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Significance

Identifying the culprits of PM2.5 
constituents that are most 
responsible for elevated risks 
of neurodegeneration is of 
paramount importance. We 
perform a US nationwide cohort 
study of the associations between 
PM2.5 constituents and dementia 
and AD. Long-term exposure 
to PM2.5 mass and major 
constituents, particularly from 
traffic and fossil fuel combustion 
sources, is significantly associated 
with elevated dementia or AD 
incidence. All constituents had 
largely linear concentration–
response relationships at low 
concentrations for both end 
points, implying no safe level of 
air pollution for brain health. 
Using two independent exposure 
datasets allows us to examine the 
robustness of findings and thus 
strengthen the credibility of the 
evidence for the associations. Our 
results will facilitate targeted 
source-specific pollution control 
strategies.
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Growing evidence suggests that fine particulate matter (PM2.5) likely increases the risks 
of dementia, yet little is known about the relative contributions of different constituents. 
Here, we conducted a nationwide population-based cohort study (2000 to 2017) by inte-
grating the Medicare Chronic Conditions Warehouse database and two independently 
sourced datasets of high-resolution PM2.5 major chemical composition, including black 
carbon (BC), organic matter (OM), nitrate (NO3

−), sulfate (SO4
2−), ammonium (NH4

+), 
and soil dust (DUST). To investigate the impact of long-term exposure to PM2.5 con-
stituents on incident all-cause dementia and Alzheimer’s disease (AD), hazard ratios 
for dementia and AD were estimated using Cox proportional hazards models, and 
penalized splines were used to evaluate potential nonlinear concentration–response 
(C-R) relationships. Results using two exposure datasets consistently indicated higher 
rates of incident dementia and AD for an increased exposure to PM2.5 and its major 
constituents. An interquartile range increase in PM2.5 mass was associated with a 6 to 7% 
increase in dementia incidence and a 9% increase in AD incidence. For different PM2.5 
constituents, associations remained significant for BC, OM, SO4

2−, and NH4
+ for both 

end points (even after adjustments of other constituents), among which BC and SO4
2− 

showed the strongest associations. All constituents had largely linear C-R relationships 
in the low exposure range, but most tailed off at higher exposure concentrations. Our 
findings suggest that long-term exposure to PM2.5 is significantly associated with higher 
rates of incident dementia and AD and that SO4

2−, BC, and OM related to traffic and 
fossil fuel combustion might drive the observed associations.

air pollution | PM2.5 constituents | dementia | Alzheimer’s disease | epidemiology

Globally, dementia is the seventh leading cause of death in the United States and a major 
cause of disability and dependency among older people, posing an urgent and significant 
public health challenge (1). More than 6 million Americans presently live with Alzheimer’s 
disease (AD) and dementia, leading to a massive economic burden; this number is pro-
jected to triple to approximately 14 million by 2060 (2). As medical treatments for the 
most common types of dementia remain challenging, identifying and mitigating modi-
fiable risk factors are of paramount importance.

Growing evidence indicates that exposure to air pollution, specifically fine particulate 
matter (PM2.5), plays a crucial role in the pathogenesis of AD and AD-related dementias 
(ADRD). A recent critical review by Delgado-Saborit et al. (2021) (3) summarized the 
epidemiological evidence of the effects of air pollution on ADRD, and a positive associ-
ation between long-term exposure to PM2.5 mass and increased ADRD risks was consist-
ently reported across almost all studies. Relevant publications on air pollution and ADRD 
have doubled since this review, with the majority of studies finding positive associations 
between PM2.5 mass and either all-cause dementia or AD (4–6).

To facilitate the targeting of pollution control efforts, the National Academy of 
Sciences and the World Health Organization have placed a high priority on determining 
which constituents of the PM2.5 mass may be most hazardous (7, 8). Yang et al. (9) 
reviewed the literature regarding PM2.5 constituents and both short-term and long-term 
health effects, focusing on all-cause mortality and cardiorespiratory morbidity, and 
found consistent associations with both black carbon (BC) and organic carbon (OC). 
However, the relative contributions of individual PM2.5 constituents to ADRD risks 
remain largely unknown. Only one study to date has focused on PM2.5 constituents and 
ADRD, which looked at PM2.5 constituents and all-cause dementia in the northeastern 
United States (10).
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Elucidating the potential relationship between PM2.5 constit-
uents and dementia has been challenging because of the sparsity 
of available, speciated chemical composition measurements, and 
the chronic nature of neurodegeneration. To cope with these chal-
lenges, long-term, high-resolution spatiotemporal PM2.5 constit-
uents’ estimates are needed, which require modeling with 
measurement constraints from ground observations. In addition, 
more complete health records, such as physician visits, inpatient 
visits, and outpatient visits, are needed to better capture disease 
incidence (5).

