigor
in translational and clinical research efforts,
resulting in significant improvements in patient
outcomes. For instance, with the recent advent of
new antiviral treatments, recurrence of hepatitis C
after transplantation is no longer the leading cause
of graft loss.1,2 Nonetheless, long-term allograft
failure continues to occur, owing to both immu-
nologic and non-immunologic factors, with
immunosuppressive toxicity contributing to pa-
tient morbidity and mortality.

Finding the right balance between under- and
over-immunosuppression remains a holy grail in
transplantation. Currently, core biopsies remain
the “gold standard” for the diagnosis of post-
transplant abnormalities despite increased con-
cerns regarding interobserver variability between
histological evaluations.3,4 Considering the large
physical size and high complexity of the liver, core
biopsies only capture a small fraction of a single
lobe, making up less than 0.002% of the total mass
and often leading to inaccurate diagnoses.5,6 In the
absence of reliable tools to measure immunosup-
pressive burden, clinicians also depend on non-
invasive measurements of traditional, non-specific
laboratory biomarkers (liver function tests [LFTs])
to guide immunosuppression dosage.5,7 Thus, there
remains a significant need for specific, non-
invasive biomarkers that can accurately deter-
mine the degree and cause of liver injury post-LT.
Recently, cell-free molecular biomarkers have
emerged as potential early and sensitive markers of
tissue injury and function.
Multi-omics approach to identifying
biomarker signatures
The prognostic and diagnostic applications of
molecular biomarkers have been widely studied
throughout the transplant community. High-
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Key points

� Molecular evaluation of biofluids (i.e., blood, urine, perfusate, and bile)
are providing new opportunities to understand how specific pertur-
bations in nucleic acids can signal the early stages of disease.

� Circulating nucleic acid (CNA) biomarkers (i.e., cell-free RNA/DNA)
confer significantly more information than current prognostic and
diagnostic methods, emerging as early and sensitive measures of liver
injury and function.

� Extracellular vesicles (EVs) carry a heterogeneous composition of RNAs,
DNAs, lipids, and proteins, and have been found to protect molecular
biomarkers from degradation in the extracellular environment.

� Advances in EV analytic approaches have enabled the investigation of
donor-specific EVs in recipient biofluids, demonstrating the capacity
for these structures to facilitate intercellular and interorgan commu-
nication following liver transplantation.

� Circulating miRNAs provide information on causal transcriptional
processes occurring at a molecular level, leading to the identification of
dysfunctional canonical pathways and novel therapeutic targets.

� Donor-derived cell-free DNA (dd-cfDNA) is released from necrotic or
apoptotic cells in the transplanted organ and may consequently be
useful as an early predictor of post-transplant injury or rejection.

� Large multicentre clinical trials have generated vast amounts of data
and information at various molecular levels, demonstrating a prom-
ising opportunity for cell-free biomarkers to be introduced into clinical
care.

Review
throughput technologies allow for the generation of large
amounts of data and information at different molecular levels.8

Recent studies using multi-omics techniques have identified
unique molecular signatures that confer significantly more in-
formation than the microscopy and staining measures currently
used for medical diagnostics.9–15 Such advanced technology
paired with extensive patient databases has allowed for the
discovery of a diverse set of biomarkers, shifting the focus away
from a single marker to a combination of various biomarkers.
Because of the complexity of the aetiology of post-transplant
liver injury, prognostic and diagnostic tests will likely need to
integrate multiple layers of biological information (e.g., tran-
scriptomics, epigenetics, proteomics) in order to be both sensi-
tive and specific (especially in the presence of coexisting
conditions). By definition, biomarkers are measurable and
reproducible objective indicators of medical state, observed
externally from the patient, which can give information on
normal biological mechanisms, pathogenic processes, or re-
sponses to an exposure or intervention.16

Common molecular biomarkers include nucleic acids (e.g.,
microRNAs [miRNAs] and cell-free DNA), epigenetic patterns
(e.g., DNA methylation and histone modifications), and the
more traditional protein-based markers (e.g., glycoproteins,
antigens, and antibodies) that correspond to disease pro-
gression and severity. Less common markers may include
proteomic and metabolomic biomarkers, which are explored
using multi-analyte technologies that assess the complete set
of proteins or metabolites of a biological sample.9 However,
findings from proteomic and metabolomic biomarker discov-
ery studies have not been readily transferred to clinical trials
due to their high complexity, relative novelty, and the intricate
analytical techniques required to interpret such data.17,18