Here, we present a nationwide open cohort (i.e., dynamic 
cohort, meaning that members can leave or be added over time) 
study of the long-term PM2.5 constituents’ exposure with incident 
dementia and AD among US older adults during 2000 to 2017. 
We used two high-resolution, multiple-species air pollution data-
sets and all Medicare claims across the contiguous United States 
to estimate the effect of PM2.5 constituents on dementia risk.

Results

Study Population Characteristics. SI Appendix, Table S1 presents 
descriptive information on the dementia cohort and AD cohort 
between 2000 and 2017, with a 3-y clean period without events of 
interest. The dementia cohort included approximately 18.5 million 
individuals, and ~5.8 million individuals developed dementia. 
The AD cohort had approximately 19.2 million individuals, and 
~2.8 million individuals developed AD. In both cohorts, most 

of the study population were White (~90%) and not eligible for 
Medicaid insurance (~89%), and about 60% were females. More 
detailed demographic characteristics on average and by PM2.5 mass 
quintiles are presented in SI Appendix, Tables S1 and S2. County-
level occurrences of first dementia and AD events per 100,000 
Medicare beneficiaries across the contiguous United States (2000 
to 2017) are presented in Fig. 1.

Air Pollution Levels. We accessed two high-resolution, speciated 
air pollution datasets of the contiguous United States from 2000 
to 2017 from two independent sources, including BC, organic 
matter (OM), nitrate (NO3

−), sulfate (SO4
2−), ammonium 

(NH4
+), and soil dust (DUST) (see Methods). Using exposure I, 

the dementia cohort had an average PM2.5 mass concentration 
of 9.58 µg/m3, with an interquartile range (IQR) of 3.68 µg/
m3 (11). The average concentrations of PM2.5 major constituents 
and the corresponding IQRs are listed in SI Appendix, Table S1. 
The exposure II data showed similar means and IQRs for all 
PM2.5 constituents of interest except for BC, which showed lower 
levels than exposure I, albeit with overlapping distributions (12). 
The AD cohort shared a similar exposure with the dementia 
cohort (SI Appendix, Table S1). Two speciated air pollution 
datasets tend to have similar spatial distributions of major PM2.5 
constituents across the United States (Fig. 2). SI Appendix, Fig. 
S1 lists the correlation matrix among PM2.5 mass and its six major 
constituents. PM2.5 mass was highly correlated with NH4

+, SO4
2−, 

BC, and OM in both exposure sets (r values range from 0.60 to 
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Fig. 1. Nationwide occurrences of first dementia events (A) and first Alzheimer’s disease events (B) per 100,000 Medicare beneficiaries across the contiguous 
United States (2000 to 2017), with a 3-y clean period considered.
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0.83). BC and OM (r = 0.74 and 0.78 for exposures I and II, 
respectively) as well as SO4

2− and NH4
+ (r = 0.84 and 0.86) also 

showed strong correlations in both exposure sets. The temporal 
trends of the annual population-weighted mean concentration 
of six PM2.5 constituents are presented in SI Appendix, Fig. S2 of 
supplementary materials. Overall, from 2000 to 2017, national 
annual average concentrations showed a drastic downward trend 
for SO4

2−, NH4
+, and NO3

− in both exposure datasets, with more 
variability observed in SO4

2− concentrations from year to year, 
while other constituents showed a slighter temporal variation in 
different exposure datasets.

Health Effect Estimates. Fig. 3 provides the main results from 
the single-constituent Cox proportional hazards models stratified 
by individual characteristics, adjusting for neighborhood-level 
socioeconomic status (SES), behavioral risk factors, health-care 
capacity variables, and residual temporal and spatial trends (see 
Methods). Higher PM2.5 mass and major constituents of interest 

were all consistently observed to be associated with increased 
dementia and AD incidence using exposure I. A null association 
was observed between DUST and dementia using exposure II. 
Per IQR increase in each pollutant in exposure I, hazard ratios 
(HRs) of dementia were 1.068 (95% CI: 1.063, 1.072) for PM2.5 
mass, 1.043 (1.040, 1.047) for BC, 1.036 (1.032, 1.039) for OM, 
1.006 (1.003, 1.010) for DUST, 1.105 (1.099, 1.011) for SO4

2−, 
1.005 (1.000, 1.010) for NO3

−, and 1.067 (1.061, 1.073) for 
NH4

+ (SI Appendix, Table S4). Corresponding HRs of AD were 
1.106 (1.099, 1.114) for PM2.5 mass, 1.078 (1.071, 1.084) for BC, 
1.062 (1.057, 1.068) for OM, 1.025 (1.020, 1.030) for DUST, 
1.132 (1.123, 1.141) for SO4

2−, 1.005 (0.997, 1.103) for NO3
−, 

and 1.069 (1.060, 1.078) for NH4
+ (SI Appendix, Table S5), 

respectively. Exposure II in general yielded slightly larger effect 
estimates than exposure I for both end points, and the association 
between NO3

− and AD became significant using exposure II. On 
a per 1 µg/m3 basis, BC had the highest associations with both 
end points across exposure datasets, followed by NH4

+ and SO4
2−. 
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Fig. 2. Average concentrations of PM2.5 major constituents (µg/m3), respectively derived from exposure I [van Donkelaar et al. (11)] (A) and exposure II [Amini 
et al. (12)] (B) across the contiguous United States from 2000 to 2017.
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Per 1 µg/m3 increase in BC, HRs of dementia were 1.123 (1.112, 
1.135) using exposure I and 1.247 (1.223, 1.272) using exposure 
II (SI Appendix, Table S4), and HRs of AD were 1.227 (1.207, 
1.247) using exposure I and 1.393 (1.358, 1.429) using exposure 
II (SI Appendix, Table S5).

Concentration–Response (C-R) Relationships. Fig. 4 presents the 
C-R relationships between each PM2.5 constituent of interest and 
outcomes of incident dementia and AD from single-constituent 
models. Linear relationships were observed with BC (exposure II), 
SO4

2−, and NH4
+, with no sign of threshold for both outcomes. 

The curves for BC with exposure I are essentially near linear for 
both end points until high and rarely occurring concentrations. 
Near-linear relationships were observed with OM (<5 µg/m3) and 
DUST (<1 µg/m3) in middle concentrations and then leveled out 
for higher concentrations for both end points. The C-R curves 
showed positive linear associations between both dementia and 
AD outcomes and NO3

− at low concentrations; however, the 
relationships became unstable above about 1 µg/m3.

Effect Modifications. The subgroup-specific HRs in single-
constituent models are presented in SI Appendix, Fig. S3. We 
found that BC and SO4

2− were always positively associated 
with both dementia and AD across effect modifiers. The results 
obtained using estimates from exposure I and exposure II mostly 
showed similar patterns across the effect modifiers. For dementia, 
effect estimates for NO3

−, SO4
2−, and NH4

+ were higher among 
relatively older populations and males. Black individuals had a 
higher risk of dementia associated with NO3

− and NH4
+, while 

races other than Blacks and Whites had a stronger association of 
dementia with DUST and SO4

2−. Additionally, for DUST, SO4
2−, 

and NH4
+, people eligible for Medicaid were at a significantly 

greater risk of dementia than those not eligible for Medicaid. 
Similar patterns were also observed in the association between 
AD and these constituents.

Sensitivity Analysis. Our results were robust in a series of 
sensitivity analyses. First, for both outcomes, multiconstituent 
models yielded similar results for most PM2.5 constituents, except 
that NO3

− was observed to have a negative impact on dementia 
or AD after adjusting for other PM2.5 constituents using both 
exposure datasets (SI Appendix, Tables S4 and S5). The adjustment 
for the residual PM2.5 mass (i.e., subtracting the constituent of 
interest from total PM2.5 mass) yielded similar results, compared 
to the multiconstituent models (SI Appendix, Tables S4 and 
S5). Second, we considered the possible effect of outcome 
misclassification by 1) fitting a linear regression model based 
on incidence rates and 2) estimating the true number of cases 
within strata based on prior estimates of Medicare sensitivity and 
specificity, and the results of both methods remained largely stable 
or slightly larger compared to the main analysis, indicating that 
potential outcome misclassification may have biased the results 
toward the null (SI Appendix, Tables S6 and S7). Third, a stricter 
“clean” period of 5 y yielded roughly consistent results with the 
main analyses (SI Appendix, Table S8). In addition, the results of 
the nonmover cohort suggest little bias from residential mobility  
(SI Appendix, Table S9). Furthermore, the effect estimates remained 
unchanged regardless of the form of adjustment for “year” in the 
main models (SI Appendix, Table S10). Last, after accounting 
for differing exposure measurement error, we found that the 
relative effect estimates across the major PM2.5 constituents were 
consistent with our main analyses, and the conclusions were not 
affected, although the magnitudes were attenuated (SI Appendix, 
Table S11).
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Fig. 3. Hazard ratios of (A) dementia or (B) Alzheimer’s disease (AD) associated with per IQR or per 1 µg/m3 increase in annual mean concentration of each 
PM2.5 major constituent, respectively, including BC, OM, soil dust (DUST), NO3