Therefore, this review will focus on the biomarkers that
have been described using an important number of clinical
samples and that are thus more likely to be transferred to the
clinical setting promptly. Principal applications of these bio-
markers in transplantation include: i) predicting the pro-
gression or development of disease, ii) diagnosing specific
post-transplant conditions, iii) assessing the severity or
extent of graft injury, and iv) monitoring the response to
therapeutic interventions such as immunosuppressants and
steroids.19 Overall, this article describes the recent scientific
advances in the discovery and implementation of circulating
molecular biomarkers in LT.
Extracellular nucleic acid markers
Since the discovery of cell-free nucleic acids by Mandel in 1948,
researchers have demonstrated that nucleic acids in body fluids
have the potential to detect, track, and discriminate between
patients with and without disease.20 Circulating biomarkers offer
a viable non-invasive approach to early disease diagnosis. While
most nucleic acids are located within cells, a small quantity
termed “circulating nucleic acids” (CNAs) can be found in the
extracellular environment. In the more studied cancer field, re-
searchers have found traces of tumoural-shed nucleic acids in
the blood, urine, and stool.21,22 The information stored within
CNAs has various benefits related to cancer detection and
treatment. These circulating biomarkers offer additional infor-
mation regarding methylation or transcriptional and trans-
lational status via non-coding RNA, which may be suitable for
the early detection of cancer.23
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Despite the robust presence of CNA in biological fluids, the
origin and function of these biomarkers in the extracellular
environment remain poorly understood. Given the high levels of
nucleases within circulating biofluids, it has been demonstrated
that nucleic acids packaged into membranous structures are
protected from immediate degradation upon release.24 These
structures often contain a heterogenous composition of RNAs,
DNAs, lipids, and proteins, which vary depending on cellular
origin and physiological state.25 In the last decade, a novel
method of cell-to-cell communication mediated by extracellular
vesicles (EVs) has emerged. These 0.05–1 lm membrane-bound
vesicles are involved in normal physiological processes, as well
as being implicated in pathological conditions.26 They are
released by cells into the bloodstream and other bodily fluids,
shuttling bioactive molecules from their cell of origin to recipient
cells via phagocytic or non-phagocytic pathways and delivering
their contents directly into the cytoplasm of target cells.27 This
emerging field of interest has spurred a plethora of EV studies
that employ high-throughput technologies including proteomics,
transcriptomics, and lipidomics.28

Recent studies have demonstrated that EVs may facilitate
intercellular and interorgan communication.29–32 It has also been
suggested that through the internalisation of EVs, bioactive
contents such as miRNAs can alter gene expression and mediate
a physiological response in target cells. Thus, decoding the
composition, biogenesis, and biological functions of EV cargo can
further elucidate cellular crosstalk within transplant organs.
Such information can be combined with physiological data to
elucidate the cellular pathways responsible for differential liver
graft outcomes. Fig. 1 depicts EVs and their pertinent molecular
contents, which can function as liver-specific biomarkers.

The pursuit of non-invasive biomarkers of allograft rejection
has led to the evaluation of EVs in a range of biofluids. Specif-
ically, using bulk analyses to evaluate EV cargo, researchers have
been able to identify markers of varying specificity, sensitivity,
and usefulness. Recently, EVs bearing donor-human lymphocyte
2vol. 4 j 100439
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Fig. 1. EVs released from graft tissue function as well-protected messenger complexes that allow for the transfer of lipids, proteins, and nucleic acids to
neighbouring or distant targets. By carrying biomolecules from tissues to biofluids, EVs may serve as non-invasive sources of clinical biomarkers. Characterising
the cellular sources using surface markers can provide biological information about the functional state of liver-specific parent cells. dsDNA, donor-specific DNA;
EV, extracellular vesicle; miRNA, microRNA.
antigen (HLA) have garnered interest as potential biomarkers of
allograft function. Mastoridis et al. used ImageStream flow
cytometry to detect and characterise circulating organ-specific
EVs.33 The EVs from 3 liver transplant recipients were labelled
with a pan-EV marker (CFSE [carboxyfluorescein diacetate suc-
cinimidyl ester]), a bona fide marker of exosomes (CD63), and
probes for donor and recipient HLA (such as HLA-B27 and HLA-
B8). The investigators confirmed that donor-specific EVs were
detectable in the circulation after LT. Further multiparametric
analyses were employed to interrogate donor EV cargo for co-
stimulatory/inhibitory molecules, thereby providing additional
Table 1. miRNAs associated with various post-transplant liver conditions.42–7
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support for the application’s potential to characterise disease and
impart functional insights. Recently, the same group employed
advanced imaging flow cytometry to explore the kinetics of EV
release and the extent to which donor EVs might induce cross-
dressing (a phenomenon where recipient cells display mem-
brane proteins from the transplant donor) following LT.34 Typi-
cally, the cross-dressing process occurs after organ
transplantation when donor leukocytes and/or parenchymal
cells release vast amounts of small EVs, including exosomes
(30–150 nm in diameter).34 These EVs are taken up and dis-
played as patches on the surface of host dendritic cells, causing
9

3vol. 4 j 100439



Review
alloreactive T cell stimulation or tolerization. The authors
conclude that cross-dressing can be transiently detected in the
circulation shortly after LT in association with the release of
donor-HLA EVs. In LT recipients, most circulating cells exhibiting
donor-HLAs are indeed cross-dressed cells and not passenger
leukocytes.34