−, SO4
2−, and NH4

+. The dotted lines stand for the corresponding results for PM2.5 
mass. The estimated hazard ratios were obtained from single-constituent models, and error bars stand for the 95% CIs. The light and dark colors are used to 
distinguish air pollutants derived from two exposure models, with the light one indicating exposure I data (11) and the dark one indicating exposure II data (12). 
The corresponding hazard ratio values could be found in SI Appendix, Tables S3 and S4 (Model 1).
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Discussion

Using two sets of high-resolution air pollution datasets, we con-
sistently observed that long-term exposure to PM2.5 mass and 
its major constituents were associated with higher risks of 
dementia and AD among older adults in a large US cohort. More 
specifically, higher exposure to four (i.e., SO4

2−, NH4
+, BC, and 

OM) of the six constituents explored were consistently associated 
with higher dementia and AD risks. SO4

2− and BC were associ-
ated with the highest dementia or AD risks, while NO3

− and 
DUST had relatively lower impacts. Overall, we observed 
stronger associations for AD than dementia. The relatively 
greater influence of particulate matter on AD may be because 
dementia encompasses a wide variety of disorders with different 
etiologies, some of which may be unrelated to fine particle pol-
lution. The results from the multiconstituent models were only 
modestly changed from those in the single constituent models 

except for NO3
− suggesting that these associations were not con-

founded by other constituents.
The effect estimates per IQR increase on dementia and AD are 

the largest for SO4
2− and lowest for NO3

−. Our single-constituent 
and multiconstituent models showed inconsistent results for 
NO3

−, and we interpret this as evidence that there is no sufficient 
statistical evidence for the harmful effect of NO3

−, and the pro-
tective effect seen in the multiconstituent models may be due to 
collinearity. Another plausible mechanism to explain the protec-
tive effect of NO3

− is that the presence of NO3
− is associated with 

lower aerosol acidity, which may reduce the solubility and bio-
availability of transition metals (13). The per IQR effect estimates 
for NH4

+ are in between, as expected, as NH4
+ is chemically asso-

ciated with SO4
2− and NO3

−. The principal sources of SO2 (i.e., 
SO4

2− precursor) are fossil fuel combustion (14). SO4
2− in the 

form of (NH4)2SO4 or NH4HSO4 does not have strong acute 
neurotoxicity based on toxicological assessments (15). However, 
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Fig. 4. The concentration–response curves for each PM2.5 constituent and dementia (A) and Alzheimer’s disease (B). The concentration–response curves, 
derived from the single-constituent models, are shown for the concentration ranges between 0.5th and 99.5th percentiles of the pollutants, i.e., with 1% poorly 
constrained extreme values excluded. For each constituent, the top panel used exposure I data (11) and the bottom panel used exposure II data (12).
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SO4
2− may serve as a proxy for other combustion-emitted pollut-

ants subsequently processed in the atmosphere, such as oxygenated 
organic species, which are known to cause oxidative stress (16). 
Excessive oxidative stress has been linked with the production of 
α-synuclein, amyloid-β, and hyperphosphorylated tau protein and 
may play a role in ADRD etiology (17).

Another plausible explanation is that the high aerosol acidity 
associated with SO4

2− may enhance the solubility and bioavaila-
bility of trace metals (18) and further generate reactive oxygen 
species in vivo by redox cycling and lead to oxidative stress (19). 
Studies on AD pathology found that the olfactory bulbs partici-
pate in the neuroinflammatory process related to exposure to 
metals in fine particles (20). The role of the olfactory nerve as a 
direct pathway of exposure to PM2.5 is supported by rodent studies 
that have demonstrated exacerbation of AD-related pathology 
following exposure to well-characterized ambient air pollu-
tion (21). As rodents are obligate nose breathers, this exposure 
scenario isolates the olfactory system as a direct route through 
which PM2.5 and its constituents could access the brain and con-
tribute to AD pathology. In studies using the wild type and rats 
that express human AD risk genes, exposure to traffic-related air 
pollution resulted in an increase in PM2.5 particles in the hip-
pocampus of wild-type and transgenic rats, with a concomitant 
increase in AD-related pathology in both genotypes (22). Although 
focused on PM2.5, these findings provide clear evidence for the 
olfactory nerve to serve as a conduit for PM2.5 and its associated 
components to contribute to AD pathogenesis. Moreover, the 
synergistic effect of (NH4)2SO4 and the presence of ultrafine par-
ticles may accelerate the aggregation of peptides that impact pro-
gression of neurodegenerative diseases (23). Collectively, these 
studies provide support for our findings about the relatively higher 
magnitude of SO4

2− compared to NO3
−.