Such advances in EV analytic approaches have enabled the
investigation of donor-specific allograft-derived EV release
following LT and demonstrated the capacity for these to cross-
dress recipient cells through the transfer of donor major histo-
compatibility complexes. Given the presence of cross-dressed
cells in experimental and clinical transplantation and the rec-
ognised impact of these cells on the overall alloresponse, these
pathways could be critical for the design of tolerance-promoting
protocols.35

In addition to functioning as “biomarker carriers,” EVs may
hold therapeutic potential based on their drug delivery capabil-
ities and regenerative properties.36 A recent report showed hu-
man liver stem cell-derived EVs can reduce liver injury and
promote regeneration during normothermic machine perfusion
in a donation after circulatory death donor model with pro-
longed warm ischaemia.37 Further identification of the cellular
origins of EVs (i.e., stellate cells, hepatocytes, endothelial cells)
and their intended recipient cells will be critical for targeted
interventions.
MiRNAs as markers of injury
Ongoing investigations into the transcriptomic profiles associ-
ated with biological fluids have revealed the potential for non-
coding RNAs to serve as biomarkers of graft injury. Non-coding
RNAs (e.g., miRNAs, long non-coding RNAs, transfer RNAs,
small-interfering RNAs) represent specific, sensitive, and stable
markers of liver injury. MiRNAs have garnered heightened in-
terest because of their upstream roles in modulating transcrip-
tional programmes and orchestrating both physiological and
pathological processes. Given the regulatory role of miRNAs in
mediating gene expression on the post-transcriptional level, it is
not surprising that physiological and pathological changes can
induce alterations in the circulating miRNA expression profiles.
MiRNA sequences are highly conserved across species, allowing
for tissue-specificity and easy detection through reverse-
transcription quantitative PCR (RT-qPCR).38 Additionally, circu-
lating miRNAs are rapidly released from cells in response to
hypoxic stress and injury, and can enable real-time assessments
of the dynamic conditions related to transplant injury.39,40 It has
also been demonstrated that critical facets of adult tissue repair
mechanisms are subject to control by miRNAs.41 The release of
shedding vesicles containing miRNA is known to be highly
regulated and depends on the activation state of the source
cells.26 These features establish miRNAs as ideal biomarkers for a
variety of clinical applications. Circulating miRNAs’ potential as
sensitive markers of liver injury has been reported in many
studies. Table 1 summarises the differentially expressed miRNAs
found to be associated with acute rejection, HCV, alcohol-related
liver disease, non-alcoholic fatty liver disease, hepatocellular
carcinoma (HCC), or drug-mediated hepatoxicity.42–79 Of note,
miR-122, miR-34a, miR-223, miR-192, miR-885-5p, miR-155, and
miR-21 were related to 3 or more of these conditions, demon-
strating their broad potential to assess multiple forms of liver
JHEP Reports 2022
injury. Mir-122 is the only miRNA that was found to be associ-
ated with each of these conditions.42–53

As one of the earliest examples of tissue-specific miRNAs,
miR-122 is of heightened interest as a marker of liver injury.80,81

Upon its discovery, investigators found that miR-122 accounted
for 72% of all miRNAs cloned from the livers of mice.82 Other
miRNAs such as miR-21, miR-29, miR-192, and miR-194 are also
highly enriched in the liver and may function as specific markers
of post-transplant injury.83–87

Investigators have used clinical models to explore the quan-
titative relationship between miRNA expression and degree of
liver injury. Changes in liver-specific miRNAs in the plasma of
mice are both dose- and exposure duration-dependent.88,89

Wang et al. found that expression of miR-122 and miR-192
increased more rapidly than LFTs after drug overdose (<−1
hour), and progressively increased as the dose of acetaminophen
increased.83 Similarly, Chang et al. reported that patients with
non-alcoholic fatty liver disease and advanced fibrosis (grade 3-
4) had significantly lower levels of serum miR-122 than those
with lower grade fibrosis (grade 1-2), demonstrating an inverse
relationship between the severity of fibrosis and miR-122.90 In
contrast, most studies have demonstrated that elevated miR-122
serum levels correlate with hepatic injury and inflammatory
activity in patients with HCV, acute rejection, alcohol-related
liver disease, and non-alcoholic fatty liver disease.42–53 These
discrepancies might be due to differences in the aetiology of liver
disease, thus, the relationship between miR-122 and fibrotic
injury needs to be further explored.

MiRNAs can also provide information on causal transcrip-
tional processes occurring at a molecular level, leading to the
identification of dysfunctional canonical pathways and novel
therapeutic targets. Of note, Shaked et al. investigated the miRNA
profiles of longitudinal serum biopsies to identify early pre-
dictors of acute rejection.91 Using a prospective study design, the
investigators demonstrate that a two-miRNA (miR-483-3p and
miR-885-5p) combination model could predict acute cellular
rejection (ACR) up to 40 days before biopsy-proven rejection. The
findings of this study suggest that serum miRNAs could identify
ACR without the need for a liver biopsy. Consequently, these
markers could replace or, more likely, contribute to the diag-
nostic value of liver biopsies. Critically, immunosuppression
could also be personalised for individual patients based on
miRNA measurements during protocolised immunosuppression
minimisation. Validated, non-invasive markers of rejection could
be used to predict clinical rejection episodes, thereby providing a
unique tool for physicians to optimise immunosuppression levels
while avoiding ACR. In summary, these findings may give rise to
more precise postoperative immunosuppression regimens,
addressing the critical need to mitigate the toxic effects of excess
immunosuppression, which is associated with system-wide
comorbidities.

In a recent report, Ruiz et al. reported that 3 upregulated
plasma miRNAs (miR-155-5p, miR-122-5p, and miR-181a-5p)
can accurately diagnose T cell-mediated rejection (TCMR) with
AUROCs of 0.87, 0.91, and 0.89, respectively.43 Furthermore, they
report that miR-155-5p was able to discriminate all patients who
presented TCMR. This study demonstrates that miRNA expres-
sion levels in plasma can differentiate TCMR from other causes of
graft dysfunction and may serve as a useful tool in clinical
practice. Because this is a single-centre study with a limited
4vol. 4 j 100439



sample size, results should be interpreted cautiously and must be
validated in a larger patient population. In addition, only a few
miRNAs were examined, and the methodologies used for their
analysis vary from other works.

Similarly, Muthukumar et al. reported a miRNA signature in
serum that can diagnose and differentiate acute rejection from
other forms of liver injury.42 The group first identified a panel of
9 miRNAs that is diagnostic of acute rejection of human liver
when compared to a cohort without signs of rejection. To reduce
confounding variables this analysis was limited to patients who
received transplants for non-immunological and non-viral liver
diseases. Remarkably, the authors found that a diagnostic model
using a combination of miR-210 and miR-34a grouped all the
patients correctly. These results suggest that serum miRNAs
could identify acute rejection without the need for a liver biopsy.
The investigators then tested the specificity of these serum
markers by comparing the acute rejection cohort to recurrent
HCV samples. While HCV rarely poses an ongoing threat to post-
transplant outcomes, the investigators still demonstrate the
ability of circulating miRNAs to successfully differentiate liver
injury caused by different aetiologies. These miRNA signatures
can be detected significantly earlier than the current established
diagnostic methods, allowing for more timely intervention and
guided treatment. Ultimately, these studies support the utility of
cell-free miRNA as diagnostic non-invasive biomarkers and also
demonstrate the applicability of new bioinformatics tools (i.e.,
logistic regression models and AUROCs) in the discovery of
biomarkers.

Furthermore, as the study of machine perfusion accelerates,
there is an even greater demand to identify and validate markers
of liver viability and functionality during perfusion. Perfusate is
an especially advantageous choice as a source of biomarkers for 3
critical reasons: i) there is a large volume readily available, ii)
collection is non-invasive, and iii) it can be rapidly analysed
while the liver is awaiting transplantation and/or being perfused.
Therefore, as scientists promptly work to extend the limits of
cold ischaemia time (CIT), there is a growing window of oppor-
tunity in which graft quality can be non-invasively examined in
real-time. During CIT the liver is under significant hypoxic stress
and releases uniquely packed EVs in response to extreme con-
ditions. Few groups have explored the prognostic potential of
circulating miRNAs released during CIT. Using advanced molec-
ular techniques, it takes about 1 hour to isolate RNA, 1 hour for
cDNA conversion, and 1 hour for qPCR set up and analysis. Given
the CIT is 6-9 hours for most of the liver donors (range: 5-13
hours), there is ample time to collect perfusate and run prog-
nostic tests while the patient awaits implantation.92 Selten et al.
set out to determine whether miRNA expression in perfusate
correlated with early allograft dysfunction after LT.93 The in-
vestigators found that hepatocyte-specific miR-122 and the miR-
122/miR-222 ratios in perfusate served as potential biomarkers
of early allograft dysfunction. The two-miRNA ratio model may
aid in the development of therapies during graft preservation,
thereby reducing post-transplant complications. This work
demonstrates the maladaptive physiological and pathological
processes that may begin manifesting in the donor organ under
ischaemic conditions prior to transplantation. Such findings can
be used to assemble a panel of miRNAs that can be tested at pre-
implantation and may predict future graft function and
JHEP Reports 2022
outcomes. Decoding these early signals that are constitutively
released into the perfusate may also allow for a better under-
standing of the role of cell-to-cell communication in the propa-
gation of graft injury.