Among all examined components of PM2.5, BC has the largest 
effect estimates on dementia and AD per 1 µg/m3 increase. We 
note that exposure II has higher effect estimates per 1 µg/m3 than 
exposure I, mainly because of the discrepancy in estimated BC 
concentrations between two datasets (SI Appendix, Table S1). This 
discrepancy in BC estimates can be explained by the fact that these 
two exposure sets relied on monitor data based on different tech-
niques (i.e., thermal method vs. optical methods). (24, 25) BC 
are combustion-related particles, mainly derived from tailpipe 
traffic emissions and biomass burning (26). Our results are con-
sistent with the literature that suggests an association between 
traffic-related air pollution (measured as BC levels) and poor cog-
nition levels in older men (27). Possible explanations of the neu-
rotoxicity of BC include increased levels of inflammatory 
mediators, markers of oxidative damage to DNA, and β-amyloid 
deposition as well as evidence of blood–brain barrier disrup-
tion (28). BC particles and other ultrafine particles can also be 
small enough to pass through the olfactory nerve, bypass the 
blood–brain barrier, and translocate to the brain (29), leading to 
oxidative stress and neuroinflammation (30). A recent study also 
highlights the translocation of fine BC particles from the lung to 
the brain through the inhalation/circulation/brain route (31). In 
addition, BC could act as a carrier for highly toxic OM species 
such as polycyclic aromatic hydrocarbons (PAHs) and polychlo-
rinated biphenyls (PCBs), (32) and BC can be coemitted with 
nontailpipe traffic-related pollutants, such as road dust and metals 
and organics from brake and tire abrasion (33). These species can 
have adverse neurotoxic effects (34). On a per 1-µg/m3 basis, 
NH4

+ and SO4
2− also had high effect estimates on dementia and 

AD. However, as SO4
2− is usually highly correlated with NH4

+, 
the HR per 1 µg/m3 of (NH4)2SO4 would be lower than the values 
reported for each individual constituent.

OM is another important PM2.5 constituent that increases the 
risks of dementia and AD in our study. OM makes up a substantial 
fraction of PM2.5 mass, consisting of primary OM directly emitted 
from combustion emissions and other sources and secondary OM 
formed by atmospheric oxidation of gas-phase species (35). Due 
to the complexity of OM in terms of sources and constitutions, 
the toxicity of some OM compounds has motivated greater scru-
tiny than other PM2.5 compounds in health studies (36). OM 
includes highly toxic species such as PAHs (including products of 
atmospheric processing, such as oxy- and nitro-PAHs) and PCBs 
and contributes a large fraction of aerosol oxidative potential  
(37, 38). Ultrafine particles from traffic sources also largely consist 
of carbonaceous species, including OM and BC (39). However, 
research on the neurological effects of atmospheric OM pollutants 
is scarce, and more studies are warranted.

The linear relationships of BC (exposure II), SO4
2−, and NH4

+ 
with both outcomes were observed with no sign of threshold, and 
these results were consistent with the linear C-R relationships in 
the previously published “Northeastern” study (40). Interestingly, 
“bell-shaped” C-R curves were observed for the relationship 
between OM, DUST, and NO3

− exposure and dementia/AD, 
suggesting that the C-R curves are relatively steep at very low to 
moderate levels of exposure and leveled down at high levels of 
exposure. Numerous hypotheses have sought to explain the mech-
anisms leading to a nonlinear C-R relationship; these include 
errors in calculating exposure levels of pollution at higher concen-
trations, the existence of competing risks, and preferential avoid-
ance based on symptoms (41). Moreover, the difference in 
population distributions across different constituents may also 
lead to different C-R curves.

Previous epidemiology studies have also demonstrated the asso-
ciations between short-term and long-term exposure to PM2.5 
constituents for different morbidity and mortality. One recently 
published literature review has systematically reviewed 35 epide-
miological studies (25 time series and 10 cohorts), and the authors 
observed the most robust and consistent associations between both 
BC and OC for all-cause mortality and cardiovascular mortality 
and morbidity. They also reported that NO3

− and SO4
2− were 

relevant for adverse cardiovascular and respiratory health out-
comes. Since that review, another large city-level daily time series 
study of all-cause mortality has recently been published (42), cov-
ering 210 cities in 16 countries. They found that NH4

+ had the 
largest effect estimates, while SO4

2− also increased daily mortality, 
but less markedly.