While the use of miRNA biomarkers holds great promise, the
identification of robust controls for data normalisation remains a
challenge in miRNA biomarker research, and the use of an
exogenous “spike-in” control during RNA isolation remains
essential. During RNA extraction, exogenous oligonucleotides
(e.g., cel-miR-39, cel-miR-54, cel-miR-238) are added at known
concentrations in order to assess RNA yield, signal the presence
of nucleases, and monitor reverse-transcription efficiency.94 Af-
ter conducting qPCR, spike-in expression values between patient
samples can be compared, and outlier samples may be identified
and considered for exclusion from further data analysis. In a
recent publication, Roest et al. systematically investigated the
challenges associated with the isolation of RNA from a range of
human biofluids related to LT, including serum, urine, bile, and
perfusate.95 Using 4 different isolation techniques and complete
sample sets from matched patients, the investigators demon-
strate i) the large variability in RNA yield between biological
samples, ii) the significant contamination of anticoagulant RT-
qPCR inhibitors detected in perfusate samples, and iii) the ben-
efits of using a spike-in control to determine RNA loss during
workup. However, the investigators also warn against using
spike-in controls to normalise qPCR data, instead confirming that
it serves as a reliable indicator of RNA yield.95 Still, investigators
are left without a set of standards for data normalisation in
miRNA discovery research. There are limited consistent “house-
keeping” miRNAs in human biofluids, and the heterogeneity of
these samples makes the identification of one increasingly
challenging.96 Recently, Faraldi et al. investigated the efficiency
of 4 different normalisation strategies for analysing circulating
miRNAs, including i) the global mean of miRNA expression, ii)
the mean of endogenous controls (33 stable miRNAs ranked by
NormFinder97 algorithm), iii) exogenous oligonucleotides (3
“spike-in” miRNAs), and iv) the single most stable endogenous
miRNAs.94 The investigators found that global, endogenous, and
single-miRNA methods performed similarly in reducing the
technical variability among their experimental replicates. Inter-
estingly, they report that exogenous spike-in normalisation
methods (using both individual and mean Ct values) generated
marked differences in the fold-change expression levels (oppo-
site trend), suggesting that this strategy may lead to misinter-
pretation of results.94 Other groups have also demonstrated that
the relative logarithmic differences between two endogenous
miRNAs can be used to create “self-normalising miRNA pairs,”
which circumvent the need for a reference miRNA in circulating
biofluids.98–100 Currently, it is clear that different normalisation
methods significantly influence experimental outcomes and
thus, the lack of an accepted standardised control strongly limits
the clinical applicability of miRNA biomarkers.

Beyond identifying expression patterns that are significantly
associated with graft survival and recurrent disease, miRNAs can
be used to explore the molecular mechanisms and specific cell
types involved in mediating post-transplant injury. Technologies
based on immunoaffinity-capture surfaces and beads, such as
flow cytometry and ELISA, have enabled the characterisation of
EV populations expressing cell-specific antigens.101,102 Thus,
5vol. 4 j 100439



Table 2. Current challenges associated with biomarker discovery research.

Challenge

Working with human
samples

� Recruitment: enrolling patients with diverse backgrounds from multiple transplant centres remains a challenge
� Small sample size: acquiring a large number of study participants is necessary for significant findings
� Clinical data organisation: collecting, storing, and sorting a significant volume of longitudinal patient data can be difficult to

manage
� Study timeline: retention of patients during follow-up is costly, time-consuming, and difficult
� Variable post-transplant drug regimens: immunosuppressive treatment, dosage, and management may change over time,

presenting a confounding variable that is difficult to adjust for
Study Design � Lack of standardised study endpoints: patient/graft survival, acute rejection episodes, biochemical data (i.e., liver enzymes),

disease recurrence and development, and non-immunological injury (nephrotoxicity) must all be assessed in relation to post-

transplant outcomes
� Lack of control group: post-transplant control groups are difficult to define
� Identification of best markers: there is no standardised method for narrowing down the top candidate markers when using

high-throughput approaches
Technical challenges � Isolating nucleic acids: circulating nucleic acids are characterised by low concentration and high degradation rates

� Experimental methods: utilising high throughput technologies can be costly and time-consuming
� Normalisation methods: multiple approaches can be used to normalise cell-free nucleic acids

Buildingpredictivemodels � Team science: biostatisticians are needed to aid in the development and implementation of statistical and mathematical

methods
� Overfitting: over-testing the training data can result in a model that appears very accurate but has memorised the key points in

the data set rather than learned how to generalise, requiring an independent dataset to validate findings.