Strengths and Limitations. Our study has several strengths. 
This is a nationwide, population-based, open cohort study 
characterizing the health effects of ambient PM2.5 constituent 
exposure on dementia and AD incidence. The large sample size 
gives us ample statistical power to identify the effects of long-
term PM2.5 constituent exposure on neurodegeneration. This 
study provides insights into composition-specific health effects 
of PM2.5, while most studies focus on total PM2.5 mass. Second, 
two independently sourced state-of-the-art exposure datasets allow 
us to examine the robustness of results against measurement error, 
thus strengthening the credibility of the findings. Third, using 
comprehensive Medicare claims (including physician visits) can 
better reflect incidence, as they can capture more cases, particularly 
earlier diagnosed cases that are often missed in hospitalization 
records.

Despite these strengths, we acknowledge that our study has 
several limitations. First, exposure measurement error has been 
inevitably introduced when using predicted ambient concentra-
tions, albeit two datasets showed consistent effect estimates. 

https://www.pnas.org/lookup/doi/10.1073/pnas.2211282119#supplementary-materials
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Additionally, coarse exposure concentrations at the ZIP code level 
may not allow some constituents with high spatial variability to 
be well characterized. However, due to the limitations in Medicare 
data resolution, health outcome information at the ZIP code level 
is the most granular information that can be obtained. Thus, anal-
ysis using higher resolution health information matched with fine 
PM2.5 constituents’ exposure estimates is needed in future studies. 
Second, outcome misclassification is likely to occur when relying 
on administrative records. AD cases account for 48% of dementia 
diagnoses in our database, suggesting the undiagnosed nature of 
AD using administrative records (43). Moreover, dementia and 
AD have a long and insidious onset, and the exact timing of the 
disease onset is unknown. Another limitation is that we are able 
to adjust for only potential confounders that can be estimated 
based on neighborhood-level characteristics, and future work 
should incorporate individual-level characteristics associated with 
ADRD (44, 45). In addition, it is unclear whether the high effects 
of BC and SO4

2− are due to their intrinsic neurotoxicity or other 
culprit pollutants that are coemitted and correlated. Last, although 
PM2.5 constituents provide useful information about sources, it is 
important to assess more source-specific effects of PM2.5, as they 
can be readily translatable into effective abatement strategies.

In conclusion, long-term exposure to fine particle pollution is 
associated with higher risks of dementia and AD, and individual 
PM2.5 constituents are associated with differences in risk. BC and 
SO4

2− have the strongest associations. Our findings imply that 
policies that target the reduction in ambient PM2.5 concentrations, 
particularly primary and secondary particulate pollutants from 
sources such as traffic and sulfur-containing fossil fuel combustion, 
have a significant public health impact.

Materials and Methods

Study Population. We analyzed two nationwide, privacy-protected and publicly 
available databases from the Centers for Medicare and Medicaid Services (CMS), 
including the Medicare denominator file and the Medicare Chronic Conditions 
Warehouse (CCW), based on which we constructed separate cohorts for all-cause 
dementia and AD subtype in 2000 to 2017. The denominator file contains enroll-
ment records for each Medicare beneficiary, including demographics, Medicaid 
insurance status (a proxy for SES), the date of death (if any), and ZIP code of 
residence, which were updated annually. The CCW claims data include prede-
fined indicators for chronic conditions among the fee-for-service (FFS) Medicare 
beneficiaries and provides the date of the first occurrence with a diagnosis code 
for a specific condition.

Our study population comprised all Medicare beneficiaries enrolled at age 
65 y or above living in the contiguous United States from 2000 to 2017, with 
continuous enrollment 1) in the Medicare FFS program and 2) in both Medicare 
Part A (hospital insurance) and Part B (medical insurance) over the follow-up 
period. These inclusion criteria were used because the CCW relies on FFS, Part 
A, and Part B to identify cases. In addition, we further required a clean period of 
3 y of enrollment without dementia or AD to better approximate “incidence,” i.e., 
removing potentially prevalent cases in their first 3 y of follow-up. Hence, study 
subjects entered the cohort on January 1st of the year following the clean period 
and were followed until the first diagnosis of dementia or AD across all available 
Medicare claims, death, end of enrollment in either of the mentioned Medicare 
programs, or end of follow-up. Our research was approved by Emory’s IRB and 
the CMS under the data use agreement.