Review
liver-specific EV populations can be studied for their protein (e.g.,
western blotting), lipid (e.g., mass spectrometry), and nucleic
acid (e.g., RT-qPCR, DNA, and RNA sequencing) content, allowing
for the continued study of novel circulating molecular
markers.102

However, it is important to note that miRNAs have a variate
distribution in biofluids, which may subsequently affect findings.
Some are known to be associated with proteins, others with
vesicles, and others with both. For example, in alcohol-related
liver disease and inflammatory liver injury, miR-122 and miR-
155 are mainly associated with EVs, whereas in drug-induced
liver injury, these miRNAs predominate in protein-rich frac-
tions.18 Such variations are important to consider when investi-
gating the origin, function, and target of pertinent miRNA
markers from differing biological fluids.62

Lastly, it may be useful to discern the mechanisms and
pathways by which master miRNA regulators drive liver injury
by quantifying the expression of novel downstream targets.
Studying the molecular pathways and biological functions
associated with significant miRNAs could lead to translational
and therapeutic advances in LT. In future work, gain- and loss-of-
function approaches could be used to target top miRNA candi-
dates and thereby to identify significant molecular interactions
that orchestrate liver injury in clinical models.103,104

Cell-free DNA as a marker of graft injury
In the current era of immunosuppression, acute rejection rates in
LT remain acceptably low, while immunosuppressant toxicity
continues to have severe consequences on long-term outcomes.
Thus, a non-invasive marker to personalise immunosuppression
remains a critical need. The transplant field is in need of bio-
markers that are practical, cost-effective, and reproducible, with
a rapid (same-day) turnaround time. Analytic performance
shows high specificity and sensitivity for graft complications,
and such biomarkers should have diagnostic or prognostic utility
JHEP Reports 2022
at the earliest disease stages. Donor-derived cell-free DNA (dd-
cfDNA) is a promising new biomarker for the detection of graft
injury.92 One of the earliest studies concluded that plasma dd-
cfDNA levels can function as markers of cell death, released
from necrotic or apoptotic cells in the transplanted organ, and
may consequently be useful in predicting rejection.105

There are various approaches for detecting dd-cfDNA; for
instance, the use of preselected single nucleotide polymorphisms
and high-throughput sequencing for readouts have been re-
ported.94–96 Currently, the most common methods include
shotgun sequencing or droplet digital PCR (ddPCR). This data is
expressed either as GcfDNA percentage (graft cfDNA/total cfDNA)
or absolute quantification in copies/millilitre.104,106,107 In a recent
multicentre study, the detection of dd-cfDNA in plasma by ddPCR
allowed for earlier and more sensitive discrimination of acute
rejection compared with conventional LFTs.108 Specifically, LFTs
and plasma dd-cfDNA were both monitored in 115 adult liver
transplant recipients at 3 different transplant centres as part of a
prospective, observational, multicentre cohort trial. Multivari-
able logistic regression modelling demonstrated that GcfDNA
provided additional information on graft integrity beyond LFT
measurements. Diagnostic sensitivity and specificity were 90.3%
(95% CI 74.2%-98.0%) and 92.9% (95% CI 89.3%-95.6%), respec-
tively, for dd-cfDNA at a threshold value of 10%.

Additional studies using different biomarker detection
methods have explored the potential of dd-cfDNA biomarkers.
Using probe-based ddPCR, Beck et al. have demonstrated that the
plasma dd-cfDNA fraction was between 5%-10% at day 10 post-
transplant in stable liver transplant recipients, whereas in cases
of rejection it reached approximately 20% and gradually
increased to 55–60%.103 Macher et al., who instead quantified
cfDNA by RT-qPCR, also showed higher total cfDNA and dd-
cfDNA serum levels in patients with liver transplant injury
(acute rejection, hepatic arterial and venous thrombosis, and
profound cholestasis ending in multiple organ failure) compared
6vol. 4 j 100439



Table 3. Biomarkers to assess graft injury after liver transplantation.

Clinical trial title and identifier Institution Enrolment Start date End date Description

Serum Markers of Ischemia-
Reperfusion Injury in Liver Transplant
Patients [NCT00698399]

Vanderbilt University Medical
Center

20 Mar 2008 Feb 2010 Observational trial of markers
(TMAO, NGAL, cystatin-C, and
allantoin) in the serum of pa-
tients who are undergoing LT
surgery.

Gene Expression in Liver Allograft
Rejection and Recurrent Hepatitis C
[NCT01428700]

University of Pennsylvania 275 Aug 2011 Jan 2013 Observational study evalu-
ating whether certain pat-
terns of biomarkers in blood
post-LT can be used to deter-
mine if the transplanted liver
is being rejected or sustaining
injury.

Pilot Study of Immunosuppression
Drug Weaning in Liver Recipients
Exhibiting Biomarkers of High Likeli-
hood of Tolerance

Hospital Clinic of Barcelona 25 Sep 2011 Jan 2013 Non-randomised prospective
study in which gradual
weaning of immunosuppres-
sive drugs will be offered to
LT recipients exhibiting a
favourable peripheral blood
gene expression profile.

Discovery and Validation of Proteo-
genomic Biomarker Panels in Liver
Transplant Recipients [NCT01672164]

Northwestern University
Feinberg School of Medicine

202 Aug 2012 Dec 2015 The main focus of this study is
to develop blood and/or urine
tests that will help to detect
early signs of rejection in LT
patients.