Outcome Classification. All-cause dementia and AD subtype were the two 
primary outcomes of this study. AD is a specific single disease that falls under 
the dementia umbrella, and AD is the major type of dementia that represents 
~60 to 80% of dementia cases. The diagnoses of dementia and AD were identi-
fied and recorded as two distinct indicators using an algorithm created by CCW 
that incorporated information across the available Medicare claims, including 
inpatient and outpatient claims, Carrier files (primarily doctor visits), skilled nurs-
ing facility, and home health-care claims. This algorithm has been shown to be 

reasonably accurate in classifying diseases based on validation studies such as 
those by Taylor et al. (46, 47) who found high sensitivity for dementia (0.85) but 
lower for AD (0.65). CCW provides the date of the first occurrence with a dementia 
or AD diagnosis code. In the dementia cohort, the outcome was defined as the 
first occurrence of a dementia diagnosis code. In the AD cohort, the outcome 
was defined as either (1) the first occurrence of an AD diagnosis with no prior 
dementia diagnosis or (2) the first occurrence of a dementia diagnosis when 
there was a subsequent AD diagnosis (given that the original dementia diag-
nosis was probably AD). Given that previous studies  (5) have found a greater 
effect of long-term PM2.5 exposure on AD compared to dementia, it is likely that 
some causes of dementia may be less associated with air pollution, while AD 
with distinct disease assessment had a stronger association. The specific effects 
of different PM2.5 constituents on dementia and AD were evaluated separately 
in this study to further assess whether AD progression is more related to PM2.5 
pollution compared to all-cause dementia.

Exposure Assessment. We accessed two high-resolution, speciated air pollution 
datasets of the contiguous United States from 2000 to 2017 from two independ-
ent sources. The first set of annual mean concentrations including total PM2.5 mass 
and its six major constituents (exposure I) was estimated at 1-km resolution using 
a previously validated PM2.5 composition prediction model (11). Briefly, mean 
satellite-derived PM2.5 total mass concentrations were first estimated at 1-km 
resolution by combining satellite retrievals of aerosol optical depth, chemical 
transport modeling (CTM), and ground-based observations. The six major con-
stituents of PM2.5 were calculated by decomposing the PM2.5 total mass into 
individual chemical constituents using CTM output and further calibrated using 
ground-based observations. Our annual predictions of each constituent achieved 
good long-term spatial agreements compared with ground measurements, with 
cross-validated R2 of 0.59 for BC, 0.86 for NO3

−, 0.96 for SO4
2−, 0.90 for NH4

+, 
0.57 for OM, and 0.60 for DUST.

The second set of annual mean predictions for PM2.5 constituents (exposure II) 
was estimated using superlearning and ensemble weighted averaging models, 
with a 50-m spatial resolution in urban areas and a 1-km resolution in nonurban 
areas. Details about exposure II dataset can be found elsewhere (12). Briefly, PM2.5 
constituent training data were collected from 987 monitoring sites, and hundreds 
of predictors were used for six superlearning models and an ensemble weight-
ed-averaging model. This approach achieved excellent model performance, with 
cross-validated R2 for individual components used in this study ranging from 
0.856 (OM) to 0.957 (SO4

2−). In addition to PM2.5 constituents, we have previously 
used a similar ensemble model that integrated multiple machine learners and 
hundreds of predictors to estimate PM2.5 mass concentrations across the contig-
uous United States, with cross-validated R2 of 0.89 for annual predictions (48). 
This PM2.5 mass dataset has been widely used in previous epidemiological studies  
(5, 49, 50).

We finally averaged these gridded predictions for each constituent at the ZIP 
code level (i.e., the finest spatial resolution of Medicare data) for each year. Two 
sets of ZIP code-level annual means were assigned to each Medicare beneficiary, 
and any residential mobility changes by ZIP code were considered annually.

Covariates. Individual-level demographics (age, sex, and race) and Medicaid 
insurance status were obtained from the Medicare denominator file. We also 
included in the model neighborhood-level covariates, including ZIP code-level 
SES variables (population density, median household income, % Black popula-
tion, % population living in rental house or apartment, % population aged 65 or 
above living below the poverty line, and % population with less than a high school 
education), county-level behavioral risk factors (smoking prevalence and mean 
body mass index), county-level health care capacity variables (number of hospitals 
and active medical doctors per 1,000 people), and a geographical region indica-
tor. All covariates were included as linear terms in the models unless otherwise 
noted. Details and data sources of covariates are described in Shi et al. (2021) (49).