The Relationship of Hepatobiliary
microRNA Expression Profile and
Clinical Outcome in Liver Trans-
plantation [NCT02307890]

University of Edinburgh 100 Aug 2014 Aug 2020 Observational study corre-
lating miRNA levels in bile
duct biopsies taken during LT
with the incidence of IC
following LT.

Liver Immunosuppression Free Trial
(LIFT) [NCT02498977]

King’s College London 148 Oct 2015 Oct 2021 Prospective interventional
study analysing the risk/
benefit ratio of employing
transcriptional biomarkers to
guide immunosuppression
withdrawal post-LT.

Plasmatic Factor V as a Predictor of
Graft Dysfunction After Liver Trans-
plantation [NCT03396016]

University Health Network,
Toronto

140 Apr 2018 Apr 2021 Observational study vali-
dating the use of coagulation
cofactor Factor V as a predic-
tive biomarker of graft func-
tion after LT.

Enteric Microbiome and Liver Trans-
plantation [NCT03666312

IRCCS Ospedale San Raffaele 275 Sep 2018 Aug 2021 Observational study of the
faecal microbiome of LT pa-
tients in combination with a
large panel of clinical, lab and
functional parameters corre-
lated to different clinical
outcomes.

(continued on next page)
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Table 3 (continued)

Clinical trial title and identifier Institution Enrolment Start date End date Description

Liquid Biopsy-based Monitoring Sys-
tem for Relapse of HCC After Liver
Transplantation: A Multi-center and
Prospective Study [NCT03708705]

Zhejiang University 500 Nov 2018 Jul 2020 Prospective study aiming to
develop a liquid biopsy-based
biomarker system for relapse
of HCC tumour post-LT using
genomic and proteomic
information.

Monocytic Expression of HLA-DR Af-
ter Liver Transplantation (EdMonHG)
[NCT03995537]

Hospices Civils de Lyon 100 Feb 2020 Sep 2023 Observational study exam-
ining the expression of
monocytic surface markers
(HLA-DR) in blood and their
association with post-LT im-
mune dysfunction (acute cell
rejection and sepsis).

Non-invasive Rapid Assessment of
Patients with Liver Transplants Using
Magnetic Resonance Imaging With
LiverMultiScan.

Leiden University Medical
Centre; King’s College Hospi-
tal NHS Trust

131 Aug 2020 Oct 2020 Prospective biomarker trial
comparing the accuracy of a
new test (LiverMultiScan)
against an existing test (liver
biopsy) in the assessment of
LT recipients.

Role of Fecal Microbiota in Predicting
Graft Rejection and Sepsis Among
Recipients of Living Donor Liver
Transplant in First Year.
[NCT04621812]

The Institute of Liver and
Biliary Sciences

100 Nov 2020 Oct 2022 Observational study analysing
the role of gut microflora an
early biomarker for graft
dysfunction and its influence
on immune remodelling for
the prediction of post-LT
infection or rejection.

Molecular Assessment and Profiling
of Liver Transplant Recipients
[NCT04793360]

Icahn School of Medicine at
Mount Sinai

1500 May 2021 Dec 2025 Prospective observational
study to assess the correlation
between clinical events (e.g.,
rejection, recurrent disease,
biliary obstruction), graft his-
tology, dd-cfDNA levels, and
gene expression profiling

dd-cfDNA, deceased donor cell-free DNA; HCC, hepatocellular carcinoma; HLA, human leukocyte antigen; IC, ischaemic cholangiopathy; LT, liver transplantation; NGAL, neutrophil gelatinase-associated lipocalin; TMAO, trime-
thylamine N-oxide.
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to recipients with stable graft function.109 In contrast, increases
in total cfDNA levels but not dd-cfDNA were observed in patients
with complications that did not compromise the donated organ
(biliary peritonitis and surgical wound infection).

A recent study aimed to evaluate the feasibility of measuring
dd-cfDNA through short tandem repeats analysis by quantitative
fluorescent-PCR and, to assess the role of the concentration and
fragment size of total cfDNA as biomarkers of acute rejection.110

Short tandem repeat amplification by quantitative fluorescent-
PCR may be an alternative, easily implementable, strategy for
rapid dd-cfDNA quantification in clinical laboratories. The results
of this pilot study indicate that dd-cfDNA increases very early,
even 1-2 weeks before the diagnosis of acute rejection, so it
could be useful as a prognostic biomarker to improve patient risk
stratification.

In summary, these studies show that dd-cfDNA is a biomarker
with promising clinical utility in LT. In cases of acute rejection,
dd-cfDNA has repeatedly outperformed LFTs, allowing for the
earlier and more sensitive discrimination of this complication.
Currently, the main limitation associated with cfDNA is speci-
ficity. However, it has been reported that unique methylation
patterns on DNA fragments can serve as fundamental de-
terminants of cell identity. Lehmann-Werman et al. recently
described a method to detect cfDNA carrying hepatocyte-specific
methylation patterns.111 The authors identify 3 genomic loci that
are specifically unmethylated in hepatocytes. Probing cfDNA
methylation sites allows for the i) identification of the cellular
origins of markers, ii) quantification of injury in specific cell
types, and iii) identification of novel therapeutic targets in
transplant injury.

Advancing precision medicine: the now and the future
The prognostic and diagnostic value of non-invasive biomarkers
has been widely explored in LT. However, findings have not yet
been translated into routine clinical use, owing to small sample
sizes, and the lack of proper control groups or independent
validations. The main limitations of CNA analysis include its low
quantity and compromised quality (potential degradation) in
biological fluids. The current challenges associated with
biomarker research are summarised in Table 2. Many recent
analyses are also limited to tissue-derived biomarkers, which are
useful for integrative analyses but have limited implications for
clinical practice. While the use of tissue miRNA expression for
diagnosis is not as practical as non-invasive markers, significant
miRNA discoveries in liver tissue can be used to guide future
investigations in biological fluids. Within the liver, several
microRNAs including miR-21, miR-221/222, and miR-181b pro-
mote liver fibrosis through the TGF-b or NF-jB pathways,
whereas miR-29b, miR-101, miR-122, and miR-214-3p prevent
fibrosis by inhibiting collagen synthesis or suppressing activation
of the TGF-b pathway.112 Serum miR-34a was found to be upre-
gulated in patients with fibrosis in a stage-dependent manner,
and miR-571 and miR-513-3p were elevated in patients with
cirrhosis.74,86 MiR-29a was downregulated in patients with
fibrosis in an inversely stage-dependent manner.113 Also, while
miR-122 is significantly downregulated in HCC tissue samples,
many groups have reported the upregulation of circulating miR-
122 in the serum of patients with HCC compared to that of
controls.54,114,115 More research is needed to understand the
correlation between tissue and peripheral biomarker signatures.
JHEP Reports 2022
Statistical significance does not readily translate into clinical
utility in biomarker research. The pipeline from discovery to
clinical practice for biomarkers is complex, and independent
validations of biomarker-guided practice using a large popula-
tion of human patients with longitudinal follow ups are needed.
Table 3 outlines the pertinent biomarker clinical trials identified
in LT in chronological order (retrieved from the clinicaltrials.gov
database). Of note, the Liver Immunosuppression Free Trial (LIFT)
[NCT02498977] is currently studying the utility of transcriptional
tissue biomarkers to guide immunosuppression withdrawals and
is in phase IV of clinical testing. Such biomarkers improve the
accuracy and speed by which physicians can detect post-
transplant complications. While this work is undoubtedly
restricted by the need for tissue biopsies, it represents an
important starting point for the use of molecular diagnostics in
transplantation. The LiverCare Kit [NCT04793360] utilises Streck
and PAX gene tubes to assess dd-cfDNA and gene expression
patterns in the blood of transplant patients, specifically moni-
toring clinical events related to rejection, recurrent disease, and
biliary obstruction. Typically, many discovery biomarker studies
utilise plasma or serum for analysis; however, the utilisation of
whole blood for biomarker surveillance is more transferrable to
clinical settings where physicians may not have access to large
centrifuges. Thus, the reproducibility and efficacy of biomarkers
need to be validated using clinically relevant biological samples.

Limitations in study design can also significantly delay the
utilisation of molecular diagnostic markers in clinical settings.
Biomarker studies can be retrospective (i.e., using previous data)
or prospective (i.e., following a large number of patients). Pro-
spective designs allow for the longitudinal collection of pre-
diagnostic samples, making this the optimal study design for
identifying early, prognostic markers of injury.116 Marker levels
likely increase as liver injury progresses, thus, samples collected
closer to the occurrence of physical symptoms will be more
informative than those taken after a clinical diagnosis.

Furthermore, since current diagnostic methods and cohort
groupings are often based on histological findings of core bi-
opsies, predictive biomarkers for post-transplant conditions are
limited by biopsy findings. Establishing clinically meaningful
surrogate endpoints for biomarker discovery research is an
ongoing challenge in LT. Compared to related fields, it is less clear
which outcomes are most useful in the prediction of long-term
liver graft function. This issue emphasises the need for more
diverse surrogate markers of injury to improve study design and
predictive models.

Despite a decade of research, no LT biomarkers are currently
available for use in clinical practice. Large multicentre clinical
trials have generated vast amounts of data and information at
various molecular levels, demonstrating a promising opportunity
for cell-free biomarkers to be introduced into clinical care. This
article summarised how recent advances in sequencing and
biotechnological methodologies are contributing to the identifi-
cation of new transcriptomic and genomic biomarkers that could
be used in post-transplant management. Data-driven approaches
have allowed for the integration and interpretation of the
structural and functional features of EVs, miRNA, and cf-ddDNA.
Molecular profiles of biofluids such as blood, urine, perfusate,
and bile are being integrated with post-LT challenges, providing
new opportunities to understand how specific perturbations in
biological fluids can signal the early stages of disease.
9vol. 4 j 100439
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