Statistical Analysis. We fit stratified Cox proportional hazards models with a 
generalized estimating equation (GEE) to estimate the associations between 
time-varying annual mean concentrations of PM2.5 constituents on dementia or AD 
among older adults, with years of follow-up as the time scale. Given the potential 
multicollinearity among PM2.5 constituents, we fit single-constituent models in the 
main analyses and estimated HRs per IQR increase and per 1 µg/m3 increase in the 
annual mean concentrations of each PM2.5 constituent. GEE allowed us to adjust 
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for residual autocorrelation within the ZIP code and thus obtain more statistically 
robust CIs for the effect estimates. All models were stratified by age at entry (1-y 
age categories), race (White, Black, and other), sex, and Medicaid insurance status 
and adjusted for the neighborhood-level covariates (see Covariates). To adjust for 
potential residual temporal and spatial trends, a linear term for calendar years and 
an indicator for geographical regions were included.

To account for possible nonlinearity in the C-R relationships between each PM2.5 
constituent and dementia or AD, we fit penalized splines for each constituent in 
single-constituent models. The models adjusted for the same covariates as our 
main model. We further assessed potential effect modification by introducing an 
interaction term between the constituent and a modifier of individual-level charac-
teristics, including age group (≤75 y vs. >75 y), race, sex, and Medicaid eligibility.

We conducted several sensitivity analyses to assess the robustness of our 
main results. First, we fit multiconstituent models by including multiple PM2.5 
constituents in one model simultaneously. Considering the high correlations 
between BC and OM as well as between SO4

2− and NH4
+ (SI Appendix, Fig. S1), 

we fit two separate multiconstituent models, 1) by including BC, DUST, SO4
2−, 

and NO3
− simultaneously and 2) by including OM, DUST, SO4

2−, and NO3
− simul-

taneously. Second, in single-constituent models, we additionally adjusted for 
the residual PM2.5 mass (i.e., subtracting the constituent of interest from total 
PM2.5 mass) other than the constituent of interest. Third, we assessed the impact 
of possible outcome misclassification in two ways: 1) fitting linear regression 
models for incidence rates of dementia or AD with GEE, which yielded additive 
effect estimates that were less sensitive to bias, because random misclassification 
of the outcome would be absorbed into the residual errors of the linear model 
for the true rates of events (51) and 2) considering the possible effect of outcome 
misclassification following methods similar to those described by Fox et al. (52) 
and adjusting the observed outcomes for each stratum based on the estimates of 
Medicare sensitivity and specificity from Taylor et al. (47) to estimate the expected 
true number of cases. In addition, we applied a clean period of 5 y by excluding 
anyone diagnosed with dementia or AD in their first 5 y of follow-up. Compared 
with the main analysis using a 3-y clean period, this would increase the possibility 
to capture the first diagnosis of dementia or AD, at a cost-reducing sample size. 
Moreover, we conducted a nonmover cohort analysis for subjects who did not 
move during the follow-up period to account for potential measurement error 
related to a change in the residential address. To further explore the impact of 
the temporal variation of exposure, we tested two other sets of adjustments for 
time trend, including 1) adding year as a spline term in the model with 4 degrees 
of freedom and 2) adding year as a categorical variable in the model. Finally, to 
investigate the impact of differing exposure measurement error across constitu-
ents on dementia and AD, we first extracted the regression mean square error for 
each constituent from the two exposure assessment models and then added an 

error term (following a log-normal distribution) to the original data and generated 
20 perturbed datasets. Then, each dataset was used to fit the single-constituent 
models, and the results were summarized (53). To improve the computation effi-
ciency, we bootstrapped 100 times for each perturbed dataset.

R software, version 4.0.2, was used for all analyses. Statistical significance was 
determined by two-sided P < 0.05.

Data, Materials, and Software Availability. The Medicare dataset was stored 
and analyzed in the Emory Rollins School secure cluster environment, with Health 
Insurance Portability and Accountability Act compliance. The rules governing 
the Medicare dataset prohibit any sharing of the health datasets being used 
for our epidemiologic research. Restricted by our Data Use Agreement with the 
US Centers for Medicare & Medicaid Services, the Medicare data that support 
the findings of this study are neither sharable nor publicly available from us. 
Academic and nonprofit researchers who are interested in using Medicare data 
should contact the US Centers for Medicare & Medicaid Services directly to obtain 
their own datasets upon completion of a Data Use Agreement.
